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The multiclass network equilibrium problem is expressed in general as a nonmonotone, asymmetric, varia-
tional inequality problem. We show that in spite of the nonmonotonicity of the cost operator, the problem

may actually satisfy a weaker property, induced by the hierarchical nature of the travel cost interactions. This
property allows a natural decomposition approach, not otherwise available, that admits provably convergent
algorithms. We present one such algorithm, easily implementable using a solver for the single-class network
equilibrium problem, together with a convergence proof.
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Introduction
The multiclass network equilibrium problem is a nat-
ural and important extension of the classic net-
work equilibrium problem. While the latter can be
expressed as a convex optimization program under
the relatively mild assumption of separable and
increasing travel cost functions, the former admits
no such formulation in general. Instead, the multi-
class problem is expressed mathematically as a vari-
ational inequality problem as introduced by Smith
(1979) and Dafermos (1980). Indeed, in the case of a
multiclass equilibrium problem, the cost operator for
each class depends on the flow of more than one traf-
fic class, and these dependencies are generally asym-
metric. As a result, the Jacobian matrix of the overall
cost operator, whenever it exists, is itself asymmetric.
When this occurs, the variational inequality defining
the Wardrop equilibrium conditions may not be com-
puted by solving the first-order optimality conditions
of an equivalent optimization problem. That is, the
overall cost operator is not the gradient of another
function defined over the entire feasible region, and
there is no analogous “Beckmann transformation”
into an equivalent convex optimization problem.
Note that this definition of a multiclass network

encompasses the multimodal networks found often
in the transportation literature, as well as multiple
quality of service (QoS) networks in the telecom-
munications literature. The special case of multiple
user classes that are distinguished only by their val-
ues of time (rather than through class-specific delay

functions) can often be simplified in ways that are not
treated here (see Leurent 1994 or Marcotte 1999 for
more details on those models).
While the multiclass network equilibrium prob-

lem cannot, in general, be solved using algorithms
developed for the separable, single-class network
equilibrium problem (Hammond 1984), algorithmic
approaches specifically adapted to variational inequal-
ities can, in principle, be applied. Methods for solving
variational inequality problems are the focus of a large
body of research in the nonlinear programming com-
munity (see Patriksson 1999 or Harker and Pang 1988
for a summary of resolution methods) when the delay
mapping is monotone.
A popular strategy for solving the multiclass net-

work equilibrium problem is the so-called diagonal-
ization method (respectively, triangulation method),
which mimics the Jacobi (respectively, Gauss-Seidel)
decomposition approach used for solving systems of
equations (Florian 1977, Harker 1988, Mahmassani
and Mouskos 1998). The idea behind the method is
to fix flows for all but one group of variables, and
to iteratively solve a sequence of separable (single-
class) subproblems. Note that classes may represent
genuine user classes, each interacting on the network
links, or models of junctions in which interactions
occur across links.
Each single-class equilibrium can then be obtained

by applying methods of convex programming, such
as the widely used Frank-Wolfe linear approximation
algorithm, or variants thereof. The Jacobi approach
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leads to solving, at iteration k, a sequence of m prob-
lems of the form

min
xi∈�i

∑
a∈�

∫ xia

0
tia�x

k
1a� xk

2a� 	 	 	 � xk
i−1� a� s� xk

i+1� a� 	 	 	 � xk
ma� ds�

(1)
where � denotes the set of n arcs in the network,
�i is the set of feasible flows for class i, the travel cost
function is t, and the model includes m user classes,
or modes. The Jacobi iteration lends itself naturally to
parallelism. Alternatively, the Gauss-Seidel approach,
which makes use of the latest vector updates, leads to
subproblems of the form

min
xi∈�i

∑
a∈�

∫ xia

0
tia�x

k+1
1a � xk+1

2a � xk+1
i−1� a� s� xk

i+1� a� 	 	 	 � xk
ma� ds	

(2)
These decomposition methods, as is the case for the
variational inequality algorithms alluded to above,
are provably convergent under relatively stringent
conditions on the monotonicity property of the travel
cost operator. The conditions take the shape of some
form of monotonicity of the mapping t over the
set � = ∏

i �i, where the required form of mono-
tonicity (quasi, strict, strong, pseudo, etc.) depends
on the algorithm used. Several popular algorithms
require strong monotonicity, although variants exist
that allow the equilibrium problem to be defined in
terms of monotone or pseudomonotone operators.
In the case of the diagonalization method, Ahn and
Hogan (1973), Florian and Spiess (1982), and Pang
and Chan (1982) (see also Dupuis and Darveau 1986)
give local convergence results based on the following
two assumptions on the travel cost functions.
• The cost mapping t is strongly monotone and

(Fréchet) differentiable in the neighborhood of an
equilibrium solution x∗.
• �I −D��t�x∗��−1/2BD��t�x∗��−1/2�2 < 1,

where D refers to the diagonal part of the matrix,
t�x∗� is the travel time function evaluated at the
equilibrium solution x∗, B = �t�x∗� − D��t�x∗��, and
� · � represents the matrix norm given by �M�D =
�D1/2MD−1/2�2. These two conditions ensure that
the diagonalization algorithm converges to a locally
unique solution x∗ (Florian and Spiess 1982). Global
convergence requires that these conditions be satisfied
over the entire domain � .
The second condition above implies that �t�x∗� is

positive definite. A sufficient condition for positive
definiteness that is, in some cases, easy to check for is
that �t�x∗� be both row and column diagonally dom-
inant; that is, letting M = �t�x∗�

�Mii�>max
{∑

i 	=j

�Mij ��
∑
i 	=j

�Mji�
}

∀i� j = 1� 	 	 	 � ���	
(3)

Stated in words, the Jacobian of a differentiable map-
ping t will be diagonally dominant when the travel
delay of a class is influenced by its own traffic much
more than by flows of other classes.
It is clear that if a model involves more than one

class of traffic, then these interactions will not be neg-
ligible. (Otherwise, a separable approximation of the
multiclass model would have been sufficient in the
first place.) Numerical experiments have confirmed
the nonmonotonicity of the travel cost operator in
practice. Indeed, it is often the case (see Toint and
Wynter 1996 for one such example) that the cost oper-
ator in a multiclass network equilibrium problem is
almost never monotone. This is not surprising: the
interactions across classes on links (or across links) are
generally significant; otherwise, a multiclass model
would not have been needed at all, and a series
of single-class approximations would suffice. When,
therefore, cross-class interactions are strong, the cor-
responding Jacobian of the cost mapping (if it exists)
will not be diagonally dominant and, in general, the
mapping itself will not be monotone. In this con-
text, the majority of algorithms used to solve mul-
ticlass problems are no longer provably convergent
and, indeed, it will be shown here that such algo-
rithms may frequently converge to points that are not
equilibria at all.
In this paper, we examine the nature of the cost

operator in a multiclass network equilibrium prob-
lem. We illustrate in §2 the behavior that can be
exhibited by these algorithms when the monotonicity
requirement is not met; that is, without the necessary
monotonicity property, algorithms may converge to
nonequilibrium points. Next, we show that a different
property, strictly weaker than monotonicity, does hold
in many cases, and provides a very elegant interpre-
tation of the interactions across variables in the multi-
variate travel cost functions. A characterization of this
property is provided in §3. Of significant importance
is that this property has been shown to admit prov-
ably convergent algorithms. Such a class of algorithms
is described in §4. Section 5 provides a new charac-
terization of the property, slightly weaker still than
the original definition, and that applies in a variety
of practical situations. Then, §6 concludes with some
suggestions for further work on this topic.

1. Drawbacks with Algorithms
Requiring Monotonicity

Let us first recall the basic definition of network equi-
librium. Let G = �� ���, be a transportation network
defined by a set of nodes � , a set of arcs �, and a set
of origin-destination (OD) pairs � ∈� ×� , each OD
pair w ∈� being endowed with a fixed demand dw

that must be satisfied. As in most traffic assignment
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problems, the arcs have associated with them cost
functions, ta�x�, that increase with the own flow xa

and, possibly, other arc flows as well. An equilibrium
is reached when flow is distributed over the paths of
the network in such a way that all demands are sat-
isfied, and users are assigned to shortest paths with
respect to current flow-dependent delays. This model
is of practical interest for predicting the sensitivity of
network usage with respect to modifications in the
network’s infrastructure or services.
The multiclass network equilibrium problem has

the added complexity that demands exist between
each OD pair for more than one class of flow, result-
ing in vector-valued OD flows. More precisely, let us
denote, for each OD pair w, by dw

i the demand for
class i �i = 1� 	 	 	 �m� and by xw

ia the flow associated
with arc a, class i and OD pair w. In the follow-
ing example, for each class, the form of the class-
specific travel cost function is the same on both of the
two links and takes the form tia�x�= tia�x1�x2� 	 	 	 � xm�,
where xi = �

∑
w∈� xw

ia�a∈� denotes the total number
of class i users travelling on arc a. This problem is
referred to as asymmetric when the influence of one
class on another is not symmetric; that is, assum-
ing that t ∈ C1, for some arc a, some flow vector
x and some classes i 	= j , there holds �tia�x�/�xja 	=
�tja�x�/�xia, whenever the functions involved are dif-
ferentiable.
The multiclass traffic assignment problem has been

paid close attention, as numerous planning scenar-
ios require making the distinction between different
flow types on the network, such as buses versus
cars, heavy versus light vehicles, guided versus
unguided vehicles. The interaction between modal
flows, together with the accurate modelling of inter-
secting flows, induces nonseparable and, in general,
asymmetric cost functions.
Next, we analytically examine a simple example

that illustrates the occurrence of multiple isolated
equilibria. Because the set of equilibria associated
with a monotone problem is convex, this implies that
the cost function is not monotone. These equilibria
may be stable, i.e., any “reasonable” tâtonnement pro-
cess initiated in the vicinity of such an equilibrium
x∗ converges to x∗, or unstable. Consider the two-arc
network of Figure 1 with linear cost functions iden-
tical on both arcs, and where the cost functions are
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Figure 1 A Two-Arc Network
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Figure 2 Three Equilibrium Solutions

given by the equations (for ease of presentation, we
drop the OD index)

t1a�x� = 1	5x1a + 5x2a + 30
t2a�x� = 1	3x1a + 2	6x2a + 28�

(4)

where tia�x� is the travel time and xia the flow of class i
on arc a, a= 1�2. Let d = �16�4� be the demand vector.
Then, the feasible domain � consists of those xia for
which

