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Abstract. In a transit network involving vehicles with rigid capacities, we advocate the use of strategies for
describing consumer behavior. At each boarding node, a user sorts the transit lines in decreasing order of pref-
erence, and boards the first vehicle in this list whose residual capacity is nonzero. Since a user’s position in the
queue varies from day to day, the delay experienced is stochastic. This leads to an equilibrium problem where,
at a solution, users are assigned to strategies that minimize their expected delay. This situation is formulated
as a variational inequality, whose cost mapping is discontinuous and strongly asymmetric, due to the priority
of current passengers over incoming users. We prove that the solution set is nonempty and provide numerical
results obtained by an efficient solution algorithm.

Key words. transit networks – equilibrium assignment – strategy – hyperpath – capacities – priorities –
variational inequalities

1. Introduction

A transit network consists of a set of lines and stops where passengers board and alight.
At a ‘multistop’, the choice of a vehicle is contingent on its attractiveness and available
capacity. In such situations, which involve randomness due to the arrival processes of
both customers and vehicles, user behavior is well captured by the concept of a ‘travel
strategy’. Travel strategies were initially introduced to address the problem of assign-
ing passengers to common transit lines. Roughly speaking, a strategy minimizes the
expected transit delay (queueing and travel time) by specifying a set of attractive lines.
While a strategy is a deterministic object, the actual line travelled, which depends on
the first incoming vehicle in the attractive set, is stochastic. In early studies (Dial [8],
LeClercq [15]), the concept of a strategy is restricted to common transit lines with
identical features. It was then extended to transit lines with different travel delays by
Chriqui and Robillard [4], and to the general case of diverging lines by Spiess [24] and
Gendreau [10]. The correspondence between strategies and hyperpaths in some suitably
defined hypergraph is due to Nguyen and Pallottino [19]. In a similar vein, and with
the aim of solving large scale problems, De Cea and Fernández [6] proposed a solution
algorithm based on a transit route representation of the network.

The abovementioned studies do not take into account vehicle capacities, which
could prevent users from boarding a vehicle belonging to an attractive line. Although
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Centre-ville, Montréal, Canada H3C 3J7.

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC) and by the Fonds pour la formation de chercheurs et l’aide à la recherche (FCAR).
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congestion has been considered as an externality (Gendreau [10], Wu et al. [27], De
Cea and Fernández [7]), or as having the effect of reducing frequency (Cominetti and
Correa [5], Cepeda [3]), rigid capacities have not yet been considered explicitly in transit
equilibrium models.While it can be argued that the integration of upper bound constraints
within static, steady-state user-equilibrium models is sensible (see Hearn [12] or Patriks-
son [22]), this approach does not apply to fixed-schedule transit networks, where system
performance is measured by passenger volumes (numbers), not flow rates. Alternatively,
in networks with fixed schedules, it has been proposed by Nguyen et al. [21] to penalize
the capacity constraints for no-priority flows, and to solve the resulting asymmetric var-
iational inequality. However, this approach has several pitfalls, among which the nature
or even existence of a limiting sequence of equilibrium paths.

We argue that the very definition of a Wardrop equilibrium in networks with rigid
capacities and/or fixed schedules calls for a different notion of strategy, where the order-
ing of attractive lines matters. More precisely, we adopt the point of view of Marcotte
and Nguyen [17], and extend it to priority networks. At each node, users travel along the
first unsaturated arc within an ordered set of outgoing arcs; the probability of accessing
an arc is proportional to its (residual) capacity and inversely proportional to the number
of users that want to access that arc. An equilibrium is then characterized as the solution
of a variational inequality, whose nonlinear cost mapping is induced by the travel delays
and capacities of the network’s links.

The aim of this paper is to extend the work of Marcotte and Nguyen [17] to capaci-
tated networks with priority loading and to provide a rigorous treatment of equilibrium
in that context. The paper is organized as follows. We start by giving a simple example
that illustrates our strategic approach. Then, we introduce the nontrivial process that
maps strategic flows to priority-complient path flows. Next, we prove the nonvacuity
of the solution set. Finally we describe a solution algorithm, together with numerical
results obtained through its implementation.

2. Strategic equilibrium in priority networks

To gain some insight into the distinction between the priority and no-priority models
in networks involving arcs with rigid capacities, let us consider the graph illustrated in
Figure 1, where we associate with each arc a delay (cost) and a capacity (parenthesized).
The subpaths 1-3 and 2-3-5 correspond to two bus lines A and B with rigid capacities
equal to 10, and the remaining arcs can be interpreted as walking arcs, i.e., arcs with
infinite capacities. Demand for the sole origin-destination pair (1,5) is set to 15.

In the strategic approach of Marcotte and Nguyen [17], user behavior is dictated by
a strategy that specifies, at each node of the network, an ordered set of adjacent nodes.
In our example, the only two strategies of interest1 are shown in Table 1.

First, we search for an equilibrium assignment of commuters to strategies when pri-
orities are not taken into account. At equilibrium, the (expected) cost of active strategies
must be identical, and less than or equal to the cost of inactive strategies. If ua denotes

1 We discard strategies that do not contain an ‘escape route’, as they might not be able to carry
all flow. We also discard irrational strategies that will clearly carry no flow at equilibrium, such as
([ 2, 3 ], [ 3, 5 ], [ 5, 4 ], [ 5 ], [ ]). See [18] for a detailed discussion.
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Fig. 1. A network example

Table 1. The two strategies of interest for the network of Figure 1

nodes : 1 2 3 4 5

s1 : [ 2 ] [ 3, 5 ] [ 5, 4 ] [ 5 ] [ ]

s2 : [ 3, 2 ] [ 3, 5 ] [ 5, 4 ] [ 5 ] [ ]

the capacity of arc a, the probability π of accessing arc a for each of x competing users
is given by π = min{1, ua/x}. Let xi denote the number of passengers associated with
strategy si . In our example, the respective probabilities π13, π23 and π35 of accessing
arcs (1, 3), (2, 3) and (3, 5) are:

π13 = min

{
1,

capacity of arc (1, 2)

incoming flow

}
= min

{
1,

10

x2

}
,

π23 = min

{
1,

capacity of arc(2, 3)

incoming flow

}
= min

{
1,

10

x1 + (1− π13)x2

}
,

π35 = min

{
1,

capacity of arc(3, 5)

incoming flow

}
= min

{
1,

10

π23x1 + (π13 + (1− π13)π23)x2

}
.

These access probabilities allow us to compute the expected costsC1 andC2 of strategies
s1 and s2:

C1 = 150+ π23(110+ π35(120)+ (1− π35)(200+ 400))+ (1− π23)(800),

C2 = π13(100+ π35(120)+ (1− π35)(200+ 400))+ (1− π13)C1.

It is not difficult to check on this small example that the unique equilibrium vector
corresponds to x∗ = (x∗1 , x

∗
2 ) = (0, 15). The expected cost of strategy s2 is equal to

433 1
3 , which is less than 540, the expected cost of the inactive strategy s1, hence the

equilibrium conditions are satisfied.
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The situation differs when priorities, which frequently arise in practice, are taken
into account. It is clear from the network topology that users boarding a bus of line B
at node 2 and travelling on arc (2, 3) can always access arc (3, 5) by staying on board,
and have therefore a natural priority over competing users. We are interested in find-
ing a strategic equilibrium that explicitly accounts for this natural priority in loading
passengers to segments of transit lines.

