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Abstract This paper is concerned with the characterization of optimal strategies for a
service firm acting in an oligopolistic environment. The decision problem is formulated as
a leader-follower game played on a transportation network, where the leader firm selects a
revenue-maximizing price schedule that takes explicitly into account the rational behavior
of the customers. In the context of our analysis, the follower’s problem is associated with
a competitive network market involving non atomic customer groups. The resulting bilevel
model can therefore be viewed as a model of product differentiation subject to structural
network constraints.

Keywords: Pricing, Productivity and competitiveness, Revenue management, Economics,
Game theory

1. Introduction

In the context of deregulation, much attention is being paid to the design of managerial tools

for optimizing revenues. In the airline industry, a ‘Yield Management’ strategy (see McGill

and Van Ryzin 1999, Belobaba 1987) consists in addressing, concurrently or sequentially, four

interrelated issues: demand forecasting, pricing, seat allocation and overbooking. While

an optimization model that deals simultaneously with these issues cannot be realistically

considered, several attempts have been made at addressing them individually, one market at a
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time. However, the strong interconnections between markets, as well as the bilateral impacts

of pricing and seat allocation policies, which are often designed by separate departments

within an airline, point to the weaknesses of such disaggregate approaches.

In this paper, we consider a bilevel model of revenue management for an industry op-

erating within an oligopolistic environment characterized by a network structure and the

partition of demand into user groups, each group being endowed with its valuation of the

attributes. Although the model could be applied to various sectors of an economy (hotels,

manufacturing industry, etc.), we use as our base paradigm that of an airline whose aim is

to design a revenue maximizing strategy based on jointly optimal pricing and seat allocation

policies. Such a strategy takes explicitly into account the finite capacity of the leader’s fleet,

as well as the behaviour of each user group. This results in a strategy that discriminates

between customers, according to their willingness to pay for flights with high quality of

service or short duration. While we assume that the overall demand for transportation is

inelastic over the planning horizon, the demand specific to the leader airline is dependent on

its fare and seat allocation policies; in that sense, the model addresses, partially, the issue

of demand forecasting previously mentioned as one of the four key components of the ‘Yield

Management’ decision process.

Two of the model’s features have been widely studied in the economic literature (see

Martin 1993), namely product differentiation (Hotelling 1929, Gabszewicz and Thisse 1986)

and customer segmentation (Gabszewicz and Thisse 1979, Phlips and Thisse 1983), both

these features paving the way to price discrimination (Phlips 1983). The main goal of

this paper is to characterize the market structure resulting from the underlying network

topology, a result previously achieved only on a simple two-node network by Leurent (1993).

Our approach can also be viewed as a differential markets extension of the taxation model

of Labbé, Marcotte and Savard (1998).

Finally, the reader is referred to Loridan and Morgan (1996) for an analysis of the rela-

tionship between bilevel programs and Stackelberg (leader-follower) games.

The paper is structured as follows: in Section 2 we motivate and formulate a strategic

model of revenue management, whose mathematical properties are analyzed in Section 3,

and for which an algorithmic framework is developed Section 4.
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2. A product differentiation model

To illustrate the concepts introduced and analyzed in this paper, let us consider a system

composed of airlines (or alliances) competing for market share on overlapping networks.

Such a system, corresponding to the competitive market ‘Montreal – Shanghai’, is shown in

Figure 1.
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Figure 1: Structure of the flight market

In this network, the cities of Vancouver, Tokyo and New York correspond to connection

hubs, while the arcs represent the various flight legs. In this example, we select AC as the

leader company, which operates both a single leg flight to Vancouver and a connecting flight

to Shanghai, and set the travellers to be the followers. This company selects fares TMV on

the Montreal-Vancouver part of the trip and TV S on the transpacific leg, given fixed fare

schedules from its competitors. For ease of presentation, we assume that fares are associated

with legs although, in real life, they are associated with flights between origin and destination

nodes (see Côté et al. 2002 for the description of a flight-based model). The flight structure

offered by three competing companies over the Montreal – Shanghai market is specified in

Table 1.

Flight Airline Path Rate Travel time

1 UA+JAL Montreal-New York-Tokyo-Shanghai $1320 36 hours
2 AC+CA Montreal-Vancouver-Shanghai TMV +$720 26 hours
3 AC+AC Montreal-Vancouver-Shanghai TMV + TV S 18 hours

Table 1: Flight structure for the Montreal – Shanghai market (prices in $CAN)
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The revenue of AC is clearly dependent on the fare structure within the system and on

the demand for the entire flight composed of two legs. The demand for a given flight may

be interpreted as the reaction to the market’s fare structure and the attractiveness of the

flight with respect to competing proposals. In the above simplistic example, flights are only

differentiated by their respective duration and number of legs (i.e., number of connections

plus one). In real life, passengers select a product endowed with several attributes. While

price and time are the prime components of a given product, others have to be considered

as well, such a the choice of a cabin (economy, business or first class) and of various features

associated with a ticket (refundable or not, advance purchase, minimum stay, etc.). This

results in as many as 25 products (‘Fare Basis Codes’) for a given flight, for which a number

of aircraft seats has to be assigned. For notational simplicity, we shall not consider this seat

allocation problem, and assume that all seats of the aircraft share the same attributes.

On the demand side, we assume that each traveller is characterized by a trade-off value

between time and money, which we denote by the letter α. If Ta and Ca are, respectively,

the fare and the travel time associated with leg a of some flight, then the perceived disutility

(cost) GCa of a traveller of the ‘group’ having VOT (Value of Time) α is

GCa = Ta + αCa

where α is a continuous random variable with density ψw(α) that could depend on the origin-

destination w. Natural and important extensions of this concept, which are not investigated

in this paper, are nonlinear valuations of time and market segmentation of the VOT.