∑
a∈�1�2� x1a = 16,

∑
a∈�1�2� x2a = 4, and xia ≥ 0 for

all i� a ∈ �1�2�. In this example, it turns out that
there are three equilibrium solutions, x∗1, x∗2, and x∗3,
expressed in matrix form as

x∗1 =
(
4/3 44/3
4 0

)
x∗2 =

(
8 8
2 2

)

x∗3 =
(
44/3 4/3
0 4

)
�

where the first row of each matrix gives the amount
of the first class on Arcs 1 and 2, and the second row
the amount of the second class (see Figure 2).
Netter (1972) proposed a similar example, also

based on a two-arc network with linear cost functions.
The article is important in that it was the first to dis-
cuss the presence of multiple equilibria. Furthermore,
Netter (1972) argued that the middle solution, which
corresponds to the two classes fully sharing the two
arcs, was unstable in the above-mentioned sense.
The costs for each of the three solutions are

t�x∗1�=
(
52 52
40 47

)
t�x∗2�=

(
52 52
44 44

)

t�x∗3�=
(
52 52
47 40

)
�

where, again, the first row gives the travel times for
a vehicle of Class 1 on Arcs 1 and 2, and the second
gives the travel times for Class 2. Solution 2 is given
by an equal split of the two classes between the two
arcs. Although the equilibrium condition is satisfied
at this point, it is an unstable solution in that alter-
ing even slightly the flow of Class 2 on the network
will result in vehicles of that class seeking a different,
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Figure 3 Convergence to Different Solutions According to the
Starting Point

lower cost, flow pattern. Consequently, vehicles of
both classes will reequilibrate into a new, stable equi-
librium, and Solution 2 is a flow that would probably
never be observed according to the cost function used.
In Figure 3, we illustrate the solutions found by

the diagonalization method for 121 different start-
ing points in the feasible region. For example, start-
ing point x11 = 0 and x22 = 0 corresponds to starting
the algorithm at x11 = 0, x12 = d1 = 16, x21 = d2 = 4,
and x22 = 0, so that all of the Class 1 flow is ini-
tially assigned to Arc 2 and all of the Class 2 flow is
assigned to Arc 1. The algorithm is halted as soon as
either the difference between aggregate flows at two
successive iterations is less than 10−5 or the number
of diagonalization iterations reaches 100.
In this example with multiple equilibria, the equi-

librium solution that is reached clearly depends on the
starting point. Recall that the axes of the Figure 3 are
�x�y�= �x11 = 0, x22 = 0�. Aside from the origin, which
constitutes a special case, starting the algorithm at
an initial flow value along the first (respectively, last)
three rows yields the equilibrium solution x1∗ (respec-
tively, x3∗). When the initial point is selected either
along the line x22 = 2 or at the origin (that is, x11 = 0,

x22 = 0), the algorithm converges to solution x2∗. Fur-
thermore, when the algorithm is started around the
line x22 = 2, it stops at a nonequilibrium point.
The preceding example shows that algorithms

designed for monotone variational inequalities can
fail to converge, or may even converge to a nonequi-
librium value when applied to nonmonotone net-
work equilibrium problems. Figure 3 illustrates the
“instability” of Solution 2: The vector field that points
toward the solution of the linearized subproblem (the
“Frank-Wolfe” vector field when the cost mapping is
a gradient) points away from the extremal Solution 2,
except along the line x22 = 2, a set of measure zero.

2. A Weaker Form of Monotonicity
While monotonicity can be shown not to hold for
most multiclass network equilibrium problems, we
will show in this section that the notion of nested
monotonicity, introduced in Cohen and Chaplais
(1988), offers an elegant explanation of the process of
interactions in a class multiclass problems. Moreover,
nested monotone problems are amenable to provably
convergent algorithms.
First, we introduce a number of definitions, nota-

tions, and assumptions. Throughout the paper, we
assume that the delay mapping t is continuously dif-
ferentiable on an open set containing � .
Definition 2.1 (Variational Inequality Problem

VIP�t����. Find x∗ ∈� such that

t�x∗�� x− x∗� ≥ 0� ∀x ∈� 	 (5)

In the multiclass network equilibrium problem, the
feasible set � may be expressed as the Cartesian
product of component subspaces; that is,

x = �x1� 	 	 	 � xn� ∈� (6)

xi ∈�i (7)

� =∏
i=1�			�n �i� (8)

where xi represents the flow vector associated with
mode i. This latter vector is itself decomposed into
subvectors xw

i that contain the arc flows associated
with the OD indexed by w. If one denotes by B the
node-arc incidence matrix of the network, one has

�i =
{
xi ≥ 0  xi = �xw

i �w∈�  Bxw
i = bw

i

}
� (9)

where

bw
il =




demand for mode i and OD pair w

if node l is the origin of w�

−(demand for mode i and OD pair w)
if node l is the destination of w�

0 otherwise.

The delay on the arcs of the network is induced by
the aggregated flow z = Ax = ∑

w xw. If one denotes
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by Fia�z� the delay induced by the aggregated flow
vector z on arc a, the cost operator can be expressed as

t�x�=AtF �Ax�	 (10)

Assumption 2.2. The following properties of Prob-
lem (5) will be assumed to hold.
(1) The subset � ⊂�n is closed and convex.
(2) The operator t is continuously differentiable on � .