At node 1, the passengers using strategy s1 access arc (1,2) with probability 1 since
this arc has infinite capacity. On the other hand, passengers using strategy s2 access their
preferred arc (1,3) with probability π13 = min{1, 10

x2
}. On the average, π13x2 passen-

gers using s2 access arc (1,3), and the remaining (1 − π13)x2 users resort to arc (1,2).
The total flow that has reached node 2 at this stage is x1 + (1 − π13)x2. The access
probability to arc (2, 3) under strategies s1 and s2 is π23=min{1, 10

x1+(1−π13)x2
}. At node

3, π23[x1 + (1 − π13)x2] flow units coming from arc (2, 3) and π13x2 from arc
(1, 3) compete for the residual capacity (10) of arc (3, 5). We enforce the priority rule
at node 3 by first loading users of the first class, whose access probability π(1)

35 is clearly
equal to one2. Next, we update the residual capacity u35 of arc (3,5)

u35 = 10− π23[x1 + (1− π13)x2]

and obtain the access probability π(2)
35 for the second class users:

π
(2)
35 =

{
0 if u35 = 0
min{1, u35

π13x2
} if u35 > 0.

Based on these access probabilities, we derive the cost function

C1 = 150+ π23(110+ 120)+ (1− π23) · 800,

C2 = π13[100+ π
(2)
35 · 120+ (1− π

(2)
35 ) · 600]+ (1− π13)C1.

Solving for x in the above system, we find x∗ = (x∗1 , x
∗
2 ) = (15, 0) which is at odds

with the solution obtained in the no-priority case. Note that the equilibrium travel time
has, surprisingly, increased from 433 1

3 to 570.
This small example illustrates the difference between the two strategic models. The

remaining sections of this paper address the model with loading priorities. The challenge
is threefold:

– Does an equilibrium exist?
– How to load strategic flows compliant with priorities?
– How to compute a best response with respect to a current strategic flow assignment?

This computation of a ‘best’ strategy plays the role of a shortest path procedure in
static traffic assignment models.

2 There is no priority at the initial arc of a transit line, while the access for the first class users is equal to
one at all intermediate arcs.
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3. The loading process

The loading process maps strategic flows into arc flows. In parallel, it generates the
access probabilities that will be instrumental in computing the ‘best’ strategic response
to given strategic flow conditions. We first give a list of the most frequently used nota-
tions; additional notations will be introduced as required.

G = (N,A) network with node set N and arc set A

L = {L1, L2, · · · , Ll} set of transit lines

dqr demand from origin node q to destination node r

ujk residual capacity of arc (j, k)

Es
j preference order associated with strategy s and node j

zsj strategic flow at node j

πs
jk probability of accessing node k from node j using strategy s

Cs(x) (expected) cost of strategy s

C(x) vector of strategic costs

W set of active strategies (working set)

j− backward star at node j

By definition, a vector x∗ of strategic flows is a strategic equilibrium if and only if
it lies in the set X of demand-feasible vectors and satisfies the variational inequality
V I (C,X):

〈C(x∗), x∗ − x〉 ≤ 0 ∀x ∈ X. (1)

Marcotte, Nguyen and Schoeb [18], showed that the computation of the strategic costs
Cs(x) requires a loading mechanism which simulates the assignment of strategic flow
onto the arcs and paths of the network. In order to capture the priority effect of strategy
s users that stay on board at some node j , we look for a predecessor node k of j such
that (k, j, Es

j (1)) belongs to some bus line Li (1 ≤ i ≤ l). If no such triplet exists, then

zsj is a non-priority flow at node j . Indeed, the existence of a node k (corresponding to

the priority flow) induces the flows zs1j = πs

kj
zs
k̄

and zs2j =
∑

k∈j−,k �=k
πs
kj z

s
k .

We now focus on the loading process at some node j , where users are divided into

two priority classes W
1

and W
2
:

∀j W
i = {s ∈ W : Es

j �= ∅, zsij > 0} ⊂ W = {s ∈ W : Es
j �= ∅}, i = 1, 2,

where all users of the first class W
1

have priority over those of the second class W
2
.

Furthermore we assume that, at boarding nodes, users are uniformly distributed in two
distinct queues, one for each class.

The loading mechanism is illustrated on the example of Figure 2. At node j , 40 units
of flow compete for access to the successor nodes k1, k2 and k3; 5 units from strategy s1
and 8 from strategy s3 have priority over 5 units from s1, 10 from s2 and 12 from s3. At
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Fig. 2. Loading process at node j

the start of the process, we load the priority class W
1 = {s1, s3 : zs11

j = 5, zs31
j = 8}.

The entire strategic flows zs11
j and z

s31
j are assigned to their respective preferred node

because the respective capacities are not violated. The residual capacities are computed,

and loading halts for users of class W
1
.

Next, we perform the loading of the no-priority class

W
2 = {s1, s2, s3 : zs12

j = 5, zs22
j = 10, zs32

j = 12}.
Since the ratio 2/12 is less than the ratio 10/15, the first saturated arc will be (j, k2).
At that ‘instant’, 5/6 (probability (2/12) times flow (5)) units of flow from s1 and 10/6
(probability (2/12) times flow (10)) from s2 have reached node k1, while 2 units from
s3 have reached k2. Node k2 is removed from the preference sets and we update the
residual capacities of outgoing arcs. Now, 135/6 units of flow (25/6 from s1, 50/6 from
s2 and 10 from s3) compete for 45/6 (10-15/6) units of residual capacity on arc (j, k1).
According to the assumption of uniform distribution in the queue, flows are assigned to
their preferred node k1 according to a 1 for 3 ratio, i.e., 25/18 units of flow from s1, 25/9
from s2 and 10/3 from s3 reach node k1. Finally, the flow left unassigned is moved to
the uncapacitated arc (j, k3). The arc access probabilities are then computed by dividing
the flow having accessed that arc by the total flow having reached node j . The entire
process is summarized in Table 2.

In acyclic networks, the loading process can be performed in accordance with any
topological ordering of the nodes.3 Node processing goes through two successive stages.

First, determining the set of active strategies W and classes W
i
(i = 1, 2). Next, flow

assignment, once for each priority class.

Note that the class W
i

might include strategic flows with zero values. Since the
access probabilities of a zero-flow strategy cannot be computed using its values, we

3 If this assumption is not met, network loading can yet be achieved through a fixed point process. See [18]
for details.



Capacitated transit assignment with loading priorities 7

Table 2. Loading results at node j

arc: (j, k1) (j, k2) (j, k3)

iteration 1 residual capacity: 15 10 ∞
flow: 5(s1) 8(s3) 0

iteration 2 residual capacity: 10 2 ∞
flow: 35

6 (s1)+ 10
6 (s2) 10(s3) 0

iteration 3 residual capacity: 45/6 0 ∞
flow: 65

9 (s1)+ 40
9 (s2)

+ 10
3 (s3) 10(s3) 0

iteration 4 residual capacity: 0 0 ∞
flow: 65

9 (s1)+ 40
9 (s2) 25

9 (s1)+ 50
9 (s2)

+ 10
3 (s3) 10(s3) + 20

3 (s3)

access probabilities: π
s1
jk1
= 13

18 π
s2
jk1
= 4

9 π
s3
jk1
= 1

6 π
s3
jk2
= 3

6

π
s1
jk3
= 5

18 π
s2
jk3
= 5

9 π
s3
jk3
= 2

6

base their derivation on the residual proportion ρsj of strategic flow zsij at node j . At the

origin node of strategy s, this proportion is set to 1. The residual strategic flow zsij and
the probabilities πs

jk are then recursively computed according to the formula

z̄sij := (1− βi)z̄sij

πs
jk :=



πs
jk + βi

z̄sij
zsj

if zsj > 0

πs
jk + βiρsij if zsj = 0.

whereβi is the residual proportion of zsij assigned to node k. Next, the residual proportion
is updated according to the formula

ρsij := (1− βi)ρsij .

