Conditional Density Estimation under Non-Normality Assumption.

Julie Carreau

Yoshua Bengio

June 9th

Goals

Tackle regression modelling when the noise distribution is unknown, asymmetric and heavy-tailed.

- We cannot throw away extreme observations since they were generated by the underlying process.
- Robust regression methods downweight extreme observations symmetrically; this introduces a bias in the case of asymmetry.

Normality Assumption

In the regression model, $Y = f(X, \theta) + \epsilon$, the assumption $\epsilon \sim \mathcal{N}(0, \sigma^2)$ entails that the distribution of ϵ :

- is symmetric
- has support = \mathbb{R}
- has exponential tails.

* In some applications such as **insurance** and **finance**, the normality assumption is inadequate.

Large fire insurance claims in Denmark

Proposal

Develop methods of conditional density estimation based on **Pareto-type tail** distributions.

Generalised Pareto Distribution (GPD):

It fits the tail more accurately since it uses only extreme observations to build the model.

 $\star \xi$ is the tail index of the GPD: it controls the thickness of the tail.

 $\xi > 0$ in the upper panel, and with $\xi < 0$ in the lower panel.

Threshold issue: bias-variance compromise

The GPD is fitted to exceedances over a given threshold u.

* When u /, bias \ ; whereas when u \ , variance \ .

Random threshold

- Inconditional density : (k + 1)-th order statistic.

$$X_{1,n} \geq \cdots \geq X_{k,n} \geq X_{k+1,n} \geq \cdots \geq X_{n,n}$$

- Conditional density : conditional quantile of level q $f_q(x) = \inf\{y \in \mathbb{R} : F_{Y|X=x}(y) \ge q\}.$
- * q is chosen through cross-validation.

Methodology

For any conditional distribution function $F_{Y|X=x}$, and any u(X), we define the conditional excess distribution function $F_{u(X)|X=x}$ as:

$$F_{u(X)|X=x}(y) = P(Y - u(X) \le y|Y > u(X), X = x), \quad y \ge 0.$$

Then we can write:

$$F_{Y|X=x}(y) = \begin{cases} (1 - F_{Y|X=x}(u(x)))F_{u(X)|X=x}(y - u(x)) \\ + F_{Y|X=x}(u(x)) & \text{if } Y > u(X), \\ F_{Y|X=x}(y) & \text{otherwise.} \end{cases}$$

This suggest the use of a non-parametric estimator when $Y \le u(X)$ and the use of the GPD when Y > u(X).

Preliminary experiments

Artificial data set: dependent data with fat upper tail.

Uniform distribution below the threshold function and conditional GPD above.

GPD parameters are learned on a simulated data set with the above methodology.

Further work

Develop a mixture of distributions which includes a fat-tailed component.

- Add a generalised Pareto component in a mixture of Gaussian distribution; the resulting density is discontinuous.
- Build a smoothed version of the GPD; an hybrid between a normal distribution and the GPD.