While, in general, one would like to assume the
boundedness of � , one can show that equilibrium
flows are always acyclic, hence, the flows associ-
ated with the (fixed demand) network equilibrium
may be assumed to be bounded through the addi-
tion of a nonbinding constraint on their magnitudes
(such as xia ≤

∑
w∈� dw for all links a ∈�). Note that,

by using one of the many transformations available
(see, e.g., Patriksson 1994), the elastic demand model,
under the condition of an invertible and upper-
bounded demand function, could be made to fit this
framework.
Using the above notation, the variational inequal-

ity (5) that defines the multiclass equilibrium is equiv-
alent to the following system of coupled variational
inequalities:
Definition 2.3 (Coupled System of Variational

Inequalities). Find x∗ ∈� such that for i = 1� 	 	 	 �n,

ti�x
∗�� xi − x∗

i � ≥ 0� ∀xi ∈�i	 (11)

Definition 2.4 (Strong Monotonicity). An oper-
ator t is strongly monotone on � if there exists a con-
stant &t > 0 such that

t�x�− t�y�� x− y� ≥&t�x− y�2� ∀x�y ∈� 	 (12)

Definition 2.5 (Lipschitz Continuity). An oper-
ator t is Lipschitz continuous on � if there exists a
constant Lt > 0 such that

�t�x�− t�y�� ≤ Lt�x− y�� ∀x�y ∈� 	 (13)

To define nested monotonicity, it is necessary to
further decompose the operator t and the feasible
set � . Let

x<i  = �x1� 	 	 	 � xi−1� (14)

x≥i  = �xi� 	 	 	 � xn� (15)

�<i  = ∏
j∈�1� i−1�

�j (16)

�≥i  = ∏
j∈�i�n�

�j 	 (17)

Analogous definitions hold for x>i and �>i. Then, the
definition of a nested monotone operator relative to
the decomposition above is as follows (Cohen and
Chaplais 1988).

Definition 2.6. (Strong Nested Monotonicity).
An operator t  � �→�n is strongly nested monotone

on � relative to the decomposition (7) if, and only if,
the following three conditions hold.
(1) The operator t1�x1�x>1� is strongly monotone

in x1 on �1, uniformly in x>1 on �>1. Under
Assumptions 2.2, the VIP (11) involving the operator
t1 has a unique solution, parameterized by x>1, and
denoted x∗

1�x>1�.
(2) The operators ti�x

∗
<i�x≥i�� xi� x>i�, for i = 1� 	 	 	 ,

n − 1, are strongly monotone in xi over �i, uni-
formly in x>i over �>i. Each such VIP has, under
Assumptions 2.2, a unique parametric solution
denoted x∗

i �x>i�.
(3) The operator tn�x∗

<n�xn�� xn� is strongly mono-
tone in xn on �n. Under Assumptions 2.2, the VIP (11)
involving the operator tn has a unique solution.
It is easy to see that every strongly monotone func-

tion is strongly nested monotone, but that the con-
verse is not always true. Examples in Cohen and
Chaplais (1988) and in the following section illustrate
that a strongly nested monotone function need not
even be monotone. A consequence of strong nested
monotonicity is the following important property:

Proposition 2.7 (Cohen and Chaplais 1988). An
operator t  � �→�n that is strongly nested monotone on
� relative to the decomposition (7) has a unique solution.

Proof. This result follows from Definition 2.3, the
strong nested monotonicity property of Definition 2.6,
and the fact that the recursively defined Si�x≥i�  =
�x∗

i �x>i�� Si−1�x≥i−1�� is the solution to the set of cou-
pled variational inequalities ranging from 1 to i. �

In other words, in spite of the nonmonotonicity of
these multiclass cost operators under strong nested
monotonicity, the equilibrium solution is unique.
It is not always advantageous, from a computa-

tional point of view, to decouple a problem into
several low-dimensional subproblems, even when
this decomposition preserves the strong monotonic-
ity property. Indeed, the resulting n-level hierarchical
problem may be difficult to manipulate. In our case,
the situation is different because decoupling the prob-
lem allows us to obtain a form of monotonicity that
is not present in the original problem.
In many cases, a small number of classes is

found to underly a hierarchical problem, and this is
particularly so for traffic networks. Consider, for
example, road networks with flows of cars, trucks,
and buses. A hierarchy can be observed if, for exam-
ple, the influence of trucks and buses on the delay
functions of cars is strong, but not the contrary. In
practice, one can often identify two distinct classes,
and this type of natural hierarchy between their cost
functions (e.g, one class influences the other more
than vice versa).
For this reason, and also to improve the clarity of

the exposition, we shall focus our attention on mul-
ticlass equilibrium problems having two interacting
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classes. Then, the decomposition is immediate and
the definition of nested monotonicity reduces to the
following:

Definition 2.8 (Strong Nested Monotonicity
Over Two Subspaces). The operator t is strongly
nested monotone if, and only if,
(1) t1�x1�x2� is strongly monotone in x1 on �1, uni-

formly in x2 on �2.
(2) Let x∗

1�x2� solve VIP�t1�x1�x2���1�. Then,
t2�x

∗
1�x2�� x2� is strongly monotone in x2 over �2.
This decomposition corresponds to a multiclass net-

work with two classes, x1 and x2. Note, however, that
t1 and t2 are still vector functions, where dim�1 = n1
and dim�2 = n2. In general, both n1 and n2 will be
equal to the number of arcs of the network times the
number of OD couples, though this is not limiting for
the results or methods proposed in this paper.
We close this section by giving an example of a non-

monotone multiclass network equilibrium problem
that is nested monotone. Consider a network with
two traffic classes, e.g., in a road transport net-
work, one may wish to model buses and cars or
heavy and light vehicles. In a telecommunications
network, 1 and 2 may represent priority classes on
an Asynchronous Transfer Mode or Internet Protocol
network.
Recall the two-arc network of Figure 1. In the fol-

lowing example, suppose that the total OD demand
from Node 1 to Node 2 of Class 2 (cars for instance)
is equal to 20, and 10 for Class 1 (buses for instance).
We define the affine cost operator t�x� = Mx + q,
where x = �x11�x21�x12�x22� (this ordering is more con-
venient than the ordering x = �x11�x12�x21�x22�, for our
purpose) and

