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a b s t r a c t

In this workwe provide a simple proof of the existence of optimal tolls formulticlass network equilibrium
problems where the value-of-time parameter varies continuously throughout the population. The main
argument, based on a finite-dimensional reformulation of the problem, also allows us to determine in a
simple fashion revenue minimizing link toll vectors.
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1. Introduction

For a transportation network subject to congestion it is a
well known fact (see Beckmann et al. [1]) that, if tolls are set
to the marginal costs corresponding to link usage, then the
resulting equilibrium will minimize total travel delay. Although
this approach is no longer valid when the valuation of travel
delay varies across the population, it is still true that the set
of tolls that induces a system-optimal use of the network is
nonempty. For the case of finitely many classes of customers,
each characterized by its own value-of-time (VOT) parameter,
Yang and Huang [2] have shown that such tolls could be set to
the optimal dual vector of a network-structured linear program
(see also Marcotte and Patriksson [3]). Slightly later, although the
publishing year pre-dates that of [2], Cole et al. [4] extended the
result to the infinite-dimensional case (a single origin–destination
pair however), using a two-step approach. First, they provided
an alternative and existential proof of Yang and Huang’s result,
followed by a limiting argument, where they let the number of
user classes go to infinity. Independently, Fleischer et al. [5] and
Karakostas and Kolliopoulos [6] obtained similar results and made
the connection with the more general class of problems known as
congestion games.
The aim of this work is to provide a simple and unifying

proof of these results in the slightly more general framework of
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variational inequalities. Initially, we believed that this could be
achieved by transposing in a trivial fashion the technique of Yang
and Huang to the infinite-dimensional case. Unfortunately, in the
absence of constraint qualifications, the duality argument could
not be invoked any longer. However, it turns out that an implicit
reformulation of the problem in finite dimension is amenable to a
proof almost as direct as that of Yang and Huang, and considerably
shorter and simpler than that of Cole et al. As a corollary, duality
results for a class of semi-infinite linear programs are derived.
Thework is structured as follows. In Section 2, we introduce the

finite-dimensional multiclass problem, together with its infinite-
dimensional counterpart. We describe Yang and Huang’s linear
programming approach and discuss the difficulty of extending it to
the infinite case. In Section 3, we propose a new formulation of the
problem, which lends itself to treatment with Yang and Huang’s
technique. In Section 4, we address the computation of minimal
toll schedules, an issue that had previously been considered in the
finite-dimensional case.

2. The multiclass network equilibrium problem

Let us consider a multicommodity network characterized by its
node set N , arc set A and set K of origin–destination pairs, each
pair k ∈ K being endowed with a fixed demand bk. Let vp denote
the flow along path p. Let Pk denote the set of paths linking an OD
pair k ∈ K . LetΩv be the set of demand-feasible path flow vectors
v, defined as

Ωv =

{
v ≥ 0 :

∑
p∈Pk

vp = bk,∀k ∈ K

}
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or, in vector–matrix form:

Ωv = {v ≥ 0 : Av = b}.

In parallel, we introduce arc flows xa, together with the compati-
bility relationship

xa =
∑
k∈K

∑
p∈Pk

δapvp,

where δap, an entry of the arc–path incidencematrix∆, takes value
1 if arc a belongs to path p, and value 0 otherwise. The set of feasible
arc flows is defined, implicitly, as

Ωx = {x : ∃v ∈ Ωv : x = ∆v}.

With each vector x we associate a generalized cost function αF(x)
+ T , where the delay function F assumes positive values, but is
not required to be separable, T is a toll vector, and the scalar α
represents the valuation of one unit of delay by the users. On
the basis of this notation, a feasible arc flow vector x satisfies
Wardrop’s equilibrium conditions with respect to T if and only if it
solves the variational inequality

〈αF(x)+ T , x− y〉 ≤ 0 ∀y ∈ Ωx. (1)

Equivalently, a feasible path flowvector v isWardropian if and only
if it solves the variational inequality

〈∆t(F(∆v)+ T ), v − w〉 ≤ 0 ∀w ∈ Ωv. (2)

Alternatively, a vector x∗ is said to be system optimal if it minimizes
total travel delay, i.e.,

x∗ ∈ argmin
x∈Ωx
〈F(x), x〉.

and a corresponding system-optimal path flow vector is denoted
by v∗. The reader is referred to Marcotte and Patriksson [3] for
further details concerning these standard formulations.
In this framework, our problem consists in finding a toll vector

