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1. Introduction
The traffic assignment problem consists in determining data
or passenger flows that are compatible with the users’
travel demand and routing behavior. Mathematical models
of traffic assignment are usually based upon Wardrop’s
principle (Wardrop 1952), which states that at equilibrium,
flows are assigned to shortest paths with respect to current
(flow-dependent) travel delays. A variety of such models
have been considered in the literature, incorporating such
features as transportation modes, variable demand, user
classes, stochasticity of travel delay, and more recently, the
dynamic aspects of congestion. However, one feature of
transportation networks that is frequently overlooked is the
finiteness of arc capacities, which might prevent some users
from traveling on their preselected path.
Our modeling solution to this problem is to assume

that the user behavior is dictated by strategies that pro-
vide, at each node, alternative subpaths (from the current
node to the destination) whenever the preferred outgoing
arc is saturated. This concept of strategy (or “hyperpath”)
has been applied in the context of transit assignment by
Nguyen and Pallottino (1989) and in the context of net-
works with stochastic, time-varying delays by Miller-Hooks
(2001). However, in contrast with both these applications,
we assume that the state of the system, at each node of
the network, is flow dependent, and it follows that our
model calls for entirely different analytical and algorithmi-
cal tools. The contribution of this work is fivefold:
• a variational inequality characterization of strategic

equilibria;
• an analysis of the theoretical properties of the model;
• algorithms for deriving arc flows from the vectors of

strategies;

• algorithms for computing the best response to a given
strategic flow assignment;
• numerical implementation of algorithms for finding

equilibrium solutions.

2. Motivation and Structure of the Paper
A simple way of preventing traffic flow from exceeding the
physical capacity of a transportation network is to model
delay through functions that become unbounded as flow
approaches the capacity. A related approach, pursued by
Hearn (1980), Larsson and Patriksson (1998), incorporates
the capacity constraints within the model and sets the delay
on an arc to the sum of the actual delay and the dual
variable associated with the capacity constraint of that arc.
From the modeling point of view, the dual variables can be
interpreted as queueing delays occurring at the entrance of
capacitated arcs (see Daganzo 1998).
A simple example will help to understand the differ-

ences between our strategic approach and the above “path
approach.” Consider a traffic assignment problem involv-
ing a single origin-destination couple and where demand
is equal to one flow unit. Let us denote by P the set of
origin-destination paths and by

x= �xp�p∈P ∈X =
{
x �

∑
p∈P

xp = 1� x� 0
}
�

a feasible flow pattern. Each path p is endowed with a
capacity up, which corresponds to the minimum capacity
of any arc in p. Let Fp�x� be the travel time function along
path p and let F �x�= �Fp�x��p∈P . If the capacities up are
infinite, Wardrop’s first principle states that an equilibrium
is reached when travel costs are equal on all used paths,
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and this common cost 
 is less than the actual cost on any
unused path. An equilibrium flow x is then a solution of
the nonlinear complementarity problem:

x ∈X�
Fp�x�−
� 0�

xp�Fp�x�−
�= 0�

or, equivalently, of the variational inequality

x ∈X�
�F �x�� x− y�� 0 ∀y ∈X�
Now, in the capacitated case, it might be required to include
a queueing delay �p to a saturated arc in order to achieve
the above equilibrium conditions. This yields the comple-
mentarity system:

x ∈X ∩ �x� u��

Fp�x�+�p −
� 0�

xp�Fp�x�+�p −
�= 0�

�p�xp − up�= 0�

�p � 0�

which is equivalent to the variational inequality

x ∈X ∩ �x� u��

�F �x�� x− y�� 0 ∀y ∈X ∩ �x� u��

If the mapping F is the gradient of some potential func-
tion f , x is a solution of the previous variational inequality
if and only if it is a first-order stationary point for the math-
ematical program

min
x∈X∩�x�u�

f �x��

An advantage of this approach is that the above mathemati-
cal program can be solved quite easily. However, the use of
a queueing delay resulting from transient overcapacity of
the network is controversial, although its validity has been
advocated by Daganzo (1998), using the concept of “point
queues.”
Our approach to capacities is entirely different. We

assume that the users’ behavior is dictated by travel strate-
gies rather than path selection. More precisely, a strategy
assigns to each node of the network an ordered set of suc-
cessor nodes. At each node, a user selects the first ele-
ment in his preference set whose associated outgoing arc is
unsaturated; feasible strategies take into account the possi-
bility that an arc be unavailable when the user reaches the
tail node of that arc, and must consequently include alter-
natives. While strategies are deterministic, their realizations
depend on arc availability, and are therefore stochastic and

flow dependent. Users state their preferences but cannot be
assured, from day to day, of the actual path they will travel.
The strategic approach has been applied successfully by

Nguyen and Pallottino (1988) or Spiess and Florian (1989)
to the modeling of urban transit networks. In this applica-
tion users select, at a given transit node, a subset of the
available lines and board the first incoming vehicle from
a line belonging to that subset. In contrast with our defi-
nition, the sets of attractive lines in the transit application
are unordered, and therefore ill adapted at modeling sit-
uations where users may incorporate into their strategies
time-dependent information, such as public transportation
schedules or online information to private vehicles. The
price to pay for this added flexibility is an increase in the-
oretical and algorithmical complexity.
While our ultimate aim is the study of priority net-

works, where the use of strategies as fundamental deci-
sion variables settles some paradoxical situations that arise
when only path flow variables are considered, this work
focuses on the analysis and implementation of the nonpri-
ority model introduced by Marcotte and Nguyen (1998). It
is organized as follows. In §3 we give a detailed descrip-
tion of a simple instance where no equilibrium expressed
solely in terms of path flow variables exist, thus justify-
ing our notion of equilibrium in capacitated networks. In
§§4 and 5 we analyze algorithms for obtaining path and
arc flows from strategies, as well as for determining strate-
gies that are optimal with respect to a given assignment.
In §6 we formulate and analyze an equilibrium model with
constant arc costs, i.e., where the sole congestion effects
are induced by the arc capacities. In §7 we present algo-
rithms for determining an equilibrium. The implementation
of specific algorithms within this framework is discussed
in §8, which also provides numerical results.

3. Strategic Equilibria in
Capacitated Networks

Defining equilibrium meaningfully in capacitated trans-
portation networks represents a nontrivial task. To gain
some insight into this matter, let us consider the network
illustrated in Figure 1, where each arc is endowed with a

Figure 1. A capacitated network.
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Table 1. Network paths for a small example.

Path Index Path Cost Capacity

1 1–3–5 100 2
2 1–2–3–5 175 5
3 1–2–5 200 �
4 1–3–4–5 250 2
5 1–2–3–4–5 325 �

cost (shown next to the corresponding arc) and, possibly, a
capacity (bracketed number). The paths from origin node 1
to destination node 5 are listed, together with their features,
in Table 1.
Clearly, no Wardrop equilibrium is compatible with these

data, because the shortest path 1–3–5 cannot accommodate
all demand of 10 units. Quite naturally, one could settle for
an equilibrium satisfying the following extended Wardrop
principle:

At equilibrium, the cost of a path with a positive residual
capacity is larger or equal to the cost of any path carrying
positive flow.

In our small example, any path flow vector of the form

x= �5− t� t�5�0�0�

with t ∈ �3�5� satisfies the above principle. However, when-
ever t is strictly greater than 3 and the users of the sec-
ond path are endowed with the gift of prescience, it is
tempting for them to switch to the less costly first path on
which some capacity has been set free by themselves. In
this sense, the equilibrium associated with the value t = 3 is
more natural. Indeed this solution, associated with a queue-
ing delay of 75 on arc �1�3� and 25 on arc �3�5�, cor-
responds to a “Hearn-Larsson-Patriksson” equilibrium and
is, notwithstanding the queueing delay, a system-optimal
solution as well.
Let us now consider the strategic approach where a sub-

set of strategies, represented as vectors whose elements
consist of an ordered list of outgoing nodes, is given in
Table 2. Some strategies, such as s4, avoid capacitated arcs
and correspond to ordinary paths. In contrast, a user adopt-
ing strategy s1 could end up traveling on path 1, 2, 4, or 5,
depending on the availability of the capacitated arcs �1�3�
and �3�5�.