The loading process for classW
i
terminates wheneverρsij or zsij vanish.A formal descrip-

tion of the loading algorithm PCAPLOAD(x) associated with a strategic vector x can
be found in Appendix A.

The running time of the algorithm is determined by the while loop (see Appendix A),
which is performed at most twice, once for each priority class. At each step within the
loop (with the possible exception of the last step), an arc becomes saturated. Therefore,
if j+ denotes the forward star at node j , these loops are executed at most |j+|+ 1 times
for each node j . It follows that the loops are executed at most

∑
j∈N

(|j+|+1) = |A|+|N |
times and that the total running time of the loading algorithm is bounded from above by
a polynomial function of the number of nodes and origin-destination pairs.
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At this point, one might question the relevance of the degenerate situation where
the demand dk for node k ∈ K and the residual capacity ujk are both zero. Indeed, this

particular situation only occurs when the loading is halted for the first class W
1

and, at

that very moment, the strategic flow of the second class W
2

which prefers to access the
saturated arc (j, k) is null. In this case, the node k must to be removed from all residual

preference sets before executing the loading for the second classW
2
. Therefore, we have

πs
jk = 0 for each strategy s within the set Wk . The importance of this unlikely situation

will become clear in the next section.

4. Existence of an equilibrium

Marcotte et al. [18] have constructed an example where the set of equilibria is discon-
nected, thus ruling out ‘good’ properties (monotonicity) of the cost mapping underlying
the variational inequality (1). In this section, we prove an existence result in the absence
of any nondegeneracy assumption. This is achieved in two steps, first by proving exis-
tence for the model with no loading priorities, and next by extending this result to the
priority case.

4.1. No-priority model

In the model without priorities, Brouwer’s fixed point theorem [2] and the continuity of
the cost mapping C ensure the existence of at least one equilibrium solution. Continu-
ity of C follows directly from the continuity of the access probabilities as functions of
incoming flow. We give an outline of the proof that

lim
z→z

πs
jk(zj ) = πs

jk(zj ) ∀k ∈ Es
j , ∀s ∈ W, zj = (zsj )s∈W, zj = (zsj )s∈W .

Let j+ = {k1, k2, · · · , kl} denote the successor nodes at node j . At each iteration
of the loading process, at least one arc (j, ki) (1 ≤ i ≤ l) becomes saturated. Hence the
number of iterations is at most l, and exactly l in the nondegenerate situation.

Let t (1 ≤ t ≤ l) be the number of iterations required for the loading of z at node j .

At the start of iteration n (n = 1, 2, . . . , t), we construct the set K
(n)

of ‘active strate-
gies’ first choices at node j . Next, we compute the proportion of assigned strategic flow,
which is common to all strategies:

β
(n) = min

ki∈K(n)

{
u
(n)
i

d
(n)

i

}
,

where u(n)i is the residual capacity of arc (j, ki) and d
(n)

i is the residual demand at node

ki . Let I
(n)

denote the set of ‘minimum’ indices:

I
(n) =

{
i : i ∈ arg min

ki∈K(n)
{u

(n)
i

d
(n)

i

}
}
.
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The number of saturated arcs at iteration n for z is equal to |I (n)|, and d
(n)

i is nonzero

for all i ∈ I
(n)

, by construction. Consider now a sequence z of strategic vectors that
converges to z4 and whose loading at node j requires t iterations. We associate with z

the residual variables d(n)i , u(n)i and β(n), and the index set I (n) (1 ≤ n ≤ t).
In the nondegenerate case there is, from continuity arguments, a bijection between

the arcs being saturated at z and z. Consider now the general degenerate case. Let

m1(1 ≤ m1 ≤ |I (1)|) denote the number of iterations required for loading the propor-
tion of z-flow corresponding to the proportion of z-flow loaded during the first iteration.
At the end of these m1 iterations, the number of saturated arcs for z and z is the same. In
general, let m1 + . . . + mn denote the number of iterations required for loading of the
flow z at node j given that n iterations have been performed for the flow z.

An outline of the proof follows. First, we show by induction on n ∈ [1..t] that the

proportion of assigned flow β(m1+...+mn−1+1) converges towards β
(n)

, and the proportion
β(m1+...+mn−1+m) converges towards 0, for all m ∈ [2..mn]. This key result states that
them additional iterations executed for the vector z in order to saturate the same number
of arcs as z induce almost no flow. Next, by computing the access probabilities after
each iteration n ∈ [1..t], we prove continuity of probabilities π = {πs

jki
(z)}ki∈j+,s∈W .

As an obvious consequence, we obtain that the solution set, in the no-priority case, is
nonempty. A complete proof can be found in [11].

4.2. Priority model

In the priority model, discontinuities in the cost function may arise when the entry
flow and the residual capacity are both zero. Indeed, the access probability to a transit
line for no-priority users may be discontinuous in the degenerate case. To see this, let
(x1, x2) = (u, 0) and (xε1 , x

ε
2) = (u−αε, βε), where x1 and xε1 (x2 and xε2) represent the

priority (no-priority) flows and u the capacity of the preferred outgoing arc. The access
probability for the no-priority users x2 is π = 0, while the access probability for xε2 is
πε = min{1, α/β}, which can take any value between 0 and 1. As a direct consequence,
the cost function C is discontinuous at (x1, x2).

To prove existence of a solution, we will show that the function C is lower semi-
continuous5 over the set of feasible strategic flows.

Theorem 1 (Ky Fan Inequality). Suppose that X a convex compact subset of Rn and
that ( is a function from X ×X to R satisfying

∀y ∈ X, x → ((x, y) is lower semi-continuous

∀x ∈ X, y → ((x, y) is concave. (2)

Then there exists x∗ ∈ X such that

sup
y∈X

((x∗, y) ≤ sup
y∈X

((y, y). (3)

4 For ease of notation, we do not use a sequence index.
5 A function f : Rn → R is lower semi-continuous at point x, if ∀ε > 0 ∃η > 0 such that ||x − x|| <

η �⇒ f (x)− f (x) ≤ ε, which is equivalent to the inequality f (x) ≤ lim inf
x→x

f (x).
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Consider the vector of probabilities π = {πs
jk(z

s
j )}j∈N,k∈Es

j ,s∈W induced by the loading

procedure PCAPLOAD. The probabilities πs
jk are computed in a manner very similar

to the no-priority case except in the degenerate situation where the entry flow and the
residual capacity are both zero. This special case corresponds to the triplet (j, k, s) ∈
N × Es

j ×W satisfying the conditions :

W
1 �= ∅, s ∈ W

2
, zsj = 0 and ūjk = 0. (4)

In this particular case, we have πs
jk(z̃j ) = 0 (for a vector z̃j defined by conditions (4))

and we obtain lim inf
zj→z̃j

π̃ s
jk(zj ) = π̃ ∈ [0, 1], implying that

πs
jk(z̃j ) ≤ lim inf

zj→z̃j

πs
jk(zj ).

Consequently, the function zj → πs
jk(zj ) is lower semi-continuous at point z̃j .

On the other hand, we have, by results of the no-priority case, that for all zj �= z̃j :

lim
z→z

πs
jk(z

s
j ) = πs

jk(z
s
j ).

This shows that the functionCs , which depends continuously on the access proba- bilities
πs
jk(zj ), is lower semi-continuous on the set X.