T such that the equilibrium associated with the modified cost
αF(x) + T coincides with the efficient assignment x∗. If the VOT
parameter α is uniform throughout the population, this can be
achieved by setting T to the vector of scaled marginal arc costs
α〈F ′(x∗)x∗〉.
Next, consider an extension of the basic framework where α

varies across users. To be precise, the population is partitioned
into segments, where segment i ∈ I is endowed with its own
VOT parameter αi. We associate with class i a probability h(αi), a
demand vector h(αi)b and the feasible setsΩx(αi) = h(αi)Ωx and
Ωv(αi) = h(αi)Ωv . Arc and path flow vectors associated with a
class indexed by i ∈ I are denoted by x(αi) and v(αi), respectively.
The vector of total arc flows is defined as X =

∑
i∈I x(αi) and the

vector of total path flows as V =
∑
i∈I v(αi). In this framework, we

let x = (x(αi))i denote the concatenation of class link flow vectors,
which must belong to the feasible setΩx =

∏
i∈I Ωx(αi). The path

flow vector and its feasible set are defined in a similar manner. We
say that a multiclass equilibrium is reached when each class is in
equilibrium, i.e.,

〈αiF(X)+ T , x(αi)− y(αi)〉 ≤ 0 ∀y(αi) ∈ Ωx(αi), ∀i ∈ I. (3)

The latter variational inequality can be aggregated to yield the
equivalent∑
i∈I

〈αiF(X)+ T , x− y〉 ≤ 0 ∀y ∈ Ωx. (4)

In this context, and for the sake of notational consistency, we
denote by X∗ the vector of system-optimal total link flows. Yang

and Huang [2] have shown that the dual vector associatedwith the
capacity constraints of the linear program

min
x∈Ωx

∑
i∈I

αi〈F(X∗), x(αi)〉 (5)

subject to
∑
i∈I

x(αi) ≤ X∗ (6)

induces X∗. Actually, this technique can be used to induce any
flow pattern that satisfies some mild conditions, not only system-
optimal ones.
In this work, we are concerned with the situation where the

mass vector (h(αi))i is replaced by a measurable, almost every-
where positive and square-integrable function having compact
support [0, αmax], that we still denote as h. The variables of the
problem are then flow densities x(α) ∈ Ωx(α) and v(α) ∈ Ωv(α),
with

Ωv(α) =

{
v(α) ≥ 0 :

∑
p∈K

vp(α) = h(α)b, a.e. α ∈ [0, αmax]

}
(7)

Ωx(α) = ∆Ωv(α)

= {x(α) : ∃v(α) ∈ Ω(α) : x(α) = ∆v(α)}. (8)

The parallel with the finite-dimensional case is straightforward,
with class flow vectors being replaced by square-integrable flow
densities, and the feasible sets being members of the class
of square-integrable vector functions having compact support
[0, αmax]. Total flow vectors are then obtained by integrating flow
densities over [0, αmax] and an equilibrium x is reached when,
almost everywhere on [0, αmax], there holds

〈αF(X)+ T , x(α)− y(α)〉 ≤ 0 ∀y(α) ∈ Ωx(α),
a.e. α ∈ [0, αmax] (9)

which, through aggregation (integration), is equivalent to the
(multiclass) variational inequality

MCVI : 〈αF(X)+ T , x− y〉2 ≤ 0 ∀y ∈ Ωx, (10)

where 〈·, ·〉2 denotes the inner product of vector functions:

〈f , g〉2 =
∫ αmax

0
〈f (α), g(α)〉dα.

The corresponding path flow formulation of equilibrium is then

〈∆t(αF(∆V )+ T ), v − w〉 ≤ 0 ∀w ∈ Ωv. (11)

The above problem has been investigated from a theoretical and
computational point of view, and actually lends itself to a variety
of finite-dimensional formulations, forwhich the reader is referred
to Leurent [7], Marcotte [8], and Marcotte and Zhu [9].
To derive link tolls that induce the system-optimal flow pattern

X∗, it is tempting to mimic the technique of Yang and Huang by
considering the conic linear program

LPCON: min
x∈Ωx

〈αF(X∗), x〉2 (12)

subject to
∫ αmax

0
x(α)dα ≤ X∗. (13)