Table 2. A set of strategies for the small example.

Node 1 2 3 4 5

s1 �3�2� �3� �5�4� �5� � �

s2 �3�2� �5� �5�4� �5� � �

s3 �2� �3� �5�4� �5� � �

s4 �2� �5� � � � � � �

s5 �3�2� �5�3� �5�4� �5� � �

s6 �3� � � �5�4� �5� � �

s7 �3�2� �3� �4�5� �5� � �

Table 3. Path access probabilities for the small example.

Path Access Probability Cost

1–3–5 �2/10�× �5/10�= 1/10 100
1–2–3–5 �8/10�× �5/10�= 4/10 175
1–2–5 0 200
1–3–4–5 �2/10�× �5/10�= 1/10 250
1–2–3–4–5 �8/10�× �5/10�= 4/10 325

Whenever the number va of users who want to access
arc a exceeds its capacity ua, we assume that the proba-
bility p of accessing the arc is equal to p= ua/va. This is
equivalent to assuming that the users are independently and
uniformly distributed at the tail node of arc a. These access
probabilities (or access proportions) allow us to compute
the expected cost of strategies. For instance, if all 10 users
adopt strategy s1, the probability of accessing arc �1�3� is
equal to 2/10. The users, whether they access arc �1�3� or
not, clash again at node 3, where the access probability of
arc �3�5� is 5/10. These numbers, which are required to
compute the access probabilities associated with the paths
of the network, are shown in Table 3.
The expected value of each user’s expected delay is equal

to the sum of the path costs, weighted by the respective
path access probabilities, i.e.,

(
1
10

× 100
)
+
(
4
10

× 175
)
+
(
0
10

× 200
)

+
(
1
10

× 250
)
+
(
4
10

× 325
)
= 235�

Access probabilities could also have been associated with
the paths of the network; the reader is referred to the work
of Marcotte and Nguyen (1998) for specific details, as well
as a discussion of the relationship between strategies and
hyperpaths defined on a suitably defined hypergraph.
A strategic equilibrium is reached when all users are

assigned to strategies of minimal expected delays. This
condition is violated if all commuters are assigned to
strategy s1, because strategy s4, which corresponds to the
uncapacitated path 1–2–5, is available at cost 200< 235. It
is not too difficult to check that the unique equilibrium cor-
responds to the assignment of five users to strategy s1 and
of the remaining five to strategy s2; the resulting strategic
flows and path flows are shown in Table 4. One verifies that
the expected delay of each strategy is equal to 185, which

Table 4. Equilibrium strategic path flows.

Path Flow from s1 Flow from s2 Cost

1–3–5 5/6 5/6 100
1–2–3–5 20/6 0 175
1–2–5 0 4 200
1–3–4–5 1/6 1/6 250
1–2–3–4–5 4/6 0 325
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is less than the expected delay of unused strategies, thus
fulfilling the equilibrium conditions. In general, a vector x
of strategic flows is a strategic equilibrium if and only if it
is demand-feasible and satisfies the variational inequality

�C�x�� x− y�� 0 (1)

for every demand-feasible strategic vector y, where the
component Cs�x� of C�x� is the expected delay associated
with strategy s and the strategic vector x. Unfortunately, the
calculation of C requires the knowledge of total arc flow,
which is not available in closed form, even for small net-
works. In standard traffic models, this information is read-
ily available from path flows (via the arc-path incidence
matrix), but in the strategic model, the dependence of the
arc-hyperpath matrix on strategies complicates matters sig-
nificantly. Indeed, the derivation of arc flows from strate-
gies requires a specific algorithm which will be described
in detail in §4.
We close this section with a list of the key mathematical

symbols. Slightly abusing notation, we write “cost” and
“flow” in place of “expected cost” and “expected flow,”
respectively. Other notations will be introduced as required.
G= �N �A� network with node set N and arc set A
j+ = �k � �j� k� ∈A� forward star of node j
dqr demand from origin node q to destination node r
ujk capacity of arc �j� k�
ūjk residual capacity of arc �j� k�
S set of strategies
q�s� origin node of strategy s ∈ S
Es
j ordered list of nodes in the forward star j

+

s = �Es
j �j∈N strategy

xs strategic flow
x= �xs�s∈S vector of strategic flows
zsj flow from strategy s having reached node j
&sj probability of accessing node j using strategy s
's
jk�x� probability of accessing node k from node j using

strategy s
Cs�x� cost of strategy s
C�x�= �Cs�x��s∈S vector of strategic costs
Cs
j cost of strategy s from node j to the destination

W working set (set of strategies considered at a given
iteration).

4. The Loading Mechanism
In this section, we describe a procedure for recovering arc
flows from strategic flows. This loading procedure, which
is required to produce the costs of paths and strategies, is
akin to a deterministic simulation. Throughout the paper
we make the assumption that this operation is feasible, i.e.,
there exist arc flows that are compatible with the current
strategies and capacities. This condition can be enforced
by introducing an artificial arc with arbitrarily high cost
(a “walk arc”) between every two nodes of the network.

In the small example considered in §3, the preference
sets of all users were identical at all tail nodes of capac-
itated arcs. This resulted in an intuitive and simple load-
ing process based on the ratio between capacity and flow.
The generalization of this process to more complex situa-
tions, however, can lead to distinct arc flows, depending on
the queue discipline implemented, i.e., the way one man-
ages the simultaneous assignment of flows to the capaci-
tated arcs of the network. We consider two such disciplines
(while the analogy is made with queues involving discrete
customers, the loading procedure acts on a continuum of
vehicles):
single queue processing (SQP)—Users are randomly and

uniformly distributed in a single vertical queue (storage
space is unlimited) and no preemption is allowed, i.e., the
first-in-first-out (FIFO) condition is enforced;
parallel queue processing (PQP)—Users are randomly

and uniformly distributed in a single vertical queue. A user
is allowed to access an arc if its residual capacity is positive
and if no user with the same current first choice stands in
front of him in the queue. In other words, one may preempt
another user who expects to access a higher priority arc
(with positive residual capacity) within his own strategy.
However, the preempted user retains its “priority number”
when competing for an outgoing arc. This rule implicitly
assumes that the users’ behavior is dictated by the “status”
of a capacitated arc (saturated or unsaturated) and not by
its residual capacity. Equivalently, one could say that users
are unaware of the number of competitors lying ahead in
the queue.
The discipline PQP allows the representation of bottle-

necks that originate at head nodes of outgoing arcs. Single
queue processing, in contrast, is better adapted at modeling
situations where FIFO holds and possesses better theoreti-
cal properties. For both these reasons, it has been adopted
in our study.
Consider the subnetwork illustrated in Figure 2. At the

first iteration of the loading process, the strategic flows xs1

and xs2 are assigned to their preferred node at a rate pro-
portional to their respective size. Because the ratio 10/20
is less than the ratio 8/10, the arc �j� k2� gets saturated