Faced with a supply for transportation from its origin node to its destination node, a

customer selects the flight that minimizes its own disutility. Due to the continuity assumption

on the distribution of α, the choice of the optimal flight is nonambiguous, with the exception

of a finite number of values of the parameter α, whenever travel times for a given O-D pair

are distinct (see Marcotte and Zhu 1997). The demand for a given flight is obtained by

integrating the density function ψw over the set of α values (intervals, actually) for which

that flight is optimal. This yields a continuous and piecewise differential demand mapping.

Even on a problem of very small size, as that considered above, the choice of revenue-

maximizing fares TMV and TV S is far from obvious, as it depends on

• the shape of the density function ψw,
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• the network structure (a high value of TMV might make sense on the Montreal-Vancouver

market but deter customers headed for China),

• the attributes (fare and duration) of the competing flights.

The algorithmic issues related to the above three points will be addressed in Section 4.

The above example, where airline flights correspond to ‘products’, is a case of horizontal

product differentiation (see Krouse 1990) that takes place on a transportation network, hence

a nontrivial structure, and where a service is realized by a sequence of ‘legs’ that make up

a path of the network, i.e., a ‘flight’. Before giving a formal statement of the mathematical

model, we set the notation, in the context of an airline network.

G = (N,A) service network
N set of nodes (origins, destinations, connecting nodes) of G

A ⊂ N ×N set of arcs (legs) of G
A1 ⊂ A set of arcs (legs) controlled by the leader

A2 = A\A1 set of arcs controlled by the competition
W ⊂ N ×N set of origin-destination pairs (flights)

Kw set of flights (network paths) connecting the origin-destination pair w ∈W
dw demand associated with an origin-destination w ∈W
Ca flight duration on leg a

Ta, a ∈ A2 fare on leg a (competition)
ψw(α) density of VOT parameter α for origin-destination pair w ∈W
αmax maximum value for the VOT parameter.

The decision variables for both the leader and the followers are:

xa(α) flow density (group α) on leg a
xa total flow on leg a: xa =

∫ αmax

0 xa(α) dα
hk(α) flow density (group α) on path k

hk total flow on path k: hk =
∫ αmax

0 hk(α) dα
Ta, a ∈ A1 fare on leg a (leader)

In this system, the demand side consists of nonatomic consumers differentiated by their re-

spective VOT parameter α. The supply side consists of products/services that are relatively

close substitutes to each other, and are represented by paths in the transportation network.

Consumers are assumed to make indivisible and mutually exclusive purchases of the products

or services.

The origin to destination (O-D) demands give rise to arc flows xa(α), a ∈ A and the total

generalized trip cost is
∫ ∞

0

∑

a∈A

(Ta + αCa)xa(α)dα.

5



For each origin-destination pair w ∈W , flow feasibility is characterized by the conservation

and nonnegativity constraints

∑

p∈Kw

hp(α) = dwψw(α) ∀w ∈W, ∀α

hp(α) ≥ 0 ∀p ∈ Kw, ∀α.

The corresponding arc flows are obtained from the balance equations:

xa(α) =
∑

w∈W

∑

p∈Kw

δaphp(α) ∀a ∈ A, ∀α (1)

where

δap =

{

1 if arc a belong to path p
0 otherwise

(2)

are the coefficients of the arc – path incidence matrix ∆, i.e., in matrix form: x(α) = ∆h(α).

Based on this notation the sets of path (respectively arc) flow density vectors take the form

H(α) = {h(α) ≥ 0 :
∑

p∈Kw

hp(α) = dwψw(α), w ∈W} (3)

X(α) = ∆H(α) = {x(α) : ∃h(α) ∈ H(α) : x(α) = ∆h(α)}. (4)

For each value of the parameter α, the flow density x(α) solves the mathematical program

(see Marcotte 1999)

min
x(α)∈X(α)

∫ ∞

0

∑

a∈A

(Ta + αCa)xa(α) dα. (5)

By regrouping the fares and delays into respective vectors T and C, we obtain the infinite-

dimensional optimization problem

min
x∈X

〈T + αC, x〉 (6)

where X is the set of square-integrable vector functions defined as

X = {x ∈ {L2[0, αmax)}
|A| : x(α) ∈ X(α), ∀α}, (7)

where 〈·, ·〉 denotes the scalar product in {L2[0, αmax)}
|A|:

〈u, v〉 =
∫ αmax

0
〈u(α), v(α)〉 dα.

This demand assignment problem with product differentiation corresponds to a parametric

infinite dimensional linear program of the bottleneck type (see Anderson and Nash 1987). It
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will be analyzed in Section 3. At the upper level, the leader determines its profit-maximizing

strategic policy by solving the mathematical program

max
T1

〈T1, x1(T1)〉, (8)

where T1 = (Ta)a∈A1
and x1(T1) is the demand for the products or services offered by the

leader firm. For a given feasible policy T1, x1(T1) is the partial solution, with respect to the

arcs controlled by the leader, of the demand assignment problem (5). We can now formulate

the strategic policy design problem as the bilevel program

max
T1≥0

〈T1, x1〉

min
x,h

∫ αmax

0

∑

a∈A

(Ta + αCa)xa(α)dα

xa(α) =
∑

w∈W

∑

p∈Kw

δakhp(α), ∀a ∈ A, ∀α (9)

∑

p∈Kw

hp(α) = dwψw(α), ∀w ∈W, ∀α

hp(α) ≥ 0 ∀p ∈ Kw, ∀w ∈ W, ∀α

(10)

In this vertical format, it is understood that x1 is the partial solution of the lower level

minimization problem, parameterized by the price vector T1.