Theorem 2. There exists at least one solution satisfying the variational inequality
V I (C,X).

Proof. Set((x, y) = 〈C(x), x−y〉. The function( is concave in y and clearly satisfies
((y, y) = 0. We now show that x → ((x, y) is lower semi-continuous for every value
of y. Since Cs is lower semi-continuous we have:

∀ε′ = ε

2||x − y|| > 0 ∃η > 0 such that ||x − x|| < η �⇒ Cs(x) ≥ Cs(x)− ε′

⇐⇒ ∀ε′ > 0 ∃η > 0 such that ||x − x|| < η �⇒ −Cs(x) ≤ −Cs(x)+ ε′.

It follows that:

〈−C(x), x − y〉 ≤ 〈−C(x), x − y〉 + ε′||x − y||
≤ 〈−C(x), x − y〉 + 〈−C(x), x − x〉 + ε′||x − y||
≤ 〈−C(x), x − y〉 + ||C(x)||||x − x|| + ε′||x − x||

+ε′||x − y||
≤ 〈−C(x), x − y〉 + (ε′ + ||C(x)||)η + ε

2
≤ 〈−C(x), x − y〉 + ε if η ≤ ε

2(ε′+||C(x)||) ,

where the last term is uniformly bounded, since Cs(x) is bounded by M = ∑
(j,k)∈As

cjk

for every s. This shows that the function x → ((x, y) is lower semi-continuous on the
compact set X. Ky Fan’s Inequality may then applied (Theorem 2). Thus, there exists
x∗ ∈ X such that :

∀y ∈ X, 〈C(x∗), x∗ − y〉 ≤ 0. ��
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5. Computing an optimal strategy

In order to check whether a given strategic vector is an equilibrium, one has to find the
best response to a given strategic flow x, i.e., to solve the linear program

min
y∈X
〈C(x), y〉. (5)

It is also of tantamount importance to perform this task efficiently, as it plays a role
similar to the shortest path procedure in static traffic assignment.

The construction of an optimal strategy s∗ is based on the recursive process devel-
oped by Nguyen and Pallottino [20]. At node j , let Es∗

j be the optimal preference order

at node j , which is obtained by sorting in increasing order the labels cjk + ωs
∗
k (see

Marcotte et al. [18]). The expected travel costs ωs
∗
j from node j to the destination r are

then computed by scanning the nodes in reverse topological order, and applying the
recursion

ωs
∗
j =




∞ if j > r

0 if j = r∑
k∈Es∗

j

πs∗
jk(cjk + ωs

∗
k ) if j < r,

(6)

The resulting procedure resembles the loading process described in Section 3. How-
ever, in order that a strategy that carries zero flow be generated by the procedure, one
must be able assign access probabilities to null flows. While this micro-loading phase
(loading of virtual flow) has been implemented in the no-priority case, new challenges
occur when priorities are taken into account. Indeed, since loading is performed in
reverse topological order, one might be unaware of the priority status of a strategic flow
at loading time. To make up for this, we analyze both situations:

1. The virtual (zero) flow zs
∗
k has priority and the micro-loading is performed over the

set W
1 ∪ {s∗}, yielding ωs

∗
1j ;

2. zs
∗
k has no priority and the micro-loading is performed successively over the sets W

1

and W
(2) ∪ {s∗}, yielding ωs

∗
2j .

Next, we compute the costs ωs
∗p
j (p = 1, 2) in accordance with the dynamic program-

ming equation:

ω
s∗p
j =

∑
k∈Es∗

j

πs∗
jk(cjk + ωs

∗
k ), with ωs

∗
k =

{
ωs

∗1
k if (j, k, Es∗

k (1)) ∈ Li (1 ≤ i ≤ l)

ωs
∗2
k otherwise.

At the origin node q, there are no priorities, and the cost of the optimal strategy is equal to
ωs

∗
2q .

We will describe the computation of an optimal strategy on the example of Figure 3,
where subpaths 1-3 and 2-3-5 correspond to bus lines with respective capacities set to
10 and 20, and demand for the sole O-D pair (1,5) set to 40. The set of active strategies
contains the sole strategy: s1 = ([ 3, 2 ], [ 3, 5 ], [ 5, 4 ], [ 5 ], [ ]).
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Fig. 3. Computing an optimal strategy in a priority network

Loading the strategic flow x = (x1) = (40) is straightforward. From node 1, 10 units
reach node 3 and the remaining 30 reach node 2. At node 2, 20 units of flow travel on
arc (2,3) and 10 travel on arc (2,5), since capacity of arc (2,3) is 20. In view of priorities,
only the 20 units coming from node 2 may access node 5 using arc (3, 5). Finally we
obtain the strategic flows zs11

j and zs12
j reaching the nodes of the network :

node j : 1 2 3 4 5
z
s11
j : − − 20 − −
z
s12
j : 40 30 10 20 40

To compute an optimal strategic answer s∗, we start from the destination 5 and set
ωs

∗1
5 = ωs

∗2
5 = 0 and Es∗

5 = [ ]. At node 4, the optimal preference order is [ 5 ] and
ωs

∗1
4 = ωs

∗2
4 = 40. At node 3, arc (3, 5) constitutes an optimal choice and thus Es∗

3 =
[ 5, 4 ]. The micro-loading of strategy s∗ at node 3 over the set {s1 : zs1

3 = 20} ∪ {s∗}
yields the access probabilities πs∗

35 = 1 and πs∗
35 = 0. Similarly, the micro-loading per-

formed successively over the sets {s1 : zs1
3 = 20} and {s1 : zs1

3 = 10} ∪ {s∗} generates
the probabilities πs∗

35 = 0 and πs∗
35 = 1. By applying the dynamic programming equation

at node 3, there comes:

ωs
∗1

3 = (1)(12+ ωs
∗2

5 )+ (0)(20+ ωs
∗2

4 ) = 12

ωs
∗2

3 = (0)(12+ ωs
∗2

5 )+ (1)(20+ ωs
∗2

4 ) = 60.

The optimal preference order at node 2 is clearly Es∗
2 = [ 3, 5 ]. The access probabili-

ties πs∗
23 et πs∗

25 are 2/3 and 1/3 for the micro-loading performed on the set {s1 : zs1
j =

30} ∪ {s∗}. Next we obtain :

ωs
∗1

2 = (1)(10+ ωs
∗1

3 )+ (0)(80+ ωs
∗2

5 ) = 22

ωs
∗2

2 = (2/3)(10+ ωs
∗1

3 )+ (1/3)(80+ ωs
∗2

5 ) = 124/3.
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The process terminates at the origin 1 with a preference order Es∗
1 that minimizes the

expected cost

πs
12(15+ ωs

∗2
2 )+ ωs13(30+ ωs

∗2
3 ) = (169/3)πs

12 + (90)πs
13.

Since arc (1, 2) has infinite capacity, we have Es∗
1 = [ 2 ] and ωs

∗1
1 = ωs

∗2
2 = 169/3.

Finally, we obtain the optimal strategy s∗ = ([ 2 ], [ 3, 5 ], [ 5, 4 ], [ 5 ], [ ]), with
expected cost 169/3. A summary of the construction of s∗ is reported in Table 3.

A detailed description of the pseudocode that implements the above procedure and
returns, for a given strategic flow x and origin-destination pair (q, r), an optimal strategy
together with its expected cost, is given in Hamdouch [11].