Figure 2. The loading process at node j .
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first, after half the flow (10 units) of strategy s2 has been
assigned to it. At that stage, and in accordance with the
definition of SQP, half the flow (five units) of strategy s1
must have reached its preferred node k1 as well. Next,
node k2 is removed from the preference sets, the arc capac-
ities are replaced by their residual capacities and the pro-
cess is repeated. At the second iteration, 5 units of flow
from s1 and 10 from s2 compete for the residual capacity (3)
of arc �j� k1�. According to our proportionality assump-
tion, one flow unit from s1 reaches node k1 while two flow
units from s2 reach k1. A third iteration is required to load
the unassigned flow to the uncapacitated arc �j� k3�. The
arc access probabilities are then obtained by computing, a
posteriori, the ratio of the successful flow over the corre-
sponding arc capacity. These calculations are summarized
in Table 5.
Although the loading procedure is based on intuitive

concepts, its generalization to complex topologies is not
straightforward. Actually, for the process to be well
defined, there must exist a topological ordering of the net-
work nodes. The loading is then performed in accordance
with this topological order. Because the incoming flows at
a node only depend on the flows originating from nodes
located at lower levels of any Hasse diagram of the net-
work, the procedure is independent of the topological order-
ing adopted, as it should be.
If the application considered admits an embedded

acyclic network—for example, in the case of a time-space
expanded network—then a natural topological ordering is
immediately at hand; otherwise, a network preprocessing
phase must precede the loading procedure. For any given
destination, it is reasonable to assume that utilized paths do
not include cycle. This is akin to applying Dial’s concept
of “efficient” path (see Dial 1971) from each origin to a
given destination. A path is efficient if every arc in it has
its head node closer to the destination than its tail node.
For the considered destination, the working subnetwork that
includes only efficient arcs is acyclic. The loading proce-
dure can then be applied to the subnetwork, one destination
at a time. This implies further that the final solution algo-
rithm can resort to a decomposition scheme by destination.

Table 5. Single queue loading at node j .

Iteration Arc �j� k1� �j� k2� �j� k3�

1 Residual 8 10 20
capacity
Flow 5�s1� 10�s2� 0

2 Residual 3 0 20
capacity
Flow 5�s1�+1�s1�+2�s2� 10�s2� 0

3 Residual 0 0 20
capacity
Flow 6�s1�+ 2�s2� 10�s2� 4�s1�+8�s2�

Access probabilities: �
s1
jk1

= 6/10, �
s1
jk3

= 4/10, �
s2
jk1

= 2/20, �
s2
jk2

=
10/20, and �

s2
jk3

= 8/20.

Such schemes are frequently embedded in existing traffic
assignment methods (see, for instance, Patriksson 1994).
This issue is discussed shortly in the appendix.
The loading procedure is performed on the current sub-

set of strategies (the working set W ), which is enriched at
each iteration of the master algorithm (see §7), and would
be rather straightforward were it not for strategies having
zero flow. While, at first sight, these strategies might be dis-
carded, they play a central role in algorithm CAPSHORT
of §5, which computes the optimal user reaction to given
network conditions.
It is clear that the access probabilities corresponding to

zero-flow strategies cannot be computed from flow ratios
of null flows. To bypass this problem, we base our calcula-
tions on the proportion )sj of strategic flow from strategy s
that reached node j . At the origin node of strategy s, this
proportion is set to 1 and the arc access probabilities 's

jk

are computed iteratively according to the formula

's
jk ←'s

jk +*)sj�

where * is a local variable set to the access probability
at node k. Next, the residual proportion is updated from
)sj ← )sj�1−*� and the process is halted whenever )sj van-
ishes. Mathematically, the same results would be achieved
by increasing the values of null flows to a small number +,
and then letting + tend to zero.
As shown in a previous example, the loading operation is

a greedy process where the flows associated with the pre-
ferred outgoing node of each active strategy are processed
until either (i) the flow from some strategy is entirely pro-
cessed, or (ii) the residual capacity of some arc becomes
null. In both cases, the sets �Es

j representing the preference
orders, as well as the unprocessed strategic flows z̄sj , are
updated, and the process is repeated. In the SQP case, the
loading process terminates simultaneously for all flows, i.e.,
when the proportion of residual flows processed is equal
to 1 �*= 1� for all strategies. The situation is different in
the PQP case, where some flow could be entirely processed
at the first iteration, for instance if the associated preferred
outgoing arc has infinite capacity.
The pseudocode performing the assignment of a strategic

flow vector x = �xs�s∈W⊂S under SQP is given below. In
this pseudocode, the strategy set is partitioned into subsets
having identical preferred outgoing node. Next, one sets *,
the proportion of residual flow yet to be assigned, to the
minimum ratio of residual demand over the correspond-
ing arc capacity, whenever this minimum is less than one.
Otherwise, * is set to one, i.e., all residual flows are
assigned to their current preferred choices, and the algo-
rithm terminates. Note that, generically, a single node is
removed from the preference sets at a given major iter-
ation of the procedure. However, the algorithm addresses
the general situation where outgoing arcs could saturate
simultaneously.
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Procedure Capload �x�

input: x= �xs�s∈W [strategic flow vector]
output: ' = �'s

jk��j� k�∈A� s∈W [arc access probabilities]
C = �Cs�s∈W [strategic cost vectors]

Initialization
for s ∈W do

Cs ← 0 [cost of strategy s]
zsq�s� ← xs [flow at origin node q�s�]
&sq�s� ← 1 [probability of accessing

origin node q�s�]
for j ∈N�j �= q�s�� do

zsj ← 0 [strategic flow at node j]
&sj ← 0 [probability of accessing

node j under strategy s]
for k ∈Ejs do

v̄sjk ← 0 [strategic flow on
arc �j� k�]

's
jk ← 0 [conditional probability of

accessing arc �j� k�
under strategy s]

endfor
endfor

endfor

Assignment Phase
for j ∈N (according to topological order) do

�W ← �s ∈W � Ejs �= �� [set of active strategies]
for s ∈ �W do

�Es
j ←Ejs [updated preference

order �Es
j ]

z̄sj ← zsj [residual strategic flow]
)sj ← 1 [residual probability]

endfor
for k ∈ j+ do

ūjk ← ujk [residual capacity]
endfor
while �W �= � do

K←� [set of residual first
choices]

for k ∈ j+ do
dk ← 0 [demand for node k]
Sk ←� [set of strategies having

node k as first residual
choice]

endfor
for s ∈ �W do

k← �Es
j �1� [first residual choice of

strategy s]
K←K ∪ �k� [construction of set K]
Sk ← Sk ∪ �s� [construction of Sk]
dk ← dk + z̄sj [construction of dk,

current demand for
node k]

endfor

*←min�1�min�ūjk/dk�� [proportion of residual
flow assigned to
current first choice]

for k ∈K do
for s ∈ Sk do

zsk ← zsk +*z̄sj [updating flow zsk]
v̄sjk ← v̄sjk +*z̄sj [updating arc flow v̄sjk]
z̄sj ← z̄sj −*z̄sj [updating residual flow z̄sj ]
's
jk ←'s

jk +*)sj [updating probability 's
jk]

)sj ← �1−*�)sj [updating proportion )sj ,
yet to be processed]

endfor
ūjk ← ūjk −*dk [updating residual

capacity ūjk]
if ūjk = 0 then
for s ∈ �W do

�Es
j ← �Es

j − �k� [removing node k from �Es
j ]

endfor
endif

endfor
if *= 1 then
�W ←� [end of loading]

endif
endwhile
for s ∈W do
for k ∈Ejs do

Cs ←Cs + cjk&
s
j '

s
jk [update of Cs]

&sk ← &sk + &sj '
s
jk [update of probability &sk]

endfor
endfor

endfor

At each step within the while structure of the loading
algorithm, at least one arc becomes saturated. Therefore,
this loop is performed at most �j+� times for each node j ,
where j+ is the forward star of node j . It follows that the
loop is executed at most

∑
j∈N �j+� = �A� times and that the

total running time of the algorithm is polynomial.