Unfortunately, no known constraint qualification applies to the
above problem, thatwould allowus to derive optimal tolls from the
dual vector associated with the capacity constraint (see Bonnans
and Shapiro [10] or Shapiro [11]).
Alternatively, one could consider one of the finite-dimensional

formulations proposed by Marcotte [8], such as the one based on
the threshold values (‘‘breakpoints’’) of the VOT parameter α that
define intervals where path flows are invariant. More precisely,
consider the set of vertices xe, indexed by E of the polyhedron Ωx
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and a vector α̂ = (αe)e∈E of VOT values. Under mild conditions,
it can be shown that the equilibrium is related to a vector α̂ in the
followingmanner: x(α) = h(α)xe if and only ifα ∈ [αe−1, αe], with
α0 = 0 and α|E| = αmax. Otherwise stated, the segment [0, αmax]
can be partitioned into intervals such that, within each interval,
origin–destination flows are assigned to a unique path.
This relationship between breakpoint vectors and flow den-

sities allows for a finite-dimensional reformulation of the equi-
librium problem. On the basis of this, we can write down an
equivalent of LPCON, where the capacity constraints are expressed
as

Γ

(∫ αi

αi−1

h(α)dα

)
i=1,...,|E|

≤ X∗,

and Γ denotes the arc–vertex incidence matrix of the multicom-
modity network. Unfortunately, and quite surprisingly, unless the
density function h is uniform (constant over the interval [0, αmax]),
no constraint qualification could be derived for these nonconvex
constraints which would have ensured the existence of dual vari-
ables and hence system-optimal tolls.

3. An implicit formulation of the toll problem

In this section, we introduce a finite-dimensional and implicit
formulation of the toll problem upon which a simple proof of the
existence of system-optimal tolls can be based, and which paves
the way to efficient algorithms for their computation. It relies on
the simple fact that, in order to verifywhether a flowdensity vector
x satisfies the variational inequalityMCVI, only finite quantities are
required. Indeed, the left-hand side of (10) can be written as

〈αF(X)+ T , x− y〉2 =
〈
F(X),

∫ αmax

0
α(x(α)− y(α))dα

〉
+

〈
T ,
∫ αmax

0
(x(α)− y(α))dα

〉
= 〈T , X − Y 〉 + 〈F(X), X̄ − Ȳ 〉,

where X̄ and Ȳ represent, respectively, the average flow vectors
associated with the flow density vectors x and y. It follows that
the sole attributes of a density vector x required to check that it
satisfies the conditions of a multiclass equilibrium are its total and
average flows (moments of order 0 and 1). This prompts us to
define the set of joint total and average flows

Ω̄ =

{
(X, X̄) : ∃x ∈ Ωx : X =

∫ αmax

0
x(α)dα,

X̄ =
∫ αmax

0
αx(α)dα

}
for which there exist feasible flow densities. The situation parallels
that of arc formulation of the standard traffic assignment problems,
where the set of feasible arc flows must be compatible with
flows disaggregated by origins and destinations. In contrast with
the latter case, one must be careful that this set is actually a
polyhedron. This is taken care of in the following lemma.

Lemma 3.1. Assume that the function h is measurable over the
interval [0, αmax]. Then the set Ω̄ is a polyhedron.
Proof. The set Ω̄ is trivially convex and bounded, so it remains to
show that the number of its extreme points and extreme rays is
finite. The argument is based on the relationship between extreme
points of Ω̄ and the set of vertices of Ωx. Note that a vertex of Ωx
is characterized by an assignment of flows to unique paths, one for
each origin–destination pair. Now, let (X, X̄) ∈ Ω̄ and assume that,
for every OD pair, the total flow X corresponding to a vertex ofΩ is
not assigned to a single path for each OD pair. It follows that there
must exist a subset S of [0, αmax]with positivemeasure overwhich
the density function h also has positive measure, and for which the

flow density is not concentrated on X . Consequently, there exist
total flows X1 and X2 such that

x(α) = h(α)
X1 + X2

2
for α ∈ S. Next we introduce, for i = 1, 2, the functions

xi(α) =
{
h(α)X i if α ∈ S
x(α) else,

the corresponding total flow vectors X i =
∫ αmax
0 xi(α)dα, and

finally the average flow vectors X̄ i =
∫ αmax
0 αxi(α)dα, for i = 1, 2.

From this construction, we have that X = 1/2(X1 + X2) and X̄ =
1/2(X̄1+ X̄2), with X1 6= X2. Since (X1, X̄1) and (X2, X̄2) belong to
Ω̄ by construction, (X, X̄) = 1/2((X1, X̄1)+ (X2, X̄2)), and (X, X̄)
is not extremal, as claimed. This is the desired contradiction that
concludes the proof. The proof concerning extreme rays involves
cycles in the original graph and is similar. Actually, cyclic flows are
of little interest, as one may restrict one’s attention to the convex
envelope of extremal flows. �

We are now in position to provide a simple proof of the
existence of ‘‘optimal’’ tolls.

Theorem 3.1. Assume that the function h is measurable over the
interval [0, αmax]. Then there exists a system-optimal toll vector for
the multiclass equilibrium problem.

