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Neural networks are universal approximators

Hornik et al. (1989)

Multilayer feedforward networks with one hidden layer using
arbitrary squashing functions are capable of approximating any
function to any desired degree of accuracy, provided sufficiently
many hidden units are available.

Neural Networks with an infinite number of hidden units should be
able to approximate every function arbitrarily well.
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A nice picture before the Maths

O1 . . . Op

. . . hv1
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. . . hvk
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Going to infinity

f̂ (x) =
∑

j

wj g(vj · x) + b −→ f̂ (x) =

∫

j

w(j) g(v(j) · x) dj + b

Hornik’s theorem tells us that any function f from R
d to R can be

approximated arbitrarily well by:

1 a function from R to R: w the “output weights function”

2 a function from R to R
d+1: v the “input weights function”

3 a scalar: b the output bias.

But a function from R to R
d+1 is d + 1 functions from R to R.

This is very similar to Kolmogorov’s representation theorem.
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v for usual neural networks

v(j)

j

vj

wj

f̂ (x) =

∫

u

g (v(u) · x) du + b =
∑

j

wjg (vj · x) + b

Neural networks approximate v with a piecewise constant function.
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V is a trajectory in R
d indexed by t

1 The function V is a trajectory in the space of all possible
input weights.

2 Each point corresponds to an input weight associated to an
infinitesimal output weight.

3 A piecewise constant trajectory only crosses a finite number of
points in the space of input weights.

4 We could imagine trajectories that ”fill” the space a bit more.
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vjwj

f̂ (x) =
∑
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Piecewise affine approximations

v(j)

j

vjwj

f̂ (x) =
∑

j

wj

(vj − vj−1) · x
ln

(
cosh(vj · x)

cosh(vj−1 · x)

)
+ b

Seeing v as a function, we could introduce smoothness wrt j using
constraints on successive values of v .
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1 ∣∣∣f (x) − f̂ (x)
∣∣∣ ≤ 2a

∫ 1

0

|(v(t) − v̂(t)) · x | dt

2 A good approximation of v yields a good approximation of f .

3 Trapezoid rule (continuous piecewise affine functions) has a
faster convergence rate than rectangle rule (piecewise
constant functions).
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Rate of convergence

1 ∣∣∣f (x) − f̂ (x)
∣∣∣ ≤ 2a

∫ 1

0

|(v(t) − v̂(t)) · x | dt

2 A good approximation of v yields a good approximation of f .

3 Trapezoid rule (continuous piecewise affine functions) has a
faster convergence rate than rectangle rule (piecewise
constant functions).

Theorem: rate of convergence of affine neural networks

Affine neural networks converge in O(n−2) whereas usual neural
networks converge in O(n−1) (when n grows to infinity).
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A few remarks on the optimization on the input weights

1 Having a complex function V requires lots of pieces.

2 Without constraints, having many pieces will lead us nowhere.

3 Maybe we could use other parametrizations inducing
constraints on the pieces.

4 Instead of optimizing each input weight v(j) independently,
we could parametrize them as the output of a neural network.
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Input weights function as the output of a neural network

1

v(j) =
∑

k

wv ,kg (vv ,k · j + bv ,k)

2 Setting a prior on the parameters of that network induces a
prior on v .

3 Such priors include the Gaussian prior commonly used.

4 The prior over vv ,k and bv ,k determines the level of
dependence between the j ’s.

5 The prior over wv ,k determines the amplitude of the v(j)’s.
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A bit of recursion

1

v(j) =
∑

k

wv ,kg (vv ,k · j + bv ,k)

2 What about the vv ,k and the bv ,k?

3 We could define them as the output of a neural network.

4 You should be lost by now.

5 Let’s stop a bit to rest.
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Summary

1 Input weights can be seen as a function.

2 There are parametrizations of that function that yield
theoretically more powerful networks than the usual ones.

3 Moreover, such parametrizations allow to set different
constraints than the common ones.

4 Example: handling of sequential data.

Nicolas Le Roux Snowbird 2006
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Having all possible input neurons at once

1 Instead of optimizing input weights, we could use all of them:
f (x) =

∫
E

w(v)g(v · x) dv

2 and only optimize the output weights −→ this is convex.