5. Computing a Best Strategy
Most algorithms for solving standard traffic assignment
problems rely on a shortest path procedure. When dealing
with strategic flows, things become significantly more com-
plex because the cost function is not available in closed
form. The challenge lies in pricing out strategies that are
not elements of the working set W . Before stating the algo-
rithm, we illustrate the procedure on the simple example of
Figure 3, where a demand of 40 units has to be assigned
from node 1 to node 5. Next to each arc is indicated its
cost and, within square brackets, its capacity. Initially, the
entire flow is assigned to the strategy

s1 = ��2�4�3�� �5�3�� �5�4�� �5�� � ���

Under both queue disciplines, 20 units reach node 2 from
node 1. Among the remaining 20 units, 10 units reach



Marcotte, Nguyen, and Schoeb: A Strategic Flow Model of Traffic Assignment
Operations Research 52(2), pp. 191–212, © 2004 INFORMS 197

Figure 3. Computing a best strategy: A simple example.
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node 4, and the remaining 10 reach node 3. At node 2,
20 units are assigned to arcs �2�3� and �2�5� in respective
proportions 3/4 and 1/4. Thus 25 (i.e., 10+ 15) units of
flow access node 3. Only one-fifth of these units cannot
access arc �3�5� directly and must transit through node 4.
The flows reaching every node of the network are given in
Table 6; the arc flows are given in Table 7 and the expected
cost, obtained by averaging the total arc costs, is equal to

1
40
�20 · 20+ 10 · 10+ 10 · 20+ 15 · 20+ 5 · 10+ 5 · 70

+ 20 · 10+ 15 · 20�= 47
1
2
�

Now let us compute an optimal strategic answer s̄ (not
to be confused with an equilibrium solution) in the SQP
case. Starting from the destination node, we set Cs̄

5 = 0 and
Es̄
5 = � �. At node 4, the optimal preference order is trivially

Es̄
4 = �5�, and Cs̄

4 = 20. At node 3, the choice of �3�5� as
the preferred arc is optimal and Es̄

3 = �5�4�. The loading of
strategy s̄ at node 3 yields the probabilities 's̄

35 = 4/5 and
's̄
34 = 1/5. Working backwards at node 3, we obtain

Cs̄
3 =

4
5
�10+Cs̄

5�+
1
5
�70+Cs̄

4�= 26�

The optimal preference order at node 2 is clearly Es̄
2 =

�5�3�. The access probabilities, already computed for strat-
egy s1, are '

s̄
25 = 1/4 and 's̄

23 = 3/4, respectively. We obtain

Cs̄
2 =

1
4
�10+Cs̄

5�+
3
4
�20+Cs̄

3�= 37�

Table 6. Node flows corresponding to the loading of
strategy s1.

Node 1 2 3 4 5

Flow 40 20 25 15 40

Table 7. Arc flows corresponding to the loading of
strategy s1.

Arc �1�2� �1�3� �1�4� �2�3� �2�5� �3�4� �3�5� �4�5�

Flow 20 10 10 15 5 5 20 15

The process terminates at the origin node, where the pref-
erence order is dependent on the value of the strategic
flow xs1 , and the optimal ordering Es̄

1 = �3� minimizes the
expected cost

Cs
1 ='s

12�20+Cs̄
2�+'s

13�10+Cs̄
3�+'s

14�20+Cs̄
4�

= 57's
12 + 36's

13 + 40's
14�

Indeed, because arc �1�3� has infinite capacity, we have
's̄
13 = 1. The corresponding optimal strategy s̄ = ��3��

�5�3�� �5�4�� �5�� � ��, with expected cost 36, is displayed in
Table 8, together with the cost-to-go at every node of the
network.
Now, for a given strategic flow vector x inducing arc

access probabilities 's
jk�x�, the cost of an optimal reactive

strategy s̄, characterized by its preference sets �Es̄
j �j∈N , is

obtained by scanning the network in reverse topological
order, starting at the destination node r :

Cs̄
j =




� if j > r�

0 if j = r�∑
k∈Es̄

j

�cjk +Cs̄
k�'

s̄
jk�x� if j < r�

(2)

Note that a similar recursion has been used by Nguyen and
Pallottino (1989) to evaluate the cost of shortest hyperpaths
in a transit assignment model, the crucial simplification
being that in the transit case, access probabilities are not
flow dependent.
A procedure that returns, for a given strategic flow and

origin-destination pair �q� r�, an optimal reactive strategy
together with its expected cost, is listed below for the SQP
queue discipline. This procedure does not assume that the
“best” strategy is a member of the working set W , i.e., its
flow could be zero, hence the importance of being able to
load such strategies (MICRO-LOADING phase). The algo-
rithm has two main components:
1. a sort operation for defining the preference order of

the required strategy s̄, at each node of the network whose
topological index is less than the index of the destination
node (the other nodes are irrelevant);

Table 8. The optimal strategy.

Node j Es̄
j Cs̄

j

5 � � 0
4 �5� 20
3 �5�4� 26
2 �5�3� 37
1 �3� 36
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2. a loading procedure that includes s̄ in the working
set. This procedure is similar to CAPLOAD, but dispenses
with some bookkeeping operations that have already been
performed by CAPLOAD, such as the computation of the
access probabilities of strategies other than s̄.

Procedure Capshort �z� �q� r�� (SQP rule)
input: z= �zsj�s∈W�j∈N [strategic flow vector

at the nodes]
�q� r� ∈ L [O-D pair]

output: s̄, Cs̄ [optimal strategy and
its cost]

Initialization
for j ∈N do
if j = r then Cs̄

j ← 0 [cost of optimal
strategy leaving
node j]

else Cs̄
j ←�

endif
endfor

Micro-Loading (loading of a zero flow strategy)
for j ∈N j < r (in reverse topological order) do

�Es
j ← sort�j+� [sort in increasing

order the set
�cjk +Cs̄

k�k∈j+ ]
for k ∈ �Es

j do
ūjk ← ujk [residual capacity of

arc �j� k�]
's̄
jk ← 0 [conditional access

probability to arc
�j� k� under
strategy s̄]

endfor
�W ← �s ∈W � Ejs �= ��∪ �s̄� [working set for O-D

pair �q� r�]
for s ∈ �W do

�Es
j ←Ejs [residual preference

order]
z̄sj ← zsj [residual strategic

flow]
)sj ← 1 [proportion of

residual strategic
flow yet to be
assigned]

endfor
while )s̄j �= 0 do

K←� [set of residual first
choices]

for k ∈ j+ do
dk ← 0 [demand for node k]
Sk ←� [set of strategies

having node k as
first residual
choice]

endfor

for s ∈ �W do
k← �Es

j �1� [first residual choice
of strategy s]

K←K ∪ �k� [building the set of
preferred outgoing
nodes]

Sk ← Sk ∪ �s� [building the set of
strategies with
preferred node k]

dk ← dk + z̄sj [construction of dk,
current demand
for node k]

endfor
0←max�dk/ūjk � k ∈K�
*←min�1/0�1� [proportion of

assigned residual
flow]

for k ∈K do
for s ∈ Sk do

if s = s̄ then
's
jk ←'s

jk +*)sj [updating access
probability 's̄

jk]
)sj ← �1−*�)sj [updating proportion

)s̄j ]
else

z̄sj ← z̄sj −*z̄sj [update of the
residual flow z̄sj ]

)sj ← �1−*�)sj [updating the
proportion )sj ]

endif
endfor
ūjk ← ūjk −*dk [update of the

residual capacity
ūjk]

if ūjk = 0 then
for s ∈ �W do

�Es
j ← �Es

j − �k� [updating the
residual order �Es

j ]
endfor

endif
endfor
if *= 1 then [end of micro

loading]
)s̄j = 0

endif
endwhile
for k ∈Es̄

j do
Cs̄
j ←Cs̄

j +'s̄
jk�cjk +Cs̄

k� [update of cost Cs̄
j ]

endfor
if j = q then Cs̄ ←Cs̄

q [cost of optimal
strategy]

endif
endfor
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6. The Equilibrium Model
By definition, a strategic vector x∗ is in equilibrium if it
lies in the set X of demand-feasible vectors and satisfies
the variational inequality VI�C�X�

�C�x∗�� x∗ − x�� 0 ∀y ∈X�
Even though the model is driven by simple parameters,
namely travel costs and link capacities, the resulting varia-
tional inequality is both nonlinear and asymmetric! In this
section we will analyze some of its properties and nonprop-
erties as well.