6. The quest for a strategic equilibrium

Finding a strategic equilibrium amounts to solving the variational inequality V I (C,X),
where C is the cost function induced by the loading process, and X is the set of all
demand-feasible strategic flow vectors. The resolution of this variational inequality poses
two main difficulties. The first difficulty, due to the exponential number of strategies,
can be remedied by considering a limited set of active strategies. The second difficulty
rests on the implicit nature of the cost function, which is neither differentiable, separable
nor monotone.

In this section, we describe two classes of algorithms, based respectively on the line-
arization and projection strategies. In both cases, convergence is measured with respect
to a nonnegative function whose minimum value (zero) is achieved over the set of equi-
libria. The algorithm is stopped whenever the variational inequality (1) is approximately
satisfied. A natural measure of ‘satisfaction’ is provided by the relative gap function,
defined as

g(x) =
max
y∈X

〈C(x), x − y〉
〈C(x), x〉 . (7)

6.1. A linearization approach

In static, separable traffic assignment, the popularity of the linearization strategy (Frank
and Wolfe [9]) is due to its efficient handling of network structures. Indeed, at each
iteration, a descent direction is derived from the computation of shortest path trees (see
Sheffi [23]). In our strategic model, we mimic this procedure by constructing extremal
optimal strategies xk that solve the linear program:

min
y∈X
〈C(xk), y〉.

A convex combination of the vectors xk and xk leads to the next iterate:

xk+1 = (1− θk)xk + θkxk,

where θk ∈ [0, 1] is some suitable stepsize. The resulting procedure for finding an
equilibrium, algorithm PSTRATEQ1, is based on the use of the harmonic sequence
θk = 1/(k + 1).
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Table 3. Construction of an optimal strategy for the small example

node j Es∗
j ωs∗1

j ωs∗2
j

5 [ ] 0 0
4 [ 5 ] 40 40
3 [ 5, 4 ] 12 60
2 [ 3, 5 ] 22 141

3
1 [ 2 ] 169

3
169
3

The initial vector x0 is obtained by running the optimal strategy procedure with
respect to free-flow travel times. This yields an initial working set W 0 containing a sin-
gle strategy for each O-D pair, i.e., the sets of first choices correspond to shortest O-D
paths.

In order to limit the size of the working set, an optimal strategy is included within the
working set W only if its cost is significantly less than that of the current best strategy
s̃ ∈ arg min

s∈Wqr

Cs , i.e,.

Cs∗ + ε1 < Cs̃,

for some positive quantity ε1. Also, strategies whose flow is less than some threshold
value ε2 are dropped from W .

A drawback of PSTRATEQ1 is that a the stepsize is common to all origin destina-
tion pairs. This choice may have an adverse effect on convergence towards equilibrium
flows for those O-D pairs that are ‘almost’ in equilibrium, and thus slow down overall
convergence. To fix this problem algorithm PSTRATEQ2 uses different stepsizes for
each O-D pair, according to its ‘equilibrium’ status, i.e.,

θsk = 1− Cs∗qr

Cs
.

The above stepsize θsk constitutes a disequilibrium measure for users travelling from q

to r .

6.2. Projection algorithms

A second class of algorithms is based on the projection operator

pα(x) = projX(x − αC(x))

where α is a positive scalar and pα(x) represents the Euclidean projection of the vector
x − αC(x) onto the convex set X. A vector x∗ is solution of the variational inequality
V I (C,X) if and only if it is a solution of the fixed point problem :

x∗ ∈ X∗ ⇔ x∗ = pα(x
∗).

In our strategic model, the set X is product of simplices characterized by demand feasi-
bility and flow nonnegativity constraints.
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The simplest projection algorithm is obtained from the relationship xk+1 = pα(x
k).

The main drawback of this scheme is that theoretical convergence is based on a strong
monotonicity assumption for the cost function C. Several variants of the base method,
which converge under weaker conditions, have been proposed. One of them, due to
Konnov [13], only requires C to be pseudomonotone6. Konnov’s algorithm uses two
projections and one convex combination:

pk = projX(x
k − λC(xk)),

yk = (1− θ)xk + θpk,

xk+1 = projX(x
k − αC(yk)),

where α, λ ∈ R+ and θ ∈ (0, 1).
Note that Konnov’s method reduces to the extragradient method of Korpelevitch

[14], if one sets θ = 1 and λ = α. While the pseudomonotonicity assumption might fail
in our case, we will see that Konnov’s method yields improved convergence in practice.

7. Numerical results

In this section we present numerical results on two network topologies and in assess the
monotonicity of the cost function.

7.1. Numerical tests on a small network

Consider the network of Figure 4, inspired from the example in Marcotte and Nguyen [17].
In this network, subpaths 1− 4− 6 and 2− 3− 4 are served by two bus lines A and B
with equal capacity of ten units of flow. The four strategies of interest are

node : 1 2 3 4 5 6
s1 : [ 4 ] [ ] [ ] [ 6 ] [ ] [ ]
s2 : [ 3 ] [ ] [ 4, 6 ] [ 6, 5 ] [ 6 ] [ ]
s3 : [ ] [ 3, 6 ] [ 4 ] [ 6, 5 ] [ 6 ] [ ]

s4 : [ ] [ 6 ] [ ] [ ] [ ] [ ]
First, note that the respective costs of strategies s1 (670) and s4 (550) provide upper
bounds on the equilibrium costs for each O-D pair. Next, let π23 denote the probability
of accessing line B at node 2 for the users adopting strategy s3, π34 the probability of
accessing line B at node 3 for the s2 users, and π34 the probability of accessing line A
at node 4 for the users using either strategy s2 or s3. The access probabilities are given
by the expressions

π23 = min{1, 10

x3
}

π34 =
{

0 if x3 ≥ 10,
min{1, 10−x3

x2
} otherwise.

π46 =
{

0 if x1 = 10,
10−x1
x2+x3

otherwise.

6 The cost function C is pseudomonotone if 〈C(x), x − y〉 ≤ 0 �⇒ 〈C(y), x − y〉 ∀x, y ∈ X.
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Fig. 4. A small test network

Assuming that all four strategies are used at equilibrium, the cost function C takes the
form

C1(x) = 670

C2(x) = 150+ 10− x3

x2
[110+ 10− x1

x2 + x3
120

+ x3

x2 + x3
(200+ 400)]+ x2 + x3 − 10

x2
500

C3(x) = 80+ 110+ 10− x1

x2 + x3
120+ x3

x2 + x3
(200+ 400)

C4(x) = 550.

Setting C1(x) = C2(x) and C3(x) = C4(x) and solving for x, we find:

x∗ ≈ (5, 5, 5.24, 6.76).

In this example, the equilibrium is not unique. Indeed, the vector (10, 0, 0, 12) is another
equilibrium solution where only two strategies, s1 and s4, are active. With respect to this
strategic flow assignment, no alternative strategy has a lower cost, given that the residual
capacity on arc (4, 6) is zero. Now, if demand for the pair (1,6) is increased to 10 + ε,
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the additional flow is pushed onto path 1-3-4-5-6 whose cost is equal to 860 > 670,
and the equilibration process will lead to an equilibrium that will be a perturbation of
the first one. In this sense, the solution (10, 0, 0, 12) is unstable with respect to small
perturbations of the input data.

We implemented our algorithms on a working set comprising all four strategies.
Algorithm PSTRATEQ1, based on harmonic stepsizes, converges slowly to one of the
two equilibrium solutions (Tables 4 and 5), depending on the starting point. On the
other hand, PSTRATEQ2 (adaptive stepsize) always converges to the ‘stable’ solution
(5, 5, 5.24, 6.76).