M =



2 3 0 0
0 1 0 0
0 0 2 3
0 0 0 1


 	

We have (
x12
x22

)
=
(
10
20

)
−
(

x11
x21

)
	 (18)

Let us assume that, at equilibrium, all flows are posi-
tive. This can be achieved by selecting the vector q in
a suitable fashion. To check for monotonicity, and take
into account the presence of the demand constraints,
we compute the reduced Jacobian matrix

J = t	1	1�x1�Dx1+ b�+ t	1	2�x1�Dx1+ b�D

+Dtt	2	1�x1�Dx1+ b�+Dtt	2	2�x1�Dx1+ b�D�

where t	i	j denotes the submatrix of J associated with
classes i and j , i.e.,

t	1	1 = t	2	2 =
(
2 3
0 1

)
t	1	2 = t	2	1 =

(
0 0
0 0

)

D =
(−1 0

0 −1
)

b =
(
10
20

)
	 (19)

This yields J =
(
4 6
0 2

)
. Since 0	5det�J + J t� = −1,

the function is not monotone over the feasible set.
However, the mapping is strongly nested monotone
because
• for fixed Class 2 flow, the Class 1 problem is

separable and strongly monotone (positive diagonal
terms, null off-diagonal terms);
• Class 2 equilibrium is independent of Class 1

flow (M is upper triangular) and involves the iden-
tity matrix; the corresponding mapping is obviously
strongly nested monotone.
Note that not all multiclass cost operators satisfy
this property. For instance, Netter’s (1972) example
(see §2), whose solution set is disconnected and there-
fore nonconvex, cannot be nested monotone.
Remark 2.9. As in the previous example, it is fre-

quently the case that, with respect to a given class
index, the cost operator is a gradient mapping, and
the single-class variational inequality reduces to a
convex optimization problem. However, due to asym-
metric cross-class interactions, the overall variational
inequality need not be reducible to a convex problem.
Remark 2.10 (Testing for Strong Nested Mono-

tonicity). To test for the property of nested mono-
tonicity it is necessary, in principle, to solve for the
parametric equilibrium solution of one class, in terms
of the other, and then examine the cost function of
the second class as a function of this parametric solu-
tion. Clearly, over a large-scale network, such a study
is highly impractical, if not impossible. If, however,
the cost functions on each arc are structurally similar,
up to additive and/or multiplicative constants, then a
test for the nested monotonicity property over a small
subnetwork, such as possibly one arc of the network,
offers a good approximate test.

3. An Algorithm for the Multiclass
Equilibrium Problem

In this section, we describe a convergent algorithm
for nested monotone problems. This is important,
because multiclass network equilibrium problems,
which cannot be assumed to be monotone, are likely
to possess that property. The following assumption
will be required throughout this section.

Assumption 3.1. The function t is Lipschitz continu-
ous over � .

Lemma 3.2. If the operator t is strongly nested mono-
tone, then the reaction function x∗

1�x2� and the operator
t2�x

∗
1�x2�� x2� are both Lipschitz continuous with respect

to x2.

Proof. The strong monotonicity of t1�·�x2� and
t2�x

∗
1�x2�� x2� follow from the definition of a strongly

nested monotone operator. Then, the result follows
from Lemma 5.1 of Cohen and Chaplais (1988). �
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The solution algorithm we propose is of the descent
type and minimizes a merit (or “gap”) function
defined for a variational inequality VIP�t��� as

g�x�  =max
y∈�

,�x�+ 〈
t�x�−�,�x��x− y

〉−,�y�� (20)

where , is strongly convex and continuously differen-
tiable over � . In the dual-class, nested monotone case,
the relevant gap function for the problem VIP�t2��2�
is expressed as

g2�x
∗
1�x2�� x2�

 =max
y∈�2

,2�x2�+
〈
t2�x

∗
1�x2�� x2�−�,2�x2�� x2− y

〉

−,2�y�� (21)

where, again, ,2  �n2 �→ � is strongly convex and
continuously differentiable over the feasible set �2.
Let y2�x

∗
1�x2�� x2� denote the unique solution to (21).

One interesting special case of the gap function (20)
occurs when ,�x�  = 1

2�x�2G, where G is an a priori
defined symmetric positive definite matrix. Using this
particular choice of auxiliary function , leads to the
gap function introduced by Fukushima (1992)

g�x�  =max
y∈�

t�x�� x− y�− 1
2
x− y�G�x− y��� (22)

which can be evaluated by solving the projection
problem

min
y∈�

∥∥y − �x−G−1t�x��
∥∥2

G
	 (23)

The differentiable, nonconvex optimization problem
associated with (21) is given by

min
x2∈�2

g2�x
∗
1�x2�� x2�	 (24)

Essential properties of gap functions are given
below. Using Lemma 3.2, the proofs may be obtained
as direct extensions of those found, for example, by
Larsson and Patriksson (1994) and have, therefore,
been omitted.

