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POMDPs for Human Behavior Understanding
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POMDPs for Human Behavior Understanding
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Overview

➜ POMDPs for Display Understanding in Context

➜ Computer Vision: Modeling video sequences

• spatial abstraction
• temporal abstraction

➜ Learning POMDPs

➜ Solving POMDPs

➜ Value-Directed Learning

➜ Experiments

• Robot Control
• Card Matching Game

➜ Conclusions, Current & Future Work
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Partially Observable Markov Decision
Processes (POMDPs)

A POMDP is a probabilistic temporal model
of agent interacting with its environment :

a tuple 〈S, A, T,R, O, B〉
S: finite set of unobservable states

A: finite set of agent actions

T : S ×A → S transition function

R : S ×A → R reward function

O: set of observations

B : S ×A → O observation function

R
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S S

A
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POMDPs for Human Behavior Understanding
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Output Model
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Learning the Model

τO
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Find parameters, Θ∗ = arg max
Θ

P (O,Sa,AaΘ)

Use expectation-maximization(EM)algorithm:

Θ∗ = arg max
Θ

∑
Ab:a

P (Ab:a|OSaAa, θ′) log P (Ab:aOSaAa|Θ) + log P (Θ)


finds local maximum of a posteriori probability
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Solution Techniques
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Solving the Model

τSa
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τ−1 τA Ab:a b:a
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MDP Approximation: Assume Ab:a is observable

Dynamic Programming: Value Iteration

V
n+1

(s) = R(s) + max
a∈A

{∑
t∈S

Pr(t|a, s) · V
n
(t)

}
, V

0
= R

n-stage to go Policy: actions that maximize expected value

π
n
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{∑
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Pr(t|a, s) · V
n
(t)

}
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Value Directed Structure Learning
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Value Directed Structure Learning
State merging:
repeat

1.learn the POMDP model

2.compute value functions for behaviors

3.compute distance between value functions

4.if policies agree,

merge behaviors closest in value

until number of behaviors stops changing

State splitting
repeat

1.learn the POMDP model

2.examine states for predicitve power - entropy?

3.Split behaviors which predict

different outcomes

until number of behaviors stops changing
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Experiments: Robot Control Gestures
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Value-Directed Structure Learning
Part of Value function & policy for robot control:
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Value Policy

• Some states of Acom are redundant

• detect & merge using state aggregation in the policy and value
function

• re-compute policy
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Value-Directed Structure Learning
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Value Policy

• Leave-four-out cross validation (12 times)

• Take actions and accumulate rewards

• Success rate: 47/48 = 98% or 11/12 correct policies

• Merges to 4 states all 12 times.
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Experiments: Card Matching Game

Cooperative two player game

Goal: match cards

stage 1 stage 2 stage 3
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Card Matching Results

3 behaviors identified: nodding, shaking, null
Predicts:

• 6/7 human actions in test data

• 19/20 human actions in training data.

Errors: lack of POMDP data, temporal segmentation problems
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Handwashing Behavior Understanding
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Difficult Cases

self−occlusion object occlusionobjects appear to merge
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Conclusions

• Computer Vision + Probabilistic Models + Decision Theory

• Learning purposeful human behavior models from unlabeled data.

• System is general and portable - no reliance on expert knowledge

• Applications: HCI, surveillance, assisted living, driver support

• Future work

– Spatial segmentation and representation + tracking
– Multimodal observations
– Temporal segmentation
– POMDP solutions
– Value-directed learning (Hoey & Little, CVPR 2004)
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