3. The demand (lower level) assignment problem

In this section, we analyze the structure of the demand assignment problem. To this end,

we express the incidence matrix ∆ as

∆ =

(

B1
1 B2

1 . . . Bw
1 . . . B

|W |
1

B1
2 B2

2 . . . Bw
2 . . . B

|W |
2

)

, (11)

where submatrices Bw
i are of dimension |Ai| × |Kw|. Based on this notation, the generalized

path cost vector is given by the affine function

∆t(T + αC) = D(T1) + αG (12)

with D(T1) = ∆tT and G = ∆tC. Using this notation, the demand assignment problem

that determines the market shares of the services (paths) reduces to

min
h∈H

〈D(T1) + αG, h〉. (13)
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Restricting our attention to a single path p ∈ Kw we express D(T1) as the affine function

Dp(T1) = 〈bwp
1 , T1〉 + 〈bwp

2 , T2〉,

where bpw
i is the pth row of the transposed matrix (Bw

i )t. From now on we will, for notational

simplicity, only consider a single origin and, without loss of generality, assume that the

demand is equal to one.

We now introduce an order relation among the paths that will be essential in character-

izing market shares.

Definition 3.1 A path p is dominated at T1 if, for all nonnegative values of α:

Dp(T1) + αGp > min
q∈K

{Dq(T1) + αGq}.

Conversely, if there exists a value α for which

Dp(T1) + αGp ≤ min
q∈K

{Dq(T1) + αGq},

we say that the path p is undominated.

If a path is dominated at T1, clearly it is dominated in a neighborhood around T1.

Definition 3.2 A path p is called weakly undominated at T1 if there exists a unique value

of α such that

Dp(T1) + αGp ≤ min
q∈K

{Dq(T1) + αGq},

A path p which is undominated but not weakly undominated is strongly undominated.

We will see that, if a path is strongly undominated at T1, then there exist breakpoints (αp(T1)

and αp+1(T1)) such that the dominance relationship holds strongly over the open interval

(αp(T1), αp+1(T1)), and weakly at the endpoints of the interval.

Throughout the paper, we will make the following mild assumption, which rules out

degeneracy situations (infinite profit, overlapping path cost functions, etc).

Assumption H0

(i) Gp 6= Gq whenever p 6= q.

(ii) For any T1 ≥ 0, there exists at least one strongly undominated path.
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(iii) There exists a value αmax such that ψ(α) = 0 whenever α ≥ αmax.

The dominance relationship allows us to characterize the market structure at a price

vector T1, independently of the actual market shares, in the following way:

Definition 3.3 Associated with a price vector T1, we associate the market structure (SU ,WU ,D)

as the triplet composed of the sets of strongly undominated, weakly undominated and domi-

nated paths, respectively.

Let M denote the number of strongly undominated paths. We set SU = {pik}k∈[1..M ] ⊆

K, WU = {pjk
} and D = {plk} and, without loss of generality, assume that the scalars Gp

are sorted in decreasing order, i.e.,

Gi1 > Gi2 > . . . > GiM .

Note that, in all rigour, one should have written Gpik
in the above. Next, we introduce

αik = −
Dik+1

(T1) −Dik(T1)

Gik+1
−Gik

, k = 1, . . . ,M − 1,

αi0 = 0, (14)

αiM = αmax.

One possible configuration is illustrated in Figure 2 where, for a given value of the fare

vector T1, paths 1, 2 and 3 are strongly undominated, path 5 is dominated and path 4 is

weakly undominated. The market shares of each path are obtained by integrating the density

function ψ over the interval where this path achieves the lowest generalized cost.

The next theorem provides an analytic characterization of the market structure, for a

given price vector T .

Theorem 3.1 Under Assumption H0, the system has the market structure (SU ,WU ,D) at

T1 if and only if the following conditions hold

(i) 0 = αi0 < αi1 < αi2 < . . . < αiM−1
< αiM = αmax.

(ii) If pj ∈ D, then either
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Figure 2: Market structure

– inequality Gik > Gj > Gik+1
holds for some index k ∈ [1..M − 1], with

βjk
> αik > βjk+1

(15)

where βjk
= −

Dj(T1)−Dik
(T1)

Gj−Gik

and βjk+1
= −

Dj(T1)−Dik+1
(T1)

Gj−Gik+1

;

– inequality GiM > Gj holds, and

βj = −
Dj(T1) −DiM (T1)

Gj −GiM

> αiM ; (16)

– inequality Gj > Gi1 holds, and

βj = −
Dj(T1) −Di1(T1)

Gj −Gi1

< 0.

(iii) If pj ∈ WU , then equality holds for either (15) or (16).

Proof.

• NECESSITY
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(i) From the labelling of the strongly undominated paths, one has:

Di1(T1) < Di2(T1) < . . . < DiM (T1).

If αik−1
> αik for some k ∈ [1..M − 1] then

−
Dik+1

(T1) −Dik(T1)

Gik+1
−Gik

< −
Dik(T1) −Dik−1

(T1)

Gik −Gik−1

.