Theorem 3.3. Under Assumption 3.1 and Lemma 3.2,
the following properties hold.
(1) The gap function g is nonnegative and g�x2�x1�= 0

if, and only if, x∗ is a solution of the variational inequality
VIP�t���.
(2) Similarly, the gap function g2�x

∗
1�x2�� x2�≥ 0 for all

x2 ∈ �2, and g2�x
∗
1�x2�� x2� = 0 if, and only if, x2 ∈ �2

solves the VIP�t2�x
∗
1�x2�� x2���2�.

(3) If �,�x2� is Lipschitzian on �2, then x∗
2 is a sta-

tionary point of Problem (24) if, and only if, x∗
2 is a global

optimal solution of (24), i.e., a solution of the variational
inequality VIP�t2�x

∗
1�x2�� x2���2�.

Theorem 3.4 (Directional Differentiability of
g2). Let t2 ∈ C1 and the auxiliary function ,2 ∈ C2 on
�2. Let t2 and t1 be Lipschitz continuous in each of their
arguments. Then, the implicit gap function g2 is locally
Lipschitz continuous (with Lipschitz constant denoted by
Lg2

) and directionally differentiable.

Proof. The assumptions and the Lemma 3.2 guar-
antee the Lipschitz continuity of the implicit map-
pings x2 �→ x∗

1�x2� and x2 �→ y2�x2�. Then, the result
follows from, e.g., Hogan (1973). �

Based on the solution to (21), we introduce

d2  = y2�x
∗
1�x2�� x2�− x2� (25)

a descent direction for the gap function g2. For some
positive symmetric and positive definite matrix G2,
we focus on the special case of auxiliary function
,2�x�  = 1

2�xx�2G2
, which leads to the gap function

g2�x
∗
1�x2�� x2� = max

y∈�2

〈
t�x∗

1�x2�� x2�� x2− y
〉

− 1
2

〈
x2− y�G2�x2− y�

〉
	 (26)

Before showing that d2 is a descent direction, a tech-
nical definition is required.
Definition 3.5 (Graphical Derivative (Rocka-

fellar and Wets 1998, Def. 8.33). The graphical de-
rivative of a mapping T  �n ⇒ �n at a point x ∈
dom�T � and for v ∈ T �x� is the mapping DT  �n �→
�n defined by

z ∈DT �x � v��d�←→ �d� z� ∈ �gphT �x�v�� (27)

where �gphT is the tangent cone to the graph of the
mapping T at �x�v�. When T is single valued at x;
that is, T �x� = �v�, then the notation simplifies to
DT �x��d�.
Definition 3.6 (Semiderivative (Rockafellar

and Wets 1998, Ex. 8.43)). The semiderivative of a
mapping T  �n ⇒�n at a point x ∈ dom�T � for some
v ∈ T �x� and w̄ is the limit

lim
1→0�w→w̄

T �x+ 1w�− v

1
� (28)

whenever the limit exists. If it exists for each vector
w̄ ∈�x, then T is semidifferentiable at x for v.
Remark 3.7. Under the assumption of strong

nested monotonicity, and following Proposition 2.7,
the mappings t1 and t2 are single valued.
Rockafellar and Wets (1998) provide properties and

illustrations of graphical derivatives, which general-
ize subgradients and directional derivatives to the
case of vector functions and multivalued mappings.
We are concerned with one particular property of
graphical derivatives presented below.
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Theorem 3.8 (Rockafellar and Wets 1998, Th.
12.65). Consider a maximal monotone mapping T  �n ⇒

�n, any point x ∈ dom�T �, and v ∈ T �x�. If T is
continuous and single valued at x, then the mapping
DT �x � v��d� = DT �x��d� is also maximal monotone and
everywhere continuous. Also, the following properties are
equivalent:

(1) T is semidifferentiable at x for v;
(2) DT �x � v��d� is single valued.

The next result, due to Marcotte and Zhu (1993) in
the context of variational inequalities involving con-
tinuous but nondifferentiable operators, establishes a
descent property for a certain direction. It is given a
new, shorter proof that will be extended in the next
section.

Theorem 3.9. The vector d2  = y2�x
∗
1�x2�� x2� − x2

satisfies the following descent condition:

g′
2�x

∗
1�x2�� x23d2�≤−&t2

�d2�2 (29)

for every x2 ∈ �2, where &t2
is the strong monotonicity

constant of t2.

Proof. From graphical derivative calculus (Rock-
afellar and Wets 1998, Ch. 8.G.), one has

g′
2�x

∗
1�x2�� x23d2�

= sup
z∈�y2�x

∗
1 �x2�� x2��

{t2�x∗
1�x2�� x2�−Dt�x∗

1�x2�� x2��z− x2�

+G2�z− x2�� d2�
}
	 (30)

Because the supremum is uniquely attained then, let-
ting y2�x2�  = y2�x

∗
1�x2�� x2�, one can express (30) as

g′
2�x

∗
1�x2��x23d2�

=t2�x∗
1�x2��x2�+G2�y2�x2�−x2��y2�x2�−x2�

−Dt2�x
∗
1�x2��x2��y2�x2�−x2��y2�x2�−x2�	 (31)

By the optimality of y2�x2� for the subproblem, we
have that

x−G−1
2 t2�x

∗
1�x2�� x2�− y2�x2�� G2�z− y2�x2��� ≤ 0 (32)

for every z ∈� , which can be rewritten as

t2�x∗
1�x2�� x2�+G2�y2�x2�− x2�� y2�x2�− x2� ≤ 0	 (33)