The behavior of projective methods is influenced to a great extent by the choice of
parameters. For α < 0.02, the methods converge very rapidly to one of the equilibrium
solutions, depending on the initial vector choice (see Tables 7, 8 and 9). It is surprising
that, for large values of α, all methods converge to the extremal and ‘unstable’ solution
(10, 0, 0, 12) (see Table 10)! Various tests were performed by varying the parameters of
the problem and of the algorithm; some of them are presented in the result tables.

Table 4. PSTRATEQ1 (small network)

#iter. Strategic flow Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 10.00 0.00 12.00 670.00 380.00 310.00 550.00 27.692
1 0.00 10.00 1.33 10.67 670.00 549.33 310.00 550.00 21.744
2 0.00 10.00 2.40 9.60 670.00 684.80 353.64 550.00 19.049
5 2.31 7.69 4.62 7.38 670.00 838.54 420.77 550.00 16.076

10 4.44 5.56 6.67 5.33 670.00 1016.00 523.33 550.00 13.722
20 6.43 3.57 5.57 6.43 670.00 672.50 602.50 550.00 2.216
50 8.28 1.72 2.69 9.31 670.00 672.50 602.50 550.00 1.082

100 9.07 0.93 1.44 10.56 670.00 672.50 602.50 550.00 0.584
200 9.52 0.48 0.75 11.25 670.00 672.50 602.50 550.00 0.304
500 9.80 0.20 0.31 11.69 670.00 672.50 602.50 550.00 0.124

1000 9.90 0.10 0.15 11.85 670.00 672.50 602.50 550.00 0.062
2000 9.95 0.05 0.08 11.92 670.00 672.50 602.50 550.00 0.021

10000 10.00 0.00 0.00 12.00 670.00 860.00 790.00 550.00 0.001

Table 5. PSTRATEQ1 (small network, second starting point)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 2.00 8.00 4.00 8.00 670.00 769.50 406.00 550.00 14.408
1 3.14 6.86 5.14 6.86 670.00 857.27 460.86 550.00 13.418
2 4.00 6.00 6.00 6.00 670.00 931.33 502.00 550.00 12.729
5 5.64 4.36 6.55 5.45 670.00 858.77 580.55 550.00 7.146

10 4.50 5.50 5.25 6.75 670.00 739.73 526.00 550.00 4.023
20 5.08 4.92 5.08 6.92 670.00 623.69 553.69 550.00 1.939
50 5.04 4.96 5.57 6.43 670.00 732.68 551.71 550.00 1.154

100 5.11 4.89 5.32 6.68 670.00 668.95 555.43 550.00 0.528
200 5.01 4.99 5.18 6.82 670.00 656.52 550.47 550.00 0.257
500 4.98 5.02 5.24 6.76 670.00 672.04 549.24 550.00 0.115

1000 4.99 5.01 5.24 6.76 670.00 669.93 549.62 550.00 0.022
2000 5.00 5.00 5.25 6.75 670.00 670.51 550.05 550.00 0.017

10000 5.00 5.00 5.24 6.76 670.00 670.01 550.01 550.00 0.002
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Table 6. PSTRATEQ2 (small network)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 10.00 0.00 12.00 670.00 380.00 310.00 550.00 27.692
1 0.00 10.00 5.24 6.76 670.00 1045.02 310.00 550.00 34.023
2 3.59 6.41 8.19 3.81 670.00 1339.71 482.25 550.00 26.715
3 6.79 3.21 8.66 3.34 670.00 1254.74 636.09 550.00 16.459
5 8.51 1.49 5.88 6.12 670.00 762.98 692.98 550.00 6.854

10 9.13 0.87 2.09 9.91 670.00 719.18 649.18 550.00 1.849
40 5.00 5.00 5.30 6.70 670.00 681.27 549.93 550.00 0.426
70 5.00 5.00 5.24 6.76 670.00 670.02 549.99 550.00 0.001

100 5.00 5.00 5.24 6.76 670.00 670.00 550.00 550.00 0.000

Table 7. Projection algorithm (small network, α = 0.01)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 10.00 0.00 12.00 670.00 380.00 310.00 550.00 27.692
1 0.00 10.00 1.20 10.80 670.00 532.40 310.00 550.00 22.276
2 0.00 10.00 2.40 9.60 670.00 684.80 310.00 550.00 19.049
3 0.07 9.93 3.60 8.40 670.00 833.43 313.55 550.00 25.644
5 2.28 7.72 5.77 6.23 670.00 1014.06 419.26 550.00 22.838

10 7.01 2.99 5.72 6.28 670.00 695.23 625.23 550.00 3.660
20 7.17 2.83 3.05 8.95 670.00 629.30 559.30 550.00 2.425
50 5.00 5.00 5.24 6.76 670.00 669.90 550.11 550.00 0.008

100 5.00 5.00 5.24 6.76 670.00 670.00 550.00 550.00 0.000

Table 8. Konnov’s algorithm (small network, α = 0.01, λ = 0.05, θ = 0.001)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 2.00 8.00 0.00 12.00 670.00 380.00 310.00 550.00 31.512
1 0.55 9.45 1.20 10.80 670.00 491.94 336.40 550.00 21.167
2 0.00 10.00 2.27 9.73 670.00 668.05 310.00 550.00 18.339
3 0.00 10.00 3.47 8.53 670.00 820.45 310.00 550.00 25.423
5 2.10 7.90 5.69 6.31 670.00 1011.52 410.74 550.00 23.528

10 6.95 3.05 5.76 6.24 670.00 693.93 623.93 550.00 3.617
20 7.03 2.97 3.19 8.81 670.00 628.37 558.37 550.00 2.417
50 5.00 5.00 5.24 6.76 670.00 669.89 550.10 550.00 0.008

100 5.00 5.00 5.24 6.76 670.00 670.00 550.00 550.00 0.000

At the ‘stable’ solution x∗, the Jacobian matrix of C takes the form

J = C′(x∗) =




0 0 0 0
45.7 196.11 206 0
48 0 0 0
0 0 0 0


 .

Since the eigenvalues of J + J t are nonnegative, the cost function C is monotone in
the vicinity of x∗. This property might largely explain the nice behavior of the solu-
tion algorithms close to x∗. When demand is decreased from 10 to 9, convergence of
PSTRATEQ1 slows down (Table 11), while both PSTRATEQ2 algorithm (Table 12)
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Table 9. Extragradient algorithm (small network, α = 0.01)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 10.00 10.00 2.00 670.00 1650.00 310.00 550.00 49.662
1 4.90 5.10 10.02 1.98 670.00 1650.00 545.21 550.00 27.438
2 9.80 0.20 8.87 3.13 670.00 849.42 779.42 550.00 13.479
3 10.00 0.00 7.67 4.33 670.00 860.00 790.00 550.00 12.164
5 10.00 0.00 5.27 6.73 670.00 860.00 790.00 550.00 8.691
7 10.00 0.00 2.87 9.13 670.00 860.00 790.00 550.00 4.931
8 10.00 0.00 1.67 10.33 670.00 860.00 790.00 550.00 2.933
9 10.00 0.00 0.47 11.53 670.00 860.00 790.00 550.00 0.849

10 10.00 0.00 0.00 12.00 670.00 860.00 790.00 550.00 0.000

Table 10. Projection algorithm (small network, α = 1)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 10.00 1.00 11.00 670.00 507.00 310.00 550.00 23.098
1 0.00 10.00 12.00 0.00 670.00 1650.00 350.00 550.00 47.343
2 10.00 0.00 12.00 0.00 670.00 1650.00 750.00 550.00 15.287
3 10.00 0.00 0.00 12.00 670.00 860.00 790.00 550.00 0.000