Let

α̂ = −
Dik+1

(T1) −Dik−1
(T1)

Gik+1
−Gik−1

By construction, α̂ ∈ [αik , αik−1
]. It follows that

Dik(T1) + αGik > Dik−1
(T1) + αGik−1

for α ≤ α̂

Dik(T1) + αGik > Dik+1
(T1) + αGik+1

for α > α̂,

which implies that path pik is dominated, a contradiction.

If αik−1
= αik holds, then

Dik(T1) + αGik > Dik−1
(T1) + αGik−1

for α < αik−1
= αik .

Dik(T1) + αGik > Dik+1
(T1) + αGik+1

for α > αik , which implies that path pik is weakly undominated, a contradiction.

(ii) Case 1

If βjk
≤ αik , i.e.,

Dik(T1) −Dj(T1)

Gj −Gik

≤ αik

then we have

Dik(T1) −Dj(T1) ≥ (Gj −Gik)αik

or, equivalently,

Dik(T1) + αikGik ≥ Dj(T1) + αikGj,

which implies that pj is undominated, a contradiction. The reverse inequality (15)

follows from a similar argument.
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Case 2

In this case, we have that GiM > Gj. If

βj = −
Dj(T1) −DiM (T1)

Gj −GiM

≤ αiM , (17)

then DiM (T1) −Dj(T1) ≥ αiM (Gj −GiM ), i.e., DiM (T1) + αiMGiM ≥ Dj(T1) + αiMGj,

a contradiction.

Case 3

The proof is similar to that of (ii) (Case 2).

(iii) Using the results of (i) and (ii), the proof of (iii) is readily obtained.

• SUFFICIENCY

(i) From the assumption, we observe that

DiM (T1) + αik−1
GiM > . . . > Dik+1

(T1) + αik−1
Gik+1

> Dik(T1) + αik−1
Gik

and

DiM (T1) + αikGiM > . . . > Dik+1
(T1) + αikGik+1

= Dik(T1) + αikGik .

It follows that

Dij(T1) + αGij > Dik(T1) + αGik , j ∈ [k + 1..M ] for ∀α ∈ (αik−1
, αik).

On the other hand, we have

Di1(T1) + αGi1 > Di2(T1) + αGi2 for α > αi1

Di2(T1) + αGi2 > Di3(T1) + αGi3 for α > αi2

...

Dik−1
(T1) + αGik−1

> Dik(T1) + αGik for α > αik−1
.

The above inequalities imply that pik is strongly undominated.

(ii)
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Case 1

If βjk
> αik > βjk+1

, then

Dj(T1) + αGj > Dik(T1) + αGik for α < αik < βjk

Dj(T1) + αGj > Dik+1
(T1) + αGik+1

for α > αik > βjk+1
.

This implies that pj is dominated.

Case 2

If βj > αiM , i.e., (Dj(T1) −DiM (T1))/(GiM −Gj) > αiM , we have

Dj(T1) + αGj > DiM (T1) + αGiM for all α ≤ αiM

and path pj is dominated.

Case 3

The proof is similar to that of Case 2.

(iii) Obvious. This completes the proof. 2

The analysis of the market structure allows to perform sensitivity analysis of the lower

level problem with respect to the price vector T1. First, we investigate the regions where the

market structure is invariant:

ΛSWD = {T1 ≥ 0 : pik ∈ SU , k ∈ [1..M ]; pjk
∈ WU , k ∈ [1..N ]; plk ∈ D, k ∈ [1..S]} (18)

It follows from Theorem 3.1 that the set ΛSWD is a polyhedron where all demand is assigned

to a fixed set of dominated paths that share the total market. Customers are associated with

segments [αi−1, αi] and the market share of a strongly undominated path pi is obtained by

integrating the density function ψ over the corresponding interval. Within an interval, the

generalized cost of customers are all minimized by the same strongly undominated path pi.

Geometrically, the whole strategic policy space R|A1| can be partitioned into regions, each

region having its own structure, i.e.,

R|A1| =
⋃

ΛSWD. (19)
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Figure 3: Market structure for the Montreal - Shanghai example

Figure 3 illustrates the partition corresponding to the Montreal – Shanghai market presented

in the introduction. Each region Λi is characterized by its set of undominated paths or,

equivalently, by the set of paths with null flows. In the interior of the regions, all undominated

paths are strongly undominated. For instance, all paths are undominated in region Λ0 while,

in the interior of Λ6, only path p1 is strongly undominated. In this example, the density

function ψ is uniform over the interval [0, αmax] and any point on the dotted line is an optimal

solution of the pricing problem.

4. Sensitivity analysis of demand side

In this section, we study the sensitivity of the lower level solution to the price vector T1. To

this end, we need to solve, for each value of α, the parameterized problem

LP(T1, α) : min
h(α)∈H(α)

〈D(T1) + αG, h(α)〉.

Let M(T1) denote the number of strongly undominated paths at T1. If the density function

ψ is strictly positive over the interval [0, αmax), the (almost everywhere) unique solution

of LP(T1, α) is h(α) = Y i(α)ψ(α), where Y i(α) is the extremal point of the simplex: {y :
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∑

i∈[1..M(T1)] yi = 1, yi ≥ 0} associated with i(α) that satisfies

Di(α)(T1) + αGi(α) = min
j∈[1..M(T1)]

Dj(T1) + αGj. (20)

Note that this point is unique except at the critical points αi who are in finite number.

Theorem 4.1 For fixed T1 ∈ ΛSWD, the solution of the infinite-dimensional lower level

program is unique (almost everywhere) and given by:

h(α) = Y ikψ(α), for α ∈ [αik−1
, αik), k ∈ [1..M ]

and the total path flow vector h(T1) is unambiguously defined.