Combining (31) and (33), we obtain

g′
2�x

∗
1�x2�� x23d2�

≤ −Dt2�x
∗
1�x2�� x2��y2�x2�− x2�� y2�x2�− x2�� (34)

≤−&t2
�d2�2� (35)

where the final inequality follows from the mono-
tonicity property of Dt2 when Dt2 is semidifferen-
tiable, which, in turn, holds when the mapping t2 is

maximal monotone, continuous, and single valued,
according to Theorem 3.8. Note that, since the set
�y2�x

∗
1�x2�� x2�� is a singleton and t2�x

∗
1�x2�� x2� is

strongly monotone, the function t2�x
∗
1�x2�� x2� is max-

imal monotone and continuous. �

A mixed descent algorithm for solving the coupled
pair of optimization programs is provided next. For
simplicity, we continue to assume that the auxiliary
function chosen is ,2�x�  = 1

2�x2�2G2
.

3.1. Mixed Descent Method
(1) Initialization: Obtain an initial feasible pair of

flow vectors �x01�x02�. Set the iteration counter k to
zero.
(2) Solve a parametric, strongly monotone optim-

ization problem to find x∗
1�x

k
2� ∈�1.

(3) Given the solution x∗
1�x

k
2�, perform the update

xk+1
2  = xt

2 + sk
2d

k
2 , where dk

2 is the search direction,
given by

d2  = y2�x2�− x2 (36)

= Proj�2�G2
�x2−G−1

2 t2�x
∗
1�x2�� x2��− x2� (37)

and sk
2 is a step size obtained through an exact

line search, with respect to the gap function, along
direction dk

2 .
(4) If some stopping criterion is not met, then set

k = k+ 1 and return to Step 2.
This algorithm is referred to as a mixed descent
algorithm since it combines a convex optimization
problem for obtaining the optimal response x∗

1�x2�
with a descent procedure for updating x2.
Remark 3.10. The mixed descent method is a

straightforward, convergent algorithm for the multi-
class network equilibrium problem, and has the
further advantage that it requires little additional pro-
gramming if a solver for the single-class network
equilibrium problem is available.

Theorem 3.11. Under the stated assumptions, start-
ing from any feasible point �x01�x02�, the mixed descent
algorithm generates a well-defined and bounded sequence
��xk

1�xk
2�� for which every cluster point of the sequence

�xk
2� is the solution to VIP�t2�x

∗
1�x2�� x2���2�. Further-

more, the entire sequence ��xk
1�xk

2�� converges to the unique
solution of the VIP��t1�x1�x2�� t2�x1�x2����1 × �2�, i.e.,
VIP�t���.

Proof. Because the feasible set �2 is compact, the
iterates �xk

2� remain in a compact subset of �n2+ .
The closedness of the algorithmic map follows from
the use of an exact line search, along with the closed-
ness of the implicit mappings x2 �→ y2�x2� and x2 �→
x∗
1�x2�, where the latter follows from the continu-
ity of the mappings t2 and t1. The descent property
g2�x

∗
1�x

k+1
2 �� xk+1

2 � < g2�x
∗
1�x

k
2�� xk

2� is a direct conse-
quence of Theorem 3.9 and the use of an exact line
search. The desired result then follows from standard
convergence theory. �
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4. A Weaker Assumption: Partial
Nested Monotonicity

The previous results have been obtained under strong
assumptions that each nested problem be strongly
monotone. However, such a condition is unlikely to
hold in practice, as the solution set is not a singleton,
even in the presence of a single mode. Indeed, the
decomposition of the arc flow vector x into OD flow
vectors xk is not, in general, unique. To circumvent
that problem, we introduce a slightly weaker notion
of nested monotonicity and show that it preserves the
descent property of the algorithm. For simplicity of
notation, as before, we limit ourselves to a dual-class
problem. We recall that Ax is the arc flow vector cor-
responding to OD flows x, that t assumes the spe-
cial form t =AtF �Ax1�Ax2� and that the feasible set is
separable, i.e., � =�1×�2.
Definition 4.1 (Partial Nested Monotonicity).

The operator t is partially nested monotone if, and
only if, the following two conditions hold.
(1) The operator F1�y1�y2� is strongly monotone in

y1, uniformly in y2.
(2) The operator F2�Ax∗

1�y2�� y2� is strongly mono-
tone with respect to y2.
The first part of the definition specifies that, for

fixed arc flow vector y1, the delay mapping is strongly
monotone with respect to the arc flow vector y1.
The second part asserts that the nested operator t2
is strongly monotone with respect to arc flows of
Class 2. The next results adapt Lemma 3.2 and Theo-
rem 3.9 to partially nested monotone operators.

Lemma 4.2. If t is partially nested monotone, then the
reaction function x∗ and the operator t2�x

∗
1�x2�� x2� are both

Lipschitz continuous.