Table 11. PSTRATEQ1 (small network, d16 = 9)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 9.00 0.00 12.00 670.00 380.00 310.00 550.00 28.742
1 0.00 9.00 1.71 10.29 670.00 480.79 310.00 550.00 23.475
2 0.00 9.00 3.00 9.00 670.00 662.22 310.00 550.00 18.243
5 1.64 7.36 5.45 6.55 670.00 914.53 388.55 550.00 21.088

10 3.94 5.06 7.50 4.50 670.00 1116.17 499.00 550.00 17.153
20 5.88 3.12 6.92 5.08 670.00 674.65 592.46 550.00 2.384
50 4.82 4.18 6.21 5.79 670.00 709.07 541.43 550.00 1.670

100 5.09 3.91 6.23 5.77 670.00 659.21 554.53 550.00 0.659
200 4.98 4.02 6.23 5.77 670.00 683.81 549.07 550.00 0.480
500 5.02 3.98 6.21 5.79 670.00 671.81 550.76 550.00 0.094

1000 5.00 4.00 6.20 5.80 670.00 672.02 550.05 550.00 0.066
2000 5.00 4.00 6.20 5.80 670.00 671.23 549.90 550.00 0.022

10000 5.00 4.00 6.19 5.81 670.00 670.32 550.00 550.00 0.001

and the projective methods (Table 13) converge rapidly to the equilibrium. Note that
the projective methods diverge, as should be expected, when α becomes too large (see
Table 14).

7.2. Numerical tests on ‘Sioux Falls’ network

The second set of numerical tests has been performed on a simplified version of the Sioux
Falls network used by Suwansirikul et al. [26]. It is composed of 24 nodes, 41 arcs, 4
OD pair and 5 transit lines (see Tables 15 and 16). A typical strategy for this network
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Table 12. PSTRATEQ2 (small network, d12 = 9)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 9.00 0.00 12.00 670.00 380.00 310.00 550.00 28.742
1 0.00 9.00 5.24 6.76 670.00 977.80 310.00 550.00 31.063
2 2.83 6.17 8.19 3.81 670.00 1316.76 445.99 550.00 27.811
3 5.86 3.14 8.91 3.09 670.00 1306.18 591.38 550.00 15.771
5 7.53 1.47 6.87 5.13 670.00 717.81 647.81 550.00 5.549

10 7.59 1.41 3.87 8.13 670.00 640.92 570.92 550.00 2.381
20 5.59 3.41 6.39 5.61 670.00 644.15 574.15 550.00 2.354
50 5.00 4.00 6.19 5.81 670.00 669.97 550.01 550.00 0.001

100 5.00 4.00 6.19 5.81 670.00 670.00 550.00 550.00 0.000

Table 13. Projection algorithm (small network, α = 0.01 and d12 = 9)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 9.00 0.00 12.00 670.00 380.00 310.00 550.00 28.742
1 0.00 9.00 1.20 10.80 670.00 408.22 310.00 550.00 25.956
2 0.00 9.00 2.40 9.60 670.00 577.56 310.00 550.00 20.531
3 0.00 9.00 3.60 8.40 670.00 746.89 382.36 550.00 21.737
5 1.51 7.49 5.91 6.09 670.00 995.87 601.07 550.00 24.592

10 6.34 2.66 6.63 5.37 670.00 671.07 536.75 550.00 2.633
20 5.00 4.00 5.48 6.52 670.00 606.75 550.00 550.00 3.271
50 5.00 4.00 6.19 5.81 670.00 670.00 550.00 550.00 0.000

Table 14. Extragradient algorithm (small network, α = 0.1 and d12 = 9)

#iter. Strategic flows Strategic costs Relative
xs1 xs2 xs3 xs4 Cs1 Cs2 Cs3 Cs4 gap (%)

0 0.00 9.00 0.00 12.00 670.00 380.00 310.00 550.00 28.742
1 0.00 9.00 12.00 0.00 670.00 1650.00 350.00 550.00 46.299
2 9.00 0.00 12.00 0.00 670.00 1650.00 710.00 550.00 13.195
5 0.00 9.00 12.00 0.00 670.00 1650.00 350.00 550.00 46.299

10 9.00 0.00 12.00 0.00 670.00 1650.00 710.00 550.00 13.195
20 9.00 0.00 0.00 12.00 670.00 380.00 310.00 550.00 43.467
50 9.00 0.00 12.00 0.00 670.00 1650.00 710.00 550.00 13.195

100 9.00 0.00 0.00 12.00 670.00 380.00 310.00 550.00 43.467
200 9.00 0.00 0.00 12.00 670.00 380.00 310.00 550.00 43.467

Table 15. Demand for the Sioux Falls network

O-D pair Notation Demand Path with infinite capacity Cost

(1,24) OD1 35 p1 = {1, 3, 12, 13, 24} 120

(1,22) OD2 25 p2 = {1, 3, 12, 13, 22} 140

(7,24) OD3 20 p3 = {7, 18, 22, 24} 130

(7,22) OD4 20 p4 = {7, 18, 22} 100
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Table 16. Transit lines data for the Sioux Falls network

Transit lines (Li ) Capacity

10-15-17 5

15-20-22 10

4-11-14-23 15

5-9-10-11 20

8-16-17-19-22 25

Table 17. A strategy for the Sioux Falls network (OD 1-24)

node : 1 2 3 4 5 6

preference set : [3] [ ] [4] [11, 5] [9, 6] [8]

node : 7 8 9 10 11 12

preference set : [ ] [16, 9] [10, 16] [11, 15, 16, 17] [14, 12] [13]

node : 13 14 15 16 17 18

preference set : [24] [23, 15] [20, 17, 19] [17, 18] [19, 20] [22]

node : 19 20 21 22 23 24

preference set : [22, 20] [22, 23, 21] [24] [24] [24] [ ]

Table 18. PSTRATEQ1 on Sioux Falls network

# iter. Number of strategies Gap contribution (%)

OD1 OD2 OD3 OD4 OD1 OD2 OD3 OD4 total
0 1 1 1 1 11.141 5.307 12.439 0.000 28.887
1 2 2 2 1 2.979 4.441 7.188 0.046 14.654
2 3 3 3 2 1.791 3.212 4.661 0.340 9.994
5 3 4 3 2 1.090 3.195 3.910 0.819 9.013

10 3 4 3 3 0.780 1.310 1.664 0.213 3.967
20 3 4 3 3 0.313 0.676 0.889 0.101 1.979
50 3 4 3 3 0.057 0.265 0.362 0.060 0.744

100 3 4 3 3 0.059 0.131 0.166 0.030 0.386
200 3 4 4 3 0.011 0.068 0.086 0.012 0.176
500 3 2 2 3 0.015 0.002 0.004 0.005 0.026

1000 2 2 2 3 0.002 0.001 0.002 0.003 0.008
2000 2 2 2 3 0.000 0.001 0.001 0.001 0.003

10000 2 2 1 2 0.000 0.000 0.000 0.001 0.001

is presented in Table 17. The tolerance parameters ε1 and ε2 have been set to 10−4 and
0.05 for algorithm PSTRATEQ1 and to 10−4 and 0.01 for algorithm PSTRATEQ2.
Tables 18 and 19 contain, for each OD pair, the number of strategies generated and the
contribution of each OD pair to the gap function.