Proof. The value function φ(α) = Di(α)(T1)+αGi(α) is the piecewise affine concave function

of its scalar argument α which interpolates the points

(0, φ(0)), (αi1 , φ(αi1)), . . . , (αiM−1
, φ(αiM−1

)).

On each subinterval (αik−1
, αik) its slope is equal to Gik . In the interior of each subinterval,

the optimum of LP(T1, α) is achieved at an extreme point Y ik of the simplex. At a breakpoint

αik , the optimum of LP(T1, α) is achieved at either one of the extreme points Y j, say j ∈ Jk,

where Jk denotes the index set of extreme points; in that case h(αik) can be arbitrarily set to

ψ(αik) times a convex combination of the Y j’s, for j in Jk. Since the number of breakpoints

is finite, the total path flow h(T1) is unique. 2

Under Assumption H0 and the market structure (SU ,WU ,D) at T1 exactly one of the

following three inequalities must hold for a given undominated path pj:

1. Giu > Gj > Gil ,

where l = arg min{k|Gik < Gj, pik ∈ SU} and u = arg max{k|Gik > Gj, pik ∈ SU};

2. GiM > Gj for piM ∈ SU ;

3. Gj > Gi1 for pi1 ∈ SU .

We will refer to paths piu and pil (or piM , pi1) as the SU (respectively left and right) neighbors

of pj.

The characterization of WU neighbors is a little more involved. Let

Lu = {k ∈ WU|Giu > Gk > Gj}.
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If Lu is nonempty, we define the left WU neighbor of path pj as the path pju
such that

Gju
= min{Gk|k ∈ Lu}.

Symmetrically, a right WU neighbor of path pj satisfies

Gjl
= max{Gk|k ∈ Ll}

whenever the set Ll = {k ∈ WU|Gj > Gk > Gil} is nonempty.

The notion of neighbor is key in deriving results about the local behaviour of the revenue

function. For simplicity, we analyze its behaviour in the case where the set of WU neighbors

is empty, and then proceed with some remarks about the degenerate cases. In the course

of the proof, one may obviously discard dominated paths, with the exception of the path pj

under consideration.

Theorem 4.2 Assume that the market structure (SU ,WU ,D) holds at T1 and let all paths

be strongly undominated, with the possible exception of path pj. Then, under Assumption H0,

we have:

(i) If path pj is strongly undominated and a ∈ A1, then hpj
(T1) is partially differentiable

with respect to Ta.

(i-1) If a ∈ pj, then hpj
has a nonpositive partial derivative with respect to Ta; moreover,

if arc a belongs to all SU neighbors of pj, then
∂hpj

(T1)

∂Ta
= 0; otherwise

∂hpj
(T1)

∂Ta
< 0.

(i-2) If a 6∈ pj, then hpj
has a nonnegative partial derivative with respect to Ta; moreover

if arc a does not belong to all SU neighbors of pj, then
∂hpj

(T1)

∂Ta
= 0; otherwise

∂hpj
(T1)

∂Ta
> 0.

(ii) If path pj is weakly undominated and a ∈ A1, then hpj
(T1) is partially side differentiable

with respect to Ta.

(ii-1) If a ∈ pj, then hpj
has nonnegative partial side derivatives; moreover if arc a

belongs to all SU neighbors of pj, then
∂hpj

(T1)

∂Ta
= 0; otherwise

∂−hpj
(T1)

∂Ta
> 0 and

∂+hpj
(T1)

∂Ta
= 0.

(ii-2) If a 6∈ pj, then pj has nonpositive partial side derivatives; moreover, if arc a does

not belong to the SU neighbors of pj, then the partial derivatives of hpj
(T1) are

equal to zero; otherwise
∂+hpj

(T1)

∂Ta
< 0 and

∂−hpj
(T1)

∂Ta
= 0.
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(iii) If path pj ∈ D and a ∈ A1, then hpj
(T1) is partially differentiable with respect to Ta,

and
∂hpj

(T1)

∂Ta
= 0.

Proof.

(i) Let pj ∈ SU at T1 and assume that j = ik. The demand for path pj is given by

hpj
(T1) = hpik

(T1) =
∫ αik

(T1)

αik−1
(T1)

ψ(α) dα, k ∈ [1..M ] (21)

with

αik(T1) = −
Diu(T1) −Dik(T1)

Giu −Gik

, k ∈ [1..M − 1] (22)

αiM = αmax; (23)

αik−1
(T1) = −

Dil(T1) −Dik(T1)

Gil −Gik

, k ∈ [1..M − 1] (24)

αi0 = 0. (25)

Since αik(T1) is a linear function of T1 then, for sufficiently small perturbation

δT1 = (0, . . . , 0, (δT1)a, 0 . . . , 0)t,

the market structure (18) holds at T1 + δT1, i.e.,

0 = αi0 < αi1(T1 + δT1) < αi2(T1 + δT1) < . . . < αiM−1
(T1 + δT1) < αiM = αmax (26)

and the flow on path pj is given by

hpj
(T1 + δT1) =

∫ αik
(T1+δT1)

αik−1
(T1+δT1)

ψ(α) dα, k ∈ [1..M ]. (27)

Therefore

∂hpj
(T1)

∂Ta

=
∂αik(T1)

∂Ta

ψ(αik(T1)) −
∂αik−1

(T1)

∂Ta

ψ(αik−1
(T1)) (28)

which settles cases (i-1) and (i-2).