3 The optimal solution is of the form:
f (x) =

∑
i

∫
E

g(x · v)g(xi · v) dv .

4 With a sign transfer function, this integral can be computed
analytically and yields a kernel machine.

5 Setting a prior on the output weights, this becomes a GP.

6 Ksign(x , y) = A − B‖x − y‖

7 This kernel has no hyperparameter.
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Results on USPS with 6000 training samples

Algorithm wd = 10−3 wd = 10−6 wd = 10−12 Test

Ksign 2.27±0.13 1.80±0.08 1.80±0.08 4.07

G. σ = 1 58.27±0.50 58.54±0.27 58.54±0.27 58.29

G. σ = 2 7.71±0.10 7.78±0.21 7.78±0.21 12.31

G. σ = 4 1.72±0.11 2.09±0.09 2.10±0.09 4.07

G. σ = 6 1.67±0.10 2.78±0.25 3.33±0.35 3.58

G. σ = 7 1.72±0.10 3.04±0.26 4.39±0.49 3.77
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Results on MNIST with 6000 training samples

Algorithm wd = 10−3 wd = 10−6, 10−9, 10−12, 0 Test

Ksign 5.51 ± 0.22 4.54 ± 0.50 4.09

G. σ = 1 77.55 ± 0.40 77.55 ± 0.40 80.03

G. σ = 2 10.51 ± 0.46 10.51 ± 0.45 12.44

G. σ = 3 3.64 ± 0.10 3.64 ± 0.10 4.1

G. σ = 5 3.01 ± 0.12 3.01 ± 0.12 3.33

G. σ = 7 3.15 ± 0.09 3.18 ± 0.10 3.48
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Results on LETTERS with 6000 training samples

Algorithm wd = 10−3 wd = 10−6 wd = 10−9 Test

Ksign 5.36 ± 0.10 5.22 ± 0.09 5.22 ± 0.09 5.5

G. σ = 2 5.47 ± 0.14 5.93 ± 0.15 5.92 ± 0.14 5.8

G. σ = 4 4.97 ± 0.10 11.06 ± 0.29 12.50 ± 0.35 5.3

G. σ = 6 6.27 ± 0.17 8.47 ± 0.20 17.61 ± 0.40 6.63

G. σ = 8 8.45 ± 0.19 6.11 ± 0.15 18.69 ± 0.34 9.25
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Summary

1 We showed that training a neural network can be seen as
learning an input weight function.

2 We introduced an affine-by-part parametrization of that
function which corresponds to a continuous number of hidden
units.

3 In the extreme case where all the input weights are present,
we showed it is a kernel machine whose kernel can be
computed analytically and possesses no hyperparameter.

Nicolas Le Roux Snowbird 2006
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Future work

1 Learning the transfer function using a neural network.

2 Find other (and better) parametrizations of the input weight
function.

3 Recursively define the input weight function as the output of a
neural network.

Nicolas Le Roux Snowbird 2006
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Additive and multiplicative invariance of the covariance matrix

Computing
∫

E
sign(v · x + b)sign(v · y + b) dvdb

1 sign(x) function is invariant with respect to the norm of x .

2 sign(v · x + b)sign(v · y + b) = sign(v · x + b)(v · y + b)].

3 When b ranges from −M to +M, for M large enough,
x ′vv ′y + b is negative on an interval of size |v · (x − y)|.

4

∫ +M

b=−M
sign(x ′vv ′y + b) db = 2M − 2|v · (x − y)|.

5 Integrating this term on the unit hypersphere yields a kernel
of the form K (x , y) = A − B‖x − y‖.

Nicolas Le Roux Snowbird 2006
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Additive and multiplicative invariance of the covariance

matrix

1 In SVM and kernel regression, the elements of the weights
vector α sum to 0.

2 The final solution involves Kα.

3 Thus, adding a term δ to every element of the covariance
matrix yields the solution
(K + δ

n
ee ′)α = Kα + δ

n
e(e ′α) = Kα.

4

C (K , α, b, λ) = L(Kα + b,Y ) + λα′Kα

C

(
K

c
, cα, b,

λ

c

)
= L

(
K

c
cα + b,Y

)
+

λ

c
cα′

K

c
cα

= C (K , cα, b, λ)
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