6.1. A “Braess Paradox”

In a standard model of traffic assignment with nonconstant
arc costs, it might occur that an improvement to the net-
work, e.g., the addition of an arc, results in an increase of
the travel times for all users of the network. This situation
is known in the literature as the “Braess paradox” (Braess
1968).
A similar situation may arise in the strategic model.

Indeed, reconsider the capacitated network of Figure 1,
where the equilibrium cost was equal to 185. If arc �2�3�
is deleted from the network, the entire equilibrium flow is
redirected toward strategy s2 = ��3�2�� �5�� �5�4�� �5�� � ��,
whose expected cost �2/10�100+ �8/10�200= 180 is less
than 185. This shows that a decrease in arc capacity may
lead to an improvement in travel time for all users. This is
not surprising, in the view that equilibrium and optimality
are two different concepts.

6.2. Integrability

To show that C may fail to be a gradient mapping, consider
the network of Figure 4. If the sum x1+x2 of the strategic
flows is greater than the capacity of the first arc, one has,
in both the single queue and parallel cases:

C1�x1� x2�=
c1

x1 + x2
+
(
1− 1

x1 + x2

)
c2�

C2�x1� x2�=
c1

x1 + x2
+
(
1− 1

x1 + x2

)
c3�

Figure 4. Nonintegrability of the cost mapping.
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Figure 5. Nondifferentiability of the cost mapping.
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The cross partial derivatives of C are given by the
expressions

1C1

1x2
�x1� x2�=

c2 − c1
�x1 + x2�

2
�

1C2

1x1
�x1� x2�=

c3 − c1
�x1 + x2�

2
�

and are clearly distinct if c3 �= c2. Hence, the Jacobian of C
is asymmetric and the variational inequality VI�C�X� can-
not be reformulated as a “standard” optimization problem
over the feasible set X.

6.3. Differentiability

Let us consider the situation illustrated in Figure 5. The
two strategies of interest are s1 = ��3�2�� �3�� � �� and s2 =
��2�� �3�� � ��. It is not difficult to check that the cost
function is

C�x1� x2�= �max�1�2− �1/x1���2��

whose first partial derivative with respect to x1 does not
exist when x1 = 1 (the left derivative is zero while the right
derivative is equal to 1). Note that in this counterexample,
the single queue and parallel processings yield identical
flows and access probabilities, so that the example is valid
for both queue disciplines.

6.4. Continuity

Under the PQP rule, it can be shown that the mapping is
not always continuous. In the SQP case, the mapping C
is continuously dependent on the access probabilities 'kl

ij ,
which are defined as ratios of residual capacities over flows.
Whenever the degenerate situation where arcs get saturated
simultaneously does not occur, these probabilities are con-
tinuous functions of the strategic flow vectors. In the SQP
case, we conjecture that C is continuous in the degenerate
case as well.

6.5. Monotonicity, Existence, Uniqueness,
and Convexity

Monotonicity is a key functional property that is required
to establish the convergence of most iterative algorithms
for solving equilibrium problems modeled as variational
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Figure 6. A nonmonotone cost function.
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inequalities. A function F from a convex subset X of Rn

into Rn is monotone on X if, for every x and y in X, there
holds

�F �x�− F �y�� x− y�� 0�

Unfortunately, the function C of the strategic model
may fail to be monotone. Consider the situation illus-
trated in Figure 6, together with the strategies s1 =
��2�4�� �5�4�� � �� �5�� � ��, s2 = ��3�� �5�4�� �2�� �5�� � ��, and
the strategic flow vectors of the form x= �x1� x2�. Because
both strategies have the same preference order at the unique
node where they compete, the single queue and parallel
loadings are identical. For x1 = �4�6�, 's1

12�x�= 1 and we
have

Cs1�x�= 3+ 1
2
× 3+ 1

2
× 4= 6

1
2
�

Cs2�x�= 3+ 2+ 1
2
× 3+ 1

2
× 4= 8

1
2
�

For x2 = �8�2� we obtain

Cs1�x�= 3
8
×�a+2�+ 5

8

(
3+ 5

7
×3+ 2

7
×4

)
= 21a+262

56
�

Cs2�x�=3+2+ 5
7
×3+ 2

7
×4= 58

7
�

Now,

�C�x1�−C�x2�� x1 − x2� = 1
56

��102− 21a�12�� �−4�4���

which is negative if a < 90/21. This shows that the cost
function C is not monotone.
Under the assumption that the degenerate case does not

occur, however, existence of at least one solution follows
from the continuity of the mapping C and the compactness
of the feasible set X. As in linear programming, multiple
solutions can coexist and form a convex set. Under the SQP
rule, we conjecture that the set of equilibria is indeed con-
vex, a property not shared by the PQP rule (see Marcotte
and Nguyen 1998 for a counterexample).

6.6. Monotonicity of the Preference Order

To efficiently compute the best strategic response to a given
strategic flow vector x and conditional access probabili-
ties '�x�, one must, at each node of the transportation
network, determine an optimal preference order for each
strategy. (Actually, the strategies having identical destina-
tion nodes will have identical preference orders.) The opti-
mal order Es

j should minimize the expression∑
k∈Es

j

's
jk�cjk +Cs

k��

A greedy way for determining a “good” order consists in
sorting the nodes of the forward star of node j upward with
respect to the costs cjki +Cs

ki
. This yields

Es̄
j = �k1� k2� � � � � kl��

where

cjki +Cs
ki
� cjki+1 +Cs

ki+1� i= 1�2� � � � � �j+�− 1� (3)

While this choice may be suboptimal under PQP, the next
proposition shows that it yields the optimal ordering under
the SQP rule.

Proposition 1. In an optimal strategic answer to a
given strategic flow vector x and its associated condi-
tional access probability vectors '�x�, let the preference
sets Es

j be ordered upward with respect to the quantities
�cjki +Cs

k�k∈j+ . This choice is optimal in the single queue
case.

Proof. Let us consider an arbitrary preference order

Es
j = �k1� k2� � � � � kl�

with l= �j+�. With each node k ∈ j+ we associate a weight
ek = cjk +Cs

k and define an adjacent switch as the permu-
tation of two adjacent nodes in Es

j . The adjacent switch of
nodes Es

j �i� and E
s
j �i+1� is increasing if the weight of the

first node is greater or equal to that of the second node.
We will show that an increasing adjacent switch on Es

j can
only decrease the value of Cs

j .
Let Es̃

j denote the preference order resulting from an
increasing adjacent switch performed on an index i of
Es
j , i.e.,

Es̃
j = �k1� k2� � � � � ki−1� ki+1� ki� � � � � kl��

and let us summarize the micro-loading phase (loading of
a zero flow associated with the optimal strategy currently
built) of strategies s and s̃ at node j . After arc �j� ki−1� gets
saturated, an equal proportion * of the residual flows of
strategies s and s̃ is assigned to nodes ki and ki+1, respec-
tively. At this point, both strategies share the same residual
flow proportion ). We consider three cases:
Case 1. Arc �j� ki� gets saturated first. When arc �j� ki�

becomes saturated, an equal proportion * of the residual
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Table 9. Conditional access probabilities to arcs �j� ki�
and �j� ki+1� for s and s̃.