Proof. Let x12 and x22 be two feasible OD flow vec-
tors. By construction, we have〈

AtF2�Ax∗
1�x

1
2��Ax12�� x∗

1�x
1
2�− y

〉≤ 0 ∀y ∈�1	 (38)

Setting y = x∗
1�x

2
2�, we obtain〈

AtF2�Ax∗
1�x

1
2��Ax12�� x∗

1�x
1
2�− x∗

1�x
2
2�
〉≤ 0	 (39)

Symmetrically, we have〈
AtF2�Ax∗

1�x
2
2��Ax22�� x∗

1�x
2
2�− x∗

1�x
1
2�
〉≤ 0	 (40)

Let L2 denote the Lipschitz constant of the map-
ping F2, &2 its modulus of strong monotonicity with
respect to its first variable (index b) and set M =
maxx∈� �F2�Ax��, the maximum of the continuous
function F2 �A over the compact set � . From (40), we
obtain the relationships〈
F2�Ax∗

1�x
2
2��Ax22��Ax∗

1�x
2
2�−Ax∗

1�x
1
2�
〉

= 〈
F2�Ax∗

1�x
1
2��Ax22��Ax∗

1�x
2
2�−Ax∗

1�x
1
2�
〉

+ 〈
F2�Ax∗

1�x
2
2��Ax12−Ax22��Ax∗

1�x
2
2�−Ax∗

1�x
1
2�
〉
(41)

≥ 〈
F2�Ax∗

1�x
1
2��Ax22��Ax∗

1�x
2
2�−Ax∗

1�x
1
2�
〉

−ML2
∥∥Ax12−Ax22

∥∥·∥∥Ax∗
1�x

2
2�−Ax∗

1�x
1
2�
∥∥	 (42)

Now, adding (39) and (40) and making use of (42)
and the strong monotonicity of the mapping F2 with
respect to x1, we obtain that

&2

∥∥Ax∗
1�x

1
2�−Ax∗

1�x
2
2�
∥∥2

≤ML2
∥∥Ax12 −Ax22

∥∥ · ∥∥Ax∗
1�x

1
2�−Ax∗

1�x
2
2�
∥∥� (43)

which, after division by �Ax∗
1�x

1
2� − Ax∗

1�x
2
2��, yields

that both the total flow vector Ax∗
1�x2� and the opera-

tor t2�x
∗
1�x2�� x2� are Lipschitz continuous with respect

to x2. �

Lemma 4.3. If the operator t is partially nested mono-
tone, then the vector d2  = y2�x

∗
1�x2�� x2�− x2 is a descent

direction for the gap function g2.

Proof. Let &2 be the strong monotonicity modulus
of the function F2 with respect to x2. Following into
the steps of the proof of Theorem 3.9, we can write

g′
2�x

∗
1�x2�� x23d�

≤−〈
Dt2�x

∗
1�x2�� x2��y2�x2�− x2�� y2�x2�− x2

〉
(44)

=−〈
AtDF2�Ax∗

1�x2��Ax2�

·A�y2�x2�− x2�� y2�x2�− x2
〉

(45)

≤−&2�A�y2�x2�− x2��2	 (46)

By construction of y2�x2�, the gap function is negative,
unless x2 is solution of the variational inequality, of
course, in which case it is zero. Therefore,

〈
t2�x

∗
1�x2�� x2�� y2�x2�− x2

〉

+ 1
2

〈
y2�x2�− x2�G2�y2�x2�− x2�

〉
< 0	 (47)

Since G2 is positive definite, the second term is non-
negative and the first must be negative. Consequently,

〈
F2�Ax∗

1�x2��Ax2��A�y2�x2�− x2�
〉
< 0	 (48)

This implies that A�y2�x2�−x2� is nonzero and, accord-
ing to (46), that the direction d is a descent direction
with respect to the gap function. �

Corollary 4.4. Under the assumption of partial nested
monotonicity, the mixed descent method generates a
sequence of total flows converging to the equilibrium total
flow couple �Ax∗

1�x2��Ax∗
2�. Any commodity flow vector

compatible with �Ax∗
1�x2��Ax∗

2� is a solution of the multi-
class equilibrium problem.
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5. Numerical Results
The mixed descent method was implemented in
the Scilab programming environment. A projection
method was used to solve the single-class subproblem
of Step 2, as well as the direction finding subproblem
of Step 3. The algorithm converged rapidly and in
16 iterations satisfied the convergence criterion of
10−8, defined as the norm of the difference between
successive flow values. Note that, as the overall vari-
ational inequality can be expressed as a fixed-point
problem, the use of this convergence criterion is
appropriate.
The actual differences between successive iterates,

xk+1
2 − xk

2 is illustrated in Figure 4, where the upper
curve is the difference of successsive flow values for
class b on Arc 1, and the lower curve gives the differ-
ence between successive values on Arc 2. Note that
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the difference between successive iterates rapidly
approaches zero for both arcs (one from above, and
one from below). In Figure 5, the convergence crite-
rion; that is, the norm of this difference over both arcs
is presented: �xk+1

2 − xk
2�.

6. Conclusions
This paper has provided a theoretically conver-
gent method for solving problems belonging to an
important subclass of nonmonotone, asymmetric, net-
work equilibrium problems, under an assumption
that is weaker than the traditional one. This assump-
tion is related in a natural manner to the hierarchi-
cal structure of the problem that occurs when some
classes strongly influence the delays of other classes,
but not the converse. If the cost functions on all arcs
of the network assume a common form, then a check
of whether or not the property holds on the network
may be relatively easy to perform. Not all multiclass
travel cost mappings will satisfy the property. How-
ever, whenever it holds, simple and provably con-
vergent algorithms are available. We have provided
one convergent algorithm for this class of network
equilibrium problems, which is easily implementable
and permits the use of any existing code for solv-
ing the separable network equilibrium problem as a
subroutine.
Worthwhile topics for future study are the conse-

quences of these results within a bilevel framework;
that is, when the multiclass network equilibrium
problem lies at the lower level of a hierarchical opti-
mization problem, such as is the case in optimal pric-
ing or network design problems.
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