(ii) Let pj be weakly undominated. This implies that hpj
(T1) = 0. We will only give a proof

for the case where the inequality Giu > Gj > Gil holds for some k ∈ [1..M − 1], since a

similar argument is valid for the cases where GiM > Gj or Gj > Gi1 .
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• Case (ii-1)

Let a ∈ pj. If arc a belongs to all SU neighbours of pj, then hpj
(T1 + δT1) = 0.

Otherwise

hpj
(T1 + δT1) =

∫ βjk+1
(T1+δT1)

βjk
(T1+δT1)

ψ(α)dα (29)

where

βjk
(T1 + δT1) = −

Dj(T1 + δT1) −Dil(T1 + δT1)

Gj −Gil

(30)

and

βjk+1
(T1 + δT1) = −

Dj(T1 + δT1) −Diu(T1 + δT1)

Gj −Giu

. (31)

From (29)-(31), the desired results follows.

• Case (ii-2).

Let a 6∈ pj. If (δT1)a ≤ 0 or (δT1)a > 0 and a is neither in pik+1
nor in pik , then

hpj
(T1 + δT1) = 0. Otherwise (29)-(31) is still valid and the results holds.

(iii) If pj is dominated, then hpj
(T1) = hpj

(T1 + δT1) = 0 for any sufficiently small (δT1)a,

i.e.,
∂hpj

(T1)

∂Ta
= 0 for all a ∈ A1. 2

Corollary 4.1 Under the assumptions of Theorem 4.2, the path flow functions hpj
are locally

Lipschitz continuous with respect to T1.

Proof. In the proof of Theorem 4.2, we showed that every breakpoint αik(T1) and βjk
(T ) is

linear in T1 and that the partial side derivatives are bounded. It follows that the path flow

hj(T1), j ∈ K is Lipschitz continuous on some neighborhood of T1. 2

In the last part of this section, we consider the case where pj ∈ SU and the inequality

Gil > Gjl
> Gj > Gju

> Giu holds. For simplicity, only one pair of WU is considered. Note

that the demand of pj at T1 is given by (29). Following a small perturbation δT1, the market

structure (18) at T1 + δT1 is modified, and the flow on path pj becomes

hpj
(T1 + δT1) =

∫ αu(T1+δTa)

αl(T1+δTa)
ψ(α) dα (32)

where the values of the new breakpoints αu(T1 + δTa) and αl(T1 + δTa) are given in Table 2

for several cases. In the first three columns, a ‘1’ indicates that arc a belongs to the relevant
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(T1) αik(T1)

pju

Figure 4: Sensitivity of the market structure

path. From Figure 4, it is clear that the market structure is modified if only a ∈ pj. Once

sensitivity of the breakpoints is obtained, the partial (side) derivative of the path flow hpj

with respect to Ta readily follows:

∂hpj
(T1)

∂Ta

=
∂αu(T1)

∂Ta

ψ(αu(T1)) −
∂αl(T1)

∂Ta

ψ(αl(T1)). (33)
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case a ∈ pj a ∈ pil a ∈ pjl
δTa αl(T1 + δTa)

∂αl

∂Ta

[a ∈ piu ] [a ∈ pju
] [αu(T1 + δTa)] [∂αu

∂Ta
]

1 1 1 1 +/− αik−1
(T1) 0 αik(T1) 0

2 1 1 0 + αik−1
(T1) −

δTa

Gj −Gjl

− 1
Gj −Gjl

αik(T1) −
δTa

Gj −Gju

− 1
Gj −Gju

3 1 1 0 − αik−1
(T1) 0 αik(T1) 0

4 1 0 1 + αik−1
(T1) −

δTa

Gj −Gil
− 1
Gj −Gil

αik(T1) −
δTa

Giu −Gj
− 1
Giu −Gj

5 1 0 1 − αik−1
(T1) −

δTa

Gj −Gjl

− 1
Gj −Gjl

αik(T1) −
δTa

Gj −Gju

− 1
Gj −Gju

6 1 0 0 + αik−1
(T1) −

δTa

Gj −Gjl

− 1
Gj −Gjl

αik(T1) −
δTa

Gj −Gju

− 1
Gj −Gju

7 1 0 0 − αik−1
(T1) −

δTa

Gj −Gil
− 1
Gj −Gil

αik−1
(T1) −

δTa

Gju
−Gj

− 1
Gju

−Gj

8 0 0 0 +/− αik−1
(T1) 0 αik(T1) 0

9 0 0 1 + αik−1
(T1) 0 αik(T1) 0

10 0 0 1 − αik−1
(T1) −

δTa

Gjl
−Gil

− 1
Gjl

−Gil
αik(T1) −

δTa

Gj −Gju

− 1
Gj −Gju

11 0 1 1 + αik−1
(T1) −

δTa

Gj −Gil
− 1
Gj −Gil

αik(T1) −
δTa

Gj −Gju

− 1
Gju

12 0 1 1 − αik−1
(T1) −

δTa

Gj −Gjl

− 1
Gj −Gjl

αik(T1) −
δTa

Gj −Giu
− 1
Gj −Giu

13 0 1 0 + αik−1
(T1) 0 αik(T1) 0

14 0 1 0 − αik−1
(T1) −

δTa

Gj −Gil
− 1
Gj −Gil

αik(T1) −
δTa

Giu −Gj
− 1
Giu −Gj

Table 2: Price sensitivity of demand function
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5. A piecewise optimization strategy