Case 1 Case 2 Case 3

�j� ki� �j� ki+1� �j� ki� �j� ki+1� �j� ki� �j� ki+1�

s *) *′)′ *)+*′)′ 0 ) 0
s̃ 0 *)+*′)′ *′)′ *) 0 )

flow of s and s̃ is assigned to nodes ki and ki+1 and the
node ki is deleted from the residual preference order of
strategy s. At this point, strategies s and s̃ have the same
residual preference order and residual flow proportion )′ =
)�1 − *�. It follows that the micro-loading phase termi-
nates identically for both strategies. We denote by *′ the
proportion of each strategic flow that accesses node ki+1.
Case 2. Arc �j� ki+1� gets saturated first. The analysis is

symmetric with that of Case 1. We let * denote the pro-
portion of residual flow from s and s̃ assigned to nodes ki
and ki+1 before arc �j� ki+1� gets saturated, and we let *′

denote the proportion of residual flow assigned to node ki.
Case 3. No arc gets saturated. This constitutes a limiting

case of Case 1, where *= 1.
The output of the micro-loading of strategies s and s̃

is displayed in Table 9. As a general rule, we obtain the
relationships

's
jki

+'s
jki+1 ='s̃

jki
+'s̃

jki+1�

's̃
jki+1 �'s

jki+1�

from which we deduce

Cs
j −Cs̃

j = �eki+1 − eki ��'
s
jki+1 −'s̃

jki+1�� 0�

Thus an increasing adjacent switch does not deteriorate
the preference order Es

j , and it is always possible, by per-
forming a finite number of increasing adjacent switches,
to transform an arbitrary optimal preference order into the
preference order Es̄

j , which must therefore be optimal. �

7. Solution Algorithms

7.1. General Considerations

The quest for a strategic equilibrium comes down to
finding a vector x∗ that solves the variational inequality
VI�C�X�, i.e.,

�C�x∗�� x∗ − x�� 0 ∀x ∈X�

The challenge in solving this mathematical program is
threefold:
• In contrast with the uncapacitated case, strategic flows,

of which there is an exponential number, have to be kept
explicitly in order to derive the cost function C.

• The cost function is not available in closed form.
This rules out methods using sophisticated linesearch
techniques.
• The cost function cannot be assumed to be either inte-

grable (a gradient mapping), differentiable nor monotone.
The first “nonproperty” limits the algorithmic choice to

restriction strategies. Within the restriction framework, we
developed variants of the “Frank-Wolfe” and projection
methods. Because the cost function C is nonmonotone,
convergence of the iterates towards an equilibrium solu-
tion x∗ is not guaranteed. In this context, the algorithms
must be viewed as “natural” but heuristic procedures.

7.2. A Stopping Criterion

“Gap functions” provide a computable criterion for decid-
ing whether the current iterate is in near-equilibrium.
A nonnegative function g is a gap function if its zeroes
coincide with the solutions of the variational inequality.
A natural member of this class, defined as

gP �x�=max
y∈X

�C�x�� x− y�� (4)

is a byproduct of the computation of a best strategy via
the CAPSHORT procedure. In this work we make use of
a relative gap function, which is simply a scaled version
of gP :

gR�x�=
gP �x�

�C�x�� x� � (5)

The procedure that evaluates the gap function is listed
below.

Procedure Gap �x�
input: x= �xs�s∈W [strategic flow

vector]
output: gR�x� [value of relative

gap at x]
x̄ [extremal solution of

miny∈X�C�x�� y�]
Initialization
for s ∈W do

x̄s ← 0 [optimal flow
assigned to
strategy s]

endfor
CT = 0 [total cost �C�x�� x�]
C∗ = 0 [optimal value of

linear subproblem]

Computation of Total Cost
CAPLOAD�x�→ z�C [loading of x]
for s ∈W do

CT ←CT + xsC
s [total cost update]

endfor
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Computation of Optimal Total Cost
for �q� r� ∈ L do
CAPSHORT�z� �q� r��→ s̄�Cs̄ [computing an

optimal strategy]
C∗ ←C∗ + x̄s̄C

s̄ [optimal total cost
update]

endfor
gR�x�← �CT −C∗�/CT [gap evaluation]

7.3. A Linearization Approach

Each iteration of the Frank-Wolfe (FW) linearization
approach (Frank and Wolfe 1956) method for minimizing a
differentiable function f over a compact and convex set X
takes the form

xk+1 = xk + 9k�x̄
k − xk��

where x̄k ∈ argminy∈X�:f �xk�� y� and 9k ∈ �0�1� is some
suitable stepsize. The popularity of this approach for
solving traffic assignment problems is due to its efficient
handling of network structures: Only shortest paths have
to be computed for each origin. In the algorithmic scheme
STRATEQ1, the FW strategy is adapted to variational
inequalities in conjunction with a stepsize rule based on the
harmonic sequence 9k = 1/�k+ 1�.

STRATEQ1
input: strategic flow vector x, tolerance factor +, working

set W
output: strategic equilibrium x∗

Initialization
GAP�x�→ x̄� gR�x�
k← 1

Main Loop
while gR�x�� + do

x← �1− 9k�x+ 9kx̄
GAP�x�→ x̄� gR�x�
k← k+ 1
W ←W ∪ �x̄�

endwhile

The initial vector x is computed with respect to free-flow
travel times. Although the cost of its origin-destination
components is equal to that of shortest O-D paths, all
the relevant strategic information is yet produced by the
CAPSHORT procedure.
To limit the size of the working setW , we adopt a restric-

tion strategy which is reminiscent of the RSD (Restricted
Simplicial Decomposition) technique of Lawphongpanich
and Hearn (1984). At every iteration, an optimal strategy s̄
corresponding to some O-D pair is inserted in the working
set W whenever its cost (with respect to the current strate-
gic vector x) is significantly less than that of the current
average cost, i.e.,

Cs̄
�Cs̃ − +1

for some predetermined tolerance +1. Moreover, any strat-
egy whose flow value falls below some threshold value +2
is removed from the working set.
A drawback of the Frank-Wolfe method is the averag-

ing aggregation process that takes place over all O-D pairs:
adopting a common stepsize may actually worsen the equi-
librium conditions for some O-D pairs and have an adverse
effect on convergence. To remedy this situation, one may
use different stepsizes for each O-D pair. In the scheme
STRATEQ2, a disaggregate stepsize rule is based on the
relative costs of s̄ and the average cost Cs of strategies s
for each individual O-D pair:

9ks = 1− Cs̄

Cs
�

The number 9ks measures the average dissatisfaction of
users associated with the O-D pair k. The implementation
of this scheme does not incur much computational work
since the strategic information is readily available in disag-
gregate form.

7.4. Projection Algorithms

A vector x∗ is a solution of the variational inequality
VI�F �X� if and only if it is a solution of the fixed point
problem

x∗ = p��x
∗��

where � is a positive scalar and p��x�= projX�x−�F �x��
denotes the Euclidian projection of the vector x − �F �x�
over the convex set X. In our context, the set X is defined
as the convex combination of strategic flows in the work-
ing set W , i.e., the Euclidian product of simplices defined
by nonnegativity and demand constraints. The “vanilla
style” projection algorithm generates a sequence of iterates
according to the formula

xk+1 = p��x
k�= projX�x

k −�F �xk���

where the projection operation can be performed very
efficiently, due to the simplicial structure of the set X.
Several variants of this basic scheme have been proposed
over the years. One of them, due to Konnov (1993), con-
verges under weaker conditions than those of the standard
algorithm, and performs automatic updates of its internal
parameters. (Konnov’s scheme is globally convergent if the
cost function C is pseudomonotone over the feasible set X.
A function F is pseudomonotone on a convex set X if,
for any x and y in X, there holds: �F �x�� x− y�� 0⇒
�F �y�� x − y� � 0. A monotone function is pseudomono-
tone but the converse statement does not hold in general.)
For specific choices of these parameters, Konnov’s algo-
rithm reduces to the robust extragradient method of
Korpelevich (1977).
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Figure 7. Konnov’s algorithm.
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Konnov’s algorithm involves positive parameters �, 
,
and 9 ∈ �0�1�. The computation of xk+1 requires two pro-
jections and one convex combination, according to the
formulae

pk = projX�x
k −
F �xk���

yk = �1− 9�xk + 9pk�

xk+1 = projX�x
k −�F �yk���

which are illustrated geometrically in Figure 7. The compu-
tational cost of these operations is very small with respect
to the CAPLOAD and CAPSHORT steps.
To take advantage of the ease of implementation of the

FW method and the better convergence rate of the projec-
tion algorithm, we consider the following combination of
both methods:
• the iterations are regrouped into cycles;
• each cycle consists of K =K1 +K2 iterations;
• the first K1 iterations are projection iterations;
• the remaining K2 iterations are FW iterations whose

role is mainly to enrich the working set W through algo-
rithm CAPSHORT.