While the behavior of both algorithms is satisfactory, with a relative gap
of 1% reached in less than 40 iterations, PSTRATEQ1 is clearly outperformed by
PSTRATEQ2, with a gap of 1% reached after less than 20 iterations, and a gap of
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Table 19. PSTRATEQ2 (Sioux Falls network)

# iter. Number of strategies Gap contribution (%)

OD1 OD2 OD3 OD4 OD1 OD2 OD3 OD4 total
0 1 1 1 1 11.141 5.307 12.439 0.000 28.887
1 2 2 2 1 4.941 5.837 7.978 1.151 19.907
2 2 2 3 2 3.872 5.047 5.105 0.064 14.087
5 3 3 3 2 1.554 3.199 1.169 0.101 6.022

10 3 4 3 2 1.011 1.361 0.182 0.069 2.623
20 3 4 2 3 0.220 0.250 0.037 0.057 0.562
50 3 2 2 3 0.026 0.002 0.039 0.087 0.155

100 3 2 2 3 0.001 0.005 0.026 0.069 0.101
200 2 2 2 3 0.000 0.001 0.013 0.028 0.042
500 2 2 2 3 0.000 0.000 0.001 0.003 0.004

1000 2 2 1 2 0.000 0.000 0.000 0.000 0.000

Table 20. PSTRATEQ1 (Sioux Falls network, second data set)

# iter. Number of strategies Gap contribution (%)

OD1 OD2 OD3 OD4 OD1 OD2 OD3 OD4 total
0 1 1 1 1 11.579 12.157 11.887 4.942 40.564
1 2 2 2 2 2.655 8.551 11.079 0.887 23.161
2 3 3 3 2 7.496 6.978 7.320 3.510 25.304
5 3 4 3 2 0.931 6.657 4.188 1.240 13.016

10 3 5 3 2 0.137 2.183 1.793 0.032 4.146
20 3 5 3 3 0.169 1.456 1.278 0.350 3.253
50 3 5 3 3 0.136 0.541 0.414 0.104 1.194

100 3 5 3 3 0.066 0.244 0.207 0.062 0.578
200 3 5 3 3 0.021 0.124 0.125 0.031 0.301
500 3 5 3 3 0.002 0.059 0.035 0.016 0.111

1000 2 3 2 3 0.005 0.025 0.010 0.008 0.047
2000 2 3 2 3 0.003 0.006 0.002 0.004 0.015

10000 2 2 2 1 0.000 0.000 0.000 0.001 0.001

Table 21. PSTRATEQ2 (Sioux Falls network, second data set)

# iter. Number of strategies Gap contribution (%)

OD1 OD2 OD3 OD4 OD1 OD2 OD3 OD4 total
0 1 1 1 1 10.823 11.311 11.465 4.492 38.090
1 2 2 2 2 3.064 8.723 8.727 1.397 21.911
2 2 3 2 2 4.146 4.767 5.435 0.334 14.682
5 2 5 3 2 1.547 4.387 2.939 0.688 9.561

10 3 5 3 2 0.376 1.221 0.251 0.317 2.164
20 3 5 2 3 0.083 0.186 0.045 0.085 0.400
50 3 3 2 3 0.023 0.021 0.096 0.058 0.197

100 3 3 2 3 0.004 0.025 0.064 0.033 0.125
200 2 3 2 3 0.001 0.022 0.031 0.008 0.062
500 2 3 2 2 0.000 0.005 0.005 0.000 0.010

1000 2 3 2 1 0.000 0.000 0.000 0.000 0.000
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Table 22. Usage rates of uncapacitated links

Path Sioux Falls Sioux Falls (∗)
p1 62% 76%
p2 0% 63%
p3 0% 15%
p4 44% 100%

.1% reached after 100 iterations. Note also that the size of the working set is larger under
PSTRATEQ1 than under PSTRATEQ2. A comparison of the strategic flows obtained
by both algorithms reveals no significant differences. Indeed, at equilibrium, strategic
costs agree to four significant digits.

A second test problem involved demands increased to 40, 50, 30 and 40, and transit
line capacities reduced by 3 units. The travel costs of arcs (12, 13) and (18, 22) are set
to 80 and 90 respectively. As expected (see Tables 20 and 21), the number of strategies
active at equilibrium increases, as more ‘stress’ is put on the network. This is illustrated
in Table 22, where we observe the increase in the use of uncapacitated (‘long’) paths.
However, this has no significant effect on the convergence behavior of the algorithms.

8. Conclusion

In this paper, we have analyzed a network equilibrium model where users take into
account in their travel behavior the possibility that an arc be unavailable upon arrival,
due to its finite capacity. Such approach radically differs from the standard path-based
approach, and allows for equilibria that meet Wardrop’s condition of equal (expected)
travel costs.

Difficulties of theoretical and computational nature arise when dealing with this
complex model. While our implementation cannot yet deal with large scale networks,
we believe it is possible to do so by taking advantage of the fact that only a small number
of capacity constraints will be active at equilibrium.

In a companion paper, we adapt the strategic approach to a time-discretized model of
traffic equilibrium where the FIFO condition is automatically enforced. At term, we aim
for a model that deals both with time-dependent, fixed schedule networks, a situation
that, in our opinion, cannot be addressed by traditional path-based or hyperpath-based
approaches.

A. Loading Procedure

for j ∈ N (in topological order) do
W := {s ∈ W : Es

j �= ∅} [set of active strategies]

for s ∈ W do
E
s

j := Es
j [ordered set of available preferences]

Priority(j, s)→ zs1j , z
s2
j [priority and no-priority strategic flow]

endfor
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W
1

:= {s ∈ W : zs1j > 0} [set of priority active strategies]

W
2

:= {s ∈ W : zs2j > 0} [set of no-priority active strategies]
for k ∈ j+ do

ūjk := ujk [residual capacity of arc (j, k)]
endfor

for i = 1 to 2 do [loading over W
1

and W
2
]

for s ∈ W
i

do
z̄sj := zsij [unassigned strategic flow]
ρsij := 1 [proportion of unsigned strategic flow]

endfor

while W
i �= ∅ do

K := ∅ [active strategies residual first choices]
for k ∈ j+ do

dk := 0 [residual demand for first choice node k]
Wk := ∅ [set of active strategies having

endfor node k as residual first choice]

for s ∈ W
i

do
k := E

s

j (1) [first residual choice of strategy s]
K := K ∪ {k} [construction of K]
Wk := Wk ∪ {s} [construction of Wk]
dk := dk + z̄sij [construction of dk]

endfor
ν := max{dk/ūjk : k ∈ K}
βi := min{1/ν, 1} [proportion of strategic assigned flow]
for k ∈ K do

for s ∈ Wk do
zsk := zsk + βi z̄sij [update of node strategic flow]
vsjk := vsjk + βi z̄sij [update of arc strategic flow]
z̄sij := z̄sij − βi z̄sij [update of unassigned strategic flow]
if zsj > 0 then [update of access probability]

πs
jk := πs

jk + βi
z̄sj
zsj

else
πs
jk := πs

jk + βiρsij
endif
ρsij := (1− βi)ρsij [update of proportion of unassigned flow]

endfor
ūjk := ūjk − βidk [update of residual capacity of arc (j, k)]
if ūjk = 0 then [disactivation of saturated arc (j, k)]

for s ∈ W
1 ∪W 2

do
E
s

j := E
s

j − {k} [update of residual preference set]
endfor

endif
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endfor

if βi = 1 then [end of loading for W
i
]

W
i = ∅

endif
endwhile
endfor
for s ∈ W do

for = k ∈ Es
j do

Cs := Cs + cjkτ
s
j π

s
jk [update of cost Cs]

τ sk := τ sk + τ sj π
s
jk [update of probability τ sk ]

endfor
endfor

endfor
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opérationnelle, Université de Montréal, 1984
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