Based on the sensitivity results of Section 4, it is possible to solve the pricing problem

by standard descent methods, for a given market structure. If one denotes by x(T1) and

h(T1) the arc and path flow vectors that correspond to a price schedule T1, the leader firm

maximizes its revenue by solving the unconstrained mathematical program

max
T1

f(T1) = 〈T1, x1(T1)〉 = 〈B1T1, h(T1)〉

Restricted to a given area Λi of the market structure (SU ,WU ,D), the objective function

takes the form

fΛi
(T1) = 〈B1T1, h(T1)〉

=
M
∑

k=1

〈bik1 , T1〉hik(T1)

= 〈bi11 , T1〉
∫ αi1

(T1)

0
ψ(α) dα+ 〈bi21 , T1〉

∫ αi2
(T1)

αi1
(T1)

ψ(α) dα

+ . . .+ 〈biM1 , T1〉
∫ αiM

(T1)

αiM−1
(T1)

ψ(α) dα

= 〈bi11 − bi21 , T1〉
∫ αi1

(T1)

0
ψ(α) dα+ 〈bi21 − bi31 , T1〉

∫ αi2
(T1)

0
ψ(α) dα

+ . . .+ 〈b
iM−1

1 − biM1 , T1〉
∫ αiM−1

(T1)

0
ψ(α) dα+ 〈biM1 , T1〉.

If one sets

gj(T1) = 〈b
ij−1

1 − b
ij
1 , T1〉

∫ αij−1
(T1)

0
ψ(α) dα, j ∈ [2..M ],

the gradient vector and Hessian matrix of the objective take the respective forms

∇gj(T1) = (b
ij
1 − b

ij−1

1 )
∫ αij−1

(T1)

0
ψ(α) dα+ ∇αij−1

(T1)〈b
ij
1 − b

ij−1

1 , T1〉ψ(αij−1
(T1)),

∇2gj(T1) = 2
(b

ij
1 − b

ij−1

1 )t(b
ij
1 − b

ij−1

1 )

Gij −Gij−1

ψ(αij−1
(T1))

+∇αij−1
(T1)(∇αij−1

(T1))
t〈b

ij−1

1 − b
ij
1 , T1〉ψ

′(αij−1
(T1))

=
(b

ij
1 − b

ij−1

1 )t(b
ij
1 − b

ij−1

1 )

Gij −Gij−1

[

2ψ(αij−1
(T1)) +

〈b
ij−1

1 − b
ij
1 , T1〉ψ

′(αij−1
(T1))

Gij −Gij−1

]

.

A sufficient condition for the concavity of the profit function is that, for every index j, the

matrix ∇2gj(T1) be negative semidefinite. This condition will be satisfied if either
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1. The density function ψ is uniform over the interval [0, αmax], i.e.,

ψ =

{

1
αmax

if α ∈ [0, αmax],

0 otherwise.

2. ψ(α) is nondecreasing and 〈b
ij−1

1 − b
ij
1 , T1〉 < 0 for j ∈ [2..M ] and T1 ∈ Λ.

Since αij is an affine function of T1, the profit function f(T1) is piecewise concave whenever

one of the above conditions holds. If the market structure is known, i.e., R|A1| =
⋃

i Λi, the

optimal price schedule can be obtained by solving a finite set of mathematical programs:

max
i

max
T1∈Λi

fΛi
(T1) (34)

where, in the uniform case, the objective functions take the form

fΛi
(T1) =

1

αmax

{〈bi11 − bi21 , T1〉αi1 + 〈bi21 − bi31 , T1〉αi2 + . . .+ 〈b
iM−1

1 − biM1 , T1〉αiM−1
} + 〈biM1 , T1〉.

However, by adding the equalities

〈bi11 − bi21 , T1〉 = (Gi2 −Gi1)αi1 − 〈bi12 − bi22 , T2〉

〈bi21 − bi31 , T1〉 = (Gi3 −Gi2)αi2 − 〈bi22 − bi32 , T2〉
...

〈b
iM−1

1 − biM1 , T1〉 = (GiM −GiM−1
)αiM−1

− 〈b
iM−1

2 − biM2 , T2〉.

one obtains 〈biM1 , T1〉 = 〈bi11 , T1〉+ 〈bi12 − biM2 , T2〉− [(Gi2 −Gi1)αi1 + . . .+(GiM −GiM−1
)αiM−1

]

and, finally, the quadratic expression

fΛi
(T1) =

1

αmax

{

(Gi2 −Gi1)
(

αi1 −
αmax +

〈b
i1
2
−b

i2
2

,T2〉

Gi2
−Gi1

2

)2
+ . . .

+(GiM −GiM−1
)
(

αiM−1
−
αmax +

〈b
iM−1

2
−b

iM
2

,T2〉

GiM
−GiM−1

2

)2

−
1

4

M−1
∑

j=1

(Gij+1
−Gij)

(

αmax +
〈b

ij
2 − b

ij+1

2 , T2〉

Gij+1
−Gij

)2}

+〈bi11 , T1〉 + 〈bi12 − biM2 , T2〉.

Hence the functions fΛi
(T1) are differentiable concave quadratic functions that can be max-

imized by the steepest ascent algorithm or, on networks of moderate sizes, is amenable to

conjugate gradient or quasi-Newton methods.
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6. Back to the Air Canada example

In the introductory example of Section 2, there are three flights (paths) with respective

generalized costs:

p1 = 1320 + 36α

p2 = TMV + 720 + 26α

p3 = TMV + TV S + 18α.

Seven market structures correspond to seven regions {Λi}
6
i=0 in the Euclidian plane (see

Figure 3). We now proceed to analyze each region, assuming that total demand is equal

to 1 000 passengers and that the density function is uniform with maximal VOT equal to

αmax = 90. Calculations, albeit straightforward, are tedious.