8. Numerical Results
The numerical tests have been designed to illustrate the
convergence behavior of the algorithms. They have been
performed both on a small example for which the equilib-
rium was known and on larger networks where restriction
strategies had to be implemented. Numerical results are
provided for both the SQP and PQP rules. The quality of
an approximate solution x is measured by the value of the
relative gap function gP �x�.

8.1. A Small Network

Our first test problem is based on the network of Figure 8,
and is derived from a transit assignment situation where
links �3�4� and �4�6� are served by two bus lines with an
equal capacity of ten seats. The strategies of interest are
listed in Table 10.
In this example, it can be argued that strategy s3 car-

ries positive flow at equilibrium. Otherwise, its cost (30)
would be less than the expected cost of strategy s4 (55).

Figure 8. A small test network.
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This shows that, at equilibrium, the (expected) cost of s3 is
at most 55. Because the cost of strategy s2 exceeds the cost
of strategy s3 by five units, we deduce that, at equilibrium,
it must be equal to 55+5= 60, which is less than the cost
of strategy s1. Hence, all flow originating from node 1 will
use strategy s1. Now, if all flow from origin 2 used s3, the
cost of this strategy would be equal to

C∗
3 = 10+ 10

20
× �10+ 10�+ 10

20
× 150= 95�

clearly a nonequilibrium situation. We conclude from these
observations that both x3 and x4 are positive. To find the
value of x3, we simply write that its cost must be equal
to 55, i.e.,

10+ 10
10+ x∗3

�10+ 10�+ x∗3
10+ x∗3

150= 55�

The solution of this linear equation, x∗3 = 50/21, yields
the unique equilibrium strategic flow x∗ = �10�0�50/21�
160/21�, both for the single queue and parallel cases.
The convergence of the STRATEQ1 method (Table 11),

based on harmonic stepsizes, is quite typical of FW’s sub-
linear behavior. The adaptive stepsize strategy STRATEQ2
(Table 12), which performs a scaling with respect to each
O-D pair’s contribution, significantly improved the con-
vergence to the equilibrium solution. As expected, the
projective methods, under standard choices of their respec-
tive parameters, converged yet faster. The fastest was the
standard projection method (Table 13), followed closely
by Konnov’s method (Table 14) and the extragradient
(Table 15). Konnov’s algorithm might be preferred to the
standard projection method on the basis of its weaker
convergence requirements. Table 16, which displays the
number of iterations required to achieve a predetermined

Table 10. First example.

Node 1 2 3 4 5 6

s1 �3� � � �4�6� �6�5� �6� � �

s2 �4� � � � � �6�5� �6� � �

s3 � � �3� �4�6� �6�5� �6� � �

s4 � � �6� � � � � � � � �
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Table 11. STRATEQ1 on the small network.

Strategic Flows Strategic Costs Relative
# Iter. s1 s2 s3 s4 s1 s2 s3 s4 Gap (%)

0 10�00 0�00 10�00 0�00 100�00 70�00 95�00 55�00 35�897
1 5�00 5�00 5�00 5�00 51�67 86�67 46�67 55�00 18�056
2 6�67 3�33 6�67 3�33 76�88 82�50 71�88 55�00 9�052
3 7�50 2�50 5�00 5�00 69�00 80�00 64�00 55�00 5�524
5 8�33 1�67 3�33 6�67 59�69 77�14 54�69 55�00 2�649
10 9�09 0�91 2�73 7�27 58�53 74�17 53�53 55�00 2�177
20 9�52 0�48 2�86 7�14 61�84 72�27 56�84 55�00 0�867
50 9�80 0�20 2�55 7�45 60�54 70�96 55�54 55�00 0�295
100 9�90 0�10 2�48 7�52 60�36 70�49 55�36 55�00 0�163
200 9�95 0�05 2�44 7�56 60�26 70�25 55�26 55�00 0�098
500 9�98 0�02 2�40 7�60 60�03 70�10 55�03 55�00 0�024

1�000 9�99 0�01 2�39 7�61 60�01 70�05 55�01 55�00 0�011
2�000 10�00 0�00 2�38 7�62 60�00 70�02 55�00 55�00 0�005
10�000 10�00 0�00 2�38 7�62 60�00 70�00 55�00 55�00 0�001

Table 12. STRATEQ2 on the small network.

Strategic Flows Strategic Costs Relative
# Iter. s1 s2 s3 s4 s1 s2 s3 s4 Gap (%)

0 10�00 0�00 10�00 0�00 100�00 70�00 95�00 55�00 35�897
1 7�00 3�00 5�79 4�21 72�38 81�54 67�38 55�00 7�221
2 7�34 2�66 4�73 5�27 65�95 80�51 60�95 55�00 5�242
3 7�82 2�18 4�26 5�74 64�82 78�95 59�82 55�00 4�113
5 8�52 1�48 3�65 6�35 63�48 76�44 58�48 55�00 2�619
10 9�39 0�61 2�90 7�10 61�57 72�87 56�57 55�00 0�970
20 9�88 0�12 2�48 7�52 60�33 70�60 55�33 55�00 0�179
50 10�00 0�00 2�38 7�62 60�00 70�01 55�00 55�00 0�002
100 10�00 0�00 2�38 7�62 60�00 70�00 55�00 55�00 0�000

Table 13. Projection algorithm on the small network (�= 0�2).

Strategic Flows Strategic Costs Relative
# Iter. s1 s2 s3 s4 s1 s2 s3 s4 Gap (%)

0 10�00 0�00 10�00 0�00 100�00 70�00 95�00 55�00 35�897
1 7�00 3�00 6�00 4�00 73�88 81�54 68�88 55�00 7�616
2 7�77 2�23 4�61 5�39 67�36 79�13 62�36 55�00 4�691
3 8�94 1�06 3�88 6�12 67�33 74�78 62�33 55�00 2�880
5 10�00 0�00 2�66 7�34 62�29 70�00 57�29 55�00 0�516
10 10�00 0�00 2�38 7�62 60�00 70�00 55�00 55�00 0�000

Table 14. Konnov’s algorithm on the small network (� = 0�2, 
 = 0�1, and
9= 0�001).

Strategic Flows Strategic Costs Relative
# Iter. s1 s2 s3 s4 s1 s2 s3 s4 Gap (%)

0 0�00 10�00 5�00 5�00 51�67 86�67 46�67 55�00 28�485
1 3�50 6�50 5�83 4�17 53�42 88�42 48�42 55�00 20�019
2 7�00 3�00 6�49 3�51 77�19 81�54 72�19 55�00 8�616
3 7�43 2�57 4�77 5�23 66�87 80�21 61�87 55�00 5�211
5 9�50 0�50 3�27 6�73 65�10 72�36 60�10 55�00 1�662
10 10�00 0�00 2�38 7�62 60�00 70�00 55�00 55�00 0�000
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Table 15. Extragradient algorithm on the small network (�= 0�1).