Proof. Consider the mathematical program

LP : min
(X,X̄)∈Ω̄

〈F(X∗), X̄〉

subject to X ≤ X∗.

Since Ω̄ is a polyhedron by Lemma 3.1, the above program is linear.
SinceX∗ is the solution that achieves theminimumsystemcost, the
fact that the cost function F is positive implies that the total flow
vector cannot be less, componentwise, than X∗. It follows that X∗ is
the only feasible, and therefore optimal, partial solution of LP. From
strong duality, there exists an optimal multiplier λ∗ such that X∗ is
solution of the Lagrangean dual:

min
(X,X̄)∈Ω̄

〈F(X∗), X̄〉 + 〈λ∗, X − X∗〉

or, equivalently, of the variational inequality

〈F(X∗), X̄∗ − Ȳ 〉 + 〈λ∗, X∗ − Y 〉 ≤ 0 ∀(Y , Ȳ ) ∈ Ω̄.

This last inequality precisely states that the multiclass equilibrium
x∗ implicit in the definition of (X∗, X̄∗) is compatible with the
system-optimal total flow vector X∗, provided that the toll vector
is set to λ∗, the optimal dual vector of LP. �

Note: As occurs in the discrete case, the linear program LP
possesses a structure that can be exploited for its numerical
resolution. This will actually be subsumed by the analysis of the
next section.

4. Optimization over the set of optimal tolls

The main result of the previous section is a constructive proof
that the set of optimal tolls is nonempty. This set is actually a
polyhedron upon which one may optimize a secondary objective.
Motivated by the analysis of Hearn et al. [12], we address the
problem that consists in finding a positive optimal toll vector
whose sum is minimal, and propose an efficient algorithm for
its determination. Throughout this section, we assume that the
implicitly defined polyhedron Ω̄ assumes the form

Ω̄ = {(X, X̄) ≥ 0 : AX + ĀX̄ = b̄}.
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Then, a toll vector T is system optimal if and only if (X∗, X̄∗) is an
optimal solution of the linear program

min
X,X̄

〈T , X〉 + 〈F(X∗), X̄〉

subject to AX + ĀX̄ = b̄
X, X̄ ≥ 0,

whose optimality conditions (dual feasibility and complementary
slackness) are expressed as

µA ≤ T 〈T − µA, X〉 = 0
µĀ ≤ F(X∗) 〈F(X∗)− µĀ, X̄〉 = 0.

Replacing X and X̄ by X∗ and X̄∗ in the above, we have that T is
optimal if and only if there exists a dual vector µ such that

µA ≤ T 〈T − µA, X∗〉 = 0
µĀ ≤ F(X∗) 〈F(X∗)− µĀ, X̄∗〉 = 0.

Aminimum-optimal toll can then be obtained by solving the linear
program

MINTOLL: min
T ,µ

〈T , X∗〉

subject to µA ≤ T
µĀ ≤ F(X∗)
〈T − µA, X∗〉 + 〈F(X∗)− µĀ, X̄∗〉 = 0.

Using an exact penalty scheme for the complementarity constraint
(this is always valid for finite-dimensional linear programs) and
dividing the objective by the penalty constantM yields

min
T ,µ

1
M
〈T , X∗〉 + 〈T − µA, X∗〉 + 〈F(X∗)− µĀ, X̄∗〉

subject to µA− T ≤ 0
µĀ ≤ F(X∗),

whose linear programming dual is

min
(X,X̄)≥0

〈F(X∗), X̄〉

subject to AX + ĀX̄ = AX∗ + ĀX̄∗

X ≤ (1+ 1/M)X∗

or, since AX∗ + ĀX̄∗ = b̄,

min
(X,X̄)∈Ω̄

〈F(X∗), X̄〉

subject to X ≤ (1+ 1/M)X∗.

Using a convex and differentiable penalty function for the bound
constraint, the latter mathematical program reduces to a convex
multiclass problem that can be easily and efficiently solved by the
techniques described in Marcotte and Zhu [9].

5. Conclusion
While we did not address some important modeling issues,

such as equity (users of efficient paths might be penalized

by the optimal toll scheme; see Lawphongpanich [13]) or cost
non-separability (in some practical situations, tolls are set on
paths rather than arcs of the network; see Agdeppa et al. [14],
Maruyamaa and Sumalee [15]), we believe that our approach could
be useful in addressing these situations as well.
From the theoretical point of view, a by-product of our analysis

is a duality result for a class of conic linear programs. Note also
that the Lebesgue measure that we adopted could be replaced by
the Lebesgue–Stieltjes measure, thus providing a framework that
unifies both the discrete and continuous cases.
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