• Region 0 (Main region)

This corresponds to the market structure where all services (products, flights) are

competitive, i.e., in the interior of its region, all flights carry positive flow. It is

described as

Λ0 = {TMV ≥ 0, TV S ≥ 0 : 600 ≤ TMV , 4TMV − 5TV S + 1200 ≤ 0, TV S ≤ 1440}.

The profit function in this area is

fΛ0
(T1) = 1000

1

3600
(−4T 2

MV + 6000TMV − 5T 2
V S + 7200TV S),

whose maximum f ∗ ≈ $1 334 000 is achieved when T ∗
MV = $683 and T ∗

V S = $787.

• Region 1: Λ1 = {TMV ≥ 0, TV S ≥ 0 : 600 ≤ TMV ≤ 1500, TV S ≥ 1440}, hp3
= 0

– profit function: fΛ1
(T1) = 10

9
(−T 2

MV + 1500TMV )

– optimal profit: f ∗ = $625 000

– optimal solution: T ∗
MV = $750 T ∗

V S ≥ $1 440

• Region 2: Λ2 = {TMV ≥ 0, TV S ≥ 0 : TMV ≤ 600, TV S ≥ 1440}, hp1
= hp3

= 0

– profit function: fΛ2
(T1) = 1000TMV

– optimal profit: f ∗ = $600 000
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– optimal solution: T ∗
MV = $600 T ∗

V S ≥ $1 440

• Region 3: Λ3 = {TMV ≥ 0, TV S ≥ 0 : TMV ≤ 600, 720 ≤ TV S ≤ 1400}, hp1
= 0

– profit function: fΛ3
(T1) = 1000 × 1

720
(−T 2

MV + 1440TV S) + TMV

– optimal profit: f ∗ = $1 320 000

– optimal solution: T ∗
MV = $600 T ∗

V S = $720

• Region 4: Λ4 = {TMV ≥ 0, TV S ≥ 0 : TMV + TV S ≤ 1320, TV S ≤ 720}, hp1
= hp2

= 0

– profit function: fΛ4
(T1) = 1000(TMV + TV S),

– optimal profit: f ∗ = $1 320 000

– optimal solution: Any combination in Λ4 such that T ∗
MV + T ∗

V S = $1 320

• Region 5: Λ5 = {TMV ≥ 0, TV S ≥ 0 : 1320 ≤ TMV +TV S ≤ 2940, 4TMV −5TV S+1200 ≤

0}, hp2
= 0

– profit function: fΛ5
(T1) = 1000 1

1620
(−(TMV + TV S)2 + 2940(TMV + TV S))

– optimal profit: f ∗ ≈ $1 334 000

– optimal solution: Any combination in Λ5 such that T ∗
MV + T ∗

V S = $1 470

• Region 6: Λ6 = {TMV ≥ 0, TV S ≥ 0 : TMV + TV S ≥ 2940, TMV ≥ 1500}, hp2
= hp3

= 0

– profit function: fΛ6
(T1) = 0

– optimal profit: f ∗ = $0

– optimal solution: Any combination of fares that belongs to Λ6

It is interesting to take a closer look at some regions. For instance, in regions 2, 3 and 4,

the leader company’s combination of fare and time dominates all competing proposals, and

this results in Air Canada attracting all consumers to its two-leg flight. At the other end

of the spectrum, Air Canada’s fares in region 6 are so high that they fail to attract even

passengers whose value of time is at its maximum αmax. In areas 0, 1 and 5, the fares set

by the leader company achieve a trade-off between the number of passengers attracted and

their willingness to pay.
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The optimum is achieved in region 5. Since path 2 is dominated, the corresponding flow

is zero, and only the sum of the fares TMV +TV S on Air Canada’s two-leg flight matters. The

trade-off VOT at which passengers are indifferent between path p1 and p3 is the solution of

the linear equation

1320 + 36α = 1470 + 18α,

i.e., α∗ = 25/3. The market share for Air Canada’s two-leg flight is equal to the probability

that a passenger’s VOT be larger than α∗, i.e.,

∫ 90

α∗

ψ(α) dα = 1 −
25

3 × 90
≈ .907.

Therefore, at the optimum, 907 passengers fly Air Canada between Montreal and Shanghai.

7. Conclusion

In this paper, we have developed a bilevel pricing model for a service firm. Two key features

of the model is that it explicitly takes into account customer behavior (thus allowing room

for price discrimination) as well as the underlying network topology of the problem.

While, for ease of presentation, we restricted ourselves to a simple form of the model, its

formulation can easily be extended to deal with more refined descriptions of user behavior,

involving for instance more than two criteria, and to incorporate features such as: finite

capacities, upper bounds on decision variables, more general functional forms of the cost

functions, etc. A more ambitious goal is to integrate the current model within a dynamic

framework, thus closing the gap between the bilevel pricing model and more traditional

“yield management” approaches adopted in the airline industry.

Finally, a word about algorithmic complexity. From the computational point of view,

our model looks complex, as it requires the solution of a large (exponential) number of

subproblems. However our numerical experiences tend to show that, when started in a

region which corresponds to flows that are (almost) all positive, convergence towards an

optimal or near-optimal solution is frequently achieved. We also investigated successfully a

discretization approach where the densities ψw are replaced by probability mass functions.

The resulting approximation is then reformulated as a large mixed integer program (see Côté

et al. 2002) that can be tackled either by commercial codes or heuristic procedures.
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