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Real Goals of Statistical Learning

• Given a set D of l examples xt coming from an unknown distribution

or process.

• Discover structure in that distribution (= departures from uniformity

and independence) so as to be able to make predictions about new

combinations of values.

• Grossly: where are zones of high density vs low density?

• Generalization: inference must work on new examples from the

same distribution.

• With high-dimensional data, new examples tend to be “far” for

training data.



Spectral Embedding Algorithms

Algorithms for estimating a training set embedding on the presumed data

manifold from the principal eigenvectors of a Gram matrix M with

Mij = KD(xi, xj) from data-dependent kernel KD.

• Examples: LLE (Roweis & Saul 2000), Isomap (Tenenbaum et al

2000), Laplacian Eigenmaps (Belkin & Niyogi 2003), spectral
clustering (Weiss 99), kernel PCA (Schölkopf et al 98). Each

corresponds to different KD. (fig. Roweis & Saul)

• Attractiveness: represent non-linear manifolds with analytic solution.



Out-of-Sample Embedding = Induction

• How to generalize to new examples without recomputing

eigenvectors?

• Are there corresponding induction algorithms?

• Out-of-sample generalization with the Nyström formula:

ek(x) =
1

λk

n∑
i=1

vkiKD(x, xi)x

for k-th coordinate, with (λk, vk) the k-th eigenpair of M .

• This is an estimator of the eigenfunctions of KD as |D| → ∞ (see

upcoming Neural Comp. paper, on my web page).



Tangent Plane ⇐⇒ Embedding Function

tangent directions

tangent plane

Data on a curved manifold

Important observation:

The tangent plane at x is simply the subspace spanned by the gradient

vectors of the embedding function:

∂ek(x)

∂x



Local Manifold Learning

• Local Manifold Learning Algorithms: derive information about the

manifold structure near x using mostly the neighbors of x.

• For LLE, kernel PCA with Gaussian kernel, spectral clustering,

Laplacian Eigenmaps KD(x, y) → 0 for x far from y, so ek(x) only

depends on the neighbors of x.

• Therefore the tangent plane ∂ek(x)
∂x also only depends on the

neighbors of x.

• ⇒ can’t say anything about the manifold structure near a new

example x that is “far” from training examples!



LLE: Local Affine Structure

The LLE algorithm estimates the local coordinates of each example in the

basis of its nearest neighbors. Then looks for a low-dimensional

coordinate system that has about the same expansion.

Variations on the local plane around point i are writ-

ten

∆x =
∑

xj∈N (xi)

αjdij

where dij = (xi−xj) are local “tangent directions”

which are learned separately for each zone around a

point xi.



ISOMAP

Isomap estimates the geodesic distance along the manifold using the
shortest path in the nearest neighbors graph.

It then looks for a low-dimensional representation that approximates
those geodesic distances in the least square sense (MDS).

Lemma: the tangent plane at x of the manifold estimated by Isomap are
included in the span of the vectors x − xj where xj are training set
neighbors of x (in the sense of being the first neighbor on the path from x

to one of the training examples).

Isomap is also a local manifold learning algorithm!



Pancake Mixture Models

Other local manifold learning algorithms, density mixture models of

flattened Gaussians:

• Mixtures of factor analyzers (Ghahramani & Hinton 96)

• Mixtures of probabilistic PCA (Tipping & Bishop 99)

• Manifold Parzen Windows (Vincent & Bengio 2003)

• Automatic Alignment of Local Representations (Teh & Roweis 2003)

• Manifold Charting (Brand 2003)

Some provide both density and embedding.



Local Manifold Learning: Local Linear Patches

Current manifold learning algorithms cannot handle highly curved

manifolds because they are based on locally linear patches estimated

locally.

tangent directions

tangent image
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Fundamental Problems with Local Manifold Learning

• High Noise: constraints not perfectly satisfied. Data not strictly on

manifold. More noise → more data needed per local patch.

• High Curvature: need more smaller patches O((1/r)d) with r =

patch radius decreasing with curvature.

• High Manifold Dimension: O((1/r)d) patches are needed (curse of

dimensionality), at least O(d) examples per patch (∝ noise).

• Many manifolds: e.g. images of transformed object instances = 1

manifold per instance or per object class. Local manifold learning

can’t take advantage of shared structure across multiple manifolds.



Non-Local Tangent Plane Predictors

Proposed approach: estimate tangent plane basis vectors as a function of

position x in input space, with flexibly parametrized matrix-valued d × n

function F (x).

Train F (x) to approximately span the differences between x and its

neighbors.

Experiments: estimate F with a simple neural network.

Training criterion = relative projection error at examples xt and their

neighbors xi:

min
F,{wtj}

∑
t

∑
j∈N (xt)

||F ′(xt)wtj − (xt − xj)||
2

||xt − xj ||2

Double-optimization → Given F , analytic solution for each vector wtj ,

can easily do stochastic gradient descent on F ’s parameters.



Results with Tangent Plane Predictors
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Generalization of Tangent Learning

Task 1: 2-D data with 1-D sinusoidal manifolds: the method indeed
captures the tangent planes. Small blue segments are the estimated
tangent planes. Red points are training examples.



Results with Tangent Plane Predictors
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Task 2: 41-dimensional Gaussian curves x(i) = et1−(−2+i/10)2/t2 with
two coordinates t1 and t2. Relative projection error for k-th nearest
neighbor, w.r.t. k from 1 to 5, for the four compared methods.



Results with Tangent Plane Predictors

Task 3: 1000 digit images + image with rotation = 2 examples / manifold.

Images are 14 × 14 of 10 digits from MNIST database.

testing on MNIST digits Average relative projection error

analytic tangent plane 0.27

tangent learning 0.43

Dim-NN or Local PCA 1.50
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Truly Out-of-Sample Generalization

Model was trained on digits 0 to 9: test it on letter M

Compare predicted tangent vectors:
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Not surprisingly, local manifold learning fails, whereas the globally
estimated tangent plane predictor generalizes to very different image!



Conclusions

• Amazing progress in unsupervised learning the last few years:

non-linear manifolds can be learned, with easy to optimize convex

criteria.

• Can be extended to embedding function induction → generalization.

• Unfortunately they are estimating manifold tangents based on purely

local information, which is very sensitive to four problems: noise,
curvature, dimensionality and multiple disjoint manifolds.

• N.B. same problem with non-parametric semi-supervised learning!

• Proposed solution: learn a globally estimated tangent plane predictor

function.

• Works superbly in all three experimental setups tested. NOT
CONVEX ANYMORE. BUT WORKS.



Future Work

• Proposed algorithm estimates principal directions of Gaussian

covariance everywhere!

• Using existing algorithms (Brand 2003;Teh & Roweis 2003), predicted

Gaussian covariance at centers xi can be converted into

(1) A Gaussian mixture density function (globally estimated!)

(2) A globally coherent embedding.

• Exotic Extension: uncountable Gaussian mixture. Follow random walk

which moves x to x + ∆x, with ∆x sampled from p(x + ∆x|x) from

local covariance at x. Density = normalized eigenfunction p(x) solving
∫

p(x)p(y|x)dx = p(y)

Can be estimated by solving finite linear system from data + random walk

samples xt, yielding a solution of the form p(x) =
∑

i αtp(x|xt).