Strategic Flows Strategic Costs Relative
# Iter. s1 s2 s3 s4 s1 s2 s3 s4 Gap (%)

0 2�00 8�00 6�00 4�00 53�75 88�75 48�75 55�00 22�932
1 3�72 6�28 6�25 3�75 54�24 89�24 49�24 55�00 18�925
2 4�51 5�49 5�77 4�23 55�75 87�72 50�75 55�00 15�380
3 5�26 4�74 5�32 4�68 57�26 86�08 52�26 55�00 12�018
5 6�63 3�37 4�53 5�47 59�81 82�60 54�81 55�00 6�357
10 9�19 0�81 3�13 6�87 62�48 73�75 57�48 55�00 1�417
20 10�00 0�00 2�42 7�58 60�32 70�00 55�32 55�00 0�067
50 10�00 0�00 2�38 7�62 60�00 70�00 55�00 55�00 0�000

accuracy level, allows a quick visual comparison of all five
algorithms.
In the vicinity of the equilibrium solution x∗ = �10�0,

50/21�160/21�, the cost function C takes the form

C1�x�=15+
(

10
x1+x3

)(
10+ 10

10+x2
�10�+ x2

10+x2
�60�

)

+
(
x1+x3−10
x1+x3

)
150�

C2�x�=60+
(

10
10+x2

)
10+

(
x2

10+x2

)
60�

C3�x�=C1�x�−5�

C4�x�=55�

The Jacobian matrix of C at the solution x∗ is

J =C ′�x∗�=




441
52

105
26

441
52 0

0 5 0 0
441
52

105
26

441
52 0

0 0 0 0



�

Because the eigenvalues of J +J t are nonnegative, the cost
function C is monotone at x∗. This property might partially
explain the very good behavior of the solution algorithms.

8.2. A Larger Instance: The Sioux Falls Network

The second series of tests was performed on the network
illustrated in Figure 9. This network of 24 nodes, 41 arcs,
and 4 O-D couples (see Table 17) is a simplified
acyclic version of the Sioux Falls network used by

Table 16. Number of iterations required to achieve a 10−k gap value (small network).

Gap Function (%)

Method 101 100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

STRATEQ1 2 13 106 883 8�716 — — — — —
STRATEQ2 1 10 24 39 54 69 84 99 104 109
Projection 1 5 6 8 9 10 11 13 14 15
Konnov 2 6 7 9 10 11 12 14 15 16
Extragradient 4 11 19 27 35 44 52 60 68 77

Suwansirikul et al. (1987) in the static case. Although
this network is small, the complexity of its strategic struc-
ture is very high (see Table 18). In this example the tol-
erance parameters +1 and +2 have been set to 10−4 and
0�005 for algorithm STRATEQ1 and to 10−4 and 10−4 for
STRATEQ2. The projective methods were initialized by
100 iterations of the FW algorithm. Next, the method pro-
ceeded through 20 cycles, each cycle consisting of
• 100 projection steps over the set of strategies in the

current working set;
• 5 FW steps aimed at enriching the working set.
The Frank-Wolfe method with harmonic stepsizes

(STRATEQ1) produced a solution with a gap value less
than 1% in 20 iterations (Table 19), which is reason-
able, and then exhibited the typical tailing effect. However,
there is no doubt that global convergence to an equilib-
rium solution occurs, as observed from the disequilibrium
information provided for each O-D pair. While the behav-
ior of STRATEQ2 (disaggregate stepsizes) is similar in the
first iterations, the tailing effect is weaker, which allows
the method to reach a gap value as small as 10−7 (see
Tables 20 and 21). Yet better results were achieved by
the combined FW-projection strategy (see Table 22), where
Konnov’s algorithm could achieve a gap value of 2× 10−8

in as little as 20 cycles, i.e., 100 calls to the procedures
CAPSHORT and CAPLOAD.
In the parallel case, numerical tests were conducted

under both the exact and heuristic procedures for (i) build-
ing the best reactive strategy in CAPSHORT; (ii) evaluating
the gap function.
Note that the exact method is only practical when the

network under consideration has low density, which is
(barely) the case of the Sioux Falls network. If the heuristic
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Figure 9. The Sioux Falls network.
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is adopted, one must realize that the estimated gap is not
anymore a reliable measure of equilibrium and can even
turn out to be negative!
Under PQP, convergence occurred, albeit at a slower rate

(see Tables 23, 24, and 25). When applying the heuristic
rule, we could not obtain a true gap value significantly less
than 0.5% (see Tables 27 and 28). This is satisfying for
all practical purposes, but unsatisfactory from a numerical
analysis point of view.

Table 18. A typical strategy for the Sioux Falls network (O-D pair 1–24).

Node 1 2 3 4 5 6 7 8
Preference Set �3� � � �4� �11�5� �9�6� �8� � � �16�9�

Node 9 10 11 12 13 14 15 16
Preference Set �10� �11�15�16�17� �14�12� �13� �24� �23�15� �20�17�19� �17�18�

Node 17 18 19 20 21 22 23 24
Preference Set �19� �22� �20� �23�22�21� �24� �24� �24� � �

Table 17. O-D information for the Sioux
Falls network.

O-D Pair Notation Demand

�1�24� OD1 35
�1�22� OD2 25
�7�24� OD3 20
�7�22� OD4 20

The numerical tests confirmed that the single queue and
parallel processing rules yield distinct solutions, both in
terms of equilibrium strategies and costs. In general, we
observed that the number of strategies involved in the par-
allel case was higher.
Although monotonicity of the cost function is not

required for the convergence of our algorithm, we found it
interesting to check whether this condition held for our test
problems. Table 29 lists the number of times we uncov-
ered counterexamples for both the single queue and parallel
cases. Better (or worse) yet, we could find a counterex-
ample to the pseudomonotonicity of C in the single queue
case. This is an important theoretical counter-result because
the proof of global convergence for the extragradient and
Konnov methods are based on the pseudomonotonicity of
the cost function.

8.3. Random Grid Networks

The last series of numerical tests was performed on rectan-
gular grid networks with randomly generated costs. A grid
is composed of mn nodes and 2mn−m−n arcs; the hori-
zontal arcs are oriented from left to right, and the vertical
arcs are oriented either upward or downward, depending on
whether they lie on an odd-numbered or an even-numbered
column of the grid (see Figure 10). Such a network can
trivially be topologically ordered.
A number l of O-D pairs is randomly selected on the

grid. To ensure that there exists at least one feasible path
from an origin to its corresponding destination, we assume
that
• the destination column lies to the right of the origin

column;
• the origin and the corresponding destination lie on dis-

tinct columns.
Demand is uniformly distributed over all O-D pairs, and

arc costs follow a uniform distribution ��10�100�. The
capacity of the arcs on the Hamiltonian path starting at the
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Table 19. STRATEQ1 on Sioux Falls network (SQP).

Number of Strategies Gap Contribution (%)

# Iter. OD1 OD2 OD3 OD4 OD1 OD2 OD3 OD4 Total

0 1 1 1 1 10�984 5�749 2�833 4�599 24�165
1 2 2 2 2 4�378 4�410 3�915 1�855 14�559
2 3 3 3 3 2�460 0�905 2�673 0�647 6�685
3 3 3 4 3 0�137 1�537 1�416 0�099 3�189
5 4 4 4 4 0�475 1�538 1�014 0�238 3�264
10 4 5 4 5 1�120 0�134 0�606 0�121 1�980
20 4 5 5 5 0�080 0�316 0�306 0�161 0�863
50 4 6 5 5 0�184 0�119 0�124 0�073 0�500
100 4 7 5 5 0�087 0�102 0�066 0�049 0�304
200 4 7 5 5 0�020 0�018 0�035 0�011 0�085
500 4 6 2 4 0�016 0�011 0�002 0�007 0�036

1�000 4 5 2 2 0�017 0�008 0�005 0�006 0�036
2�000 2 5 2 2 0�005 0�001 0�003 0�001 0�011
10�000 2 4 2 2 0�000 0�000 0�001 0�000 0�002

Table 20. STRATEQ2 on Sioux Falls network (SQP).

Number of Strategies Gap Contribution (%)

# Iter. OD1 OD2 OD3 OD4 OD1 OD2 OD3 OD4 Total

0 1 1 1 1 10�984 5�749 2�833 4�599 24�165
1 2 2 2 2 3�680 1�791 0�886 1�321 7�677
2 2 2 3 2 1�632 2�069 0�821 0�409 4�932
3 2 3 3 2 0�905 2�090 0�711 0�233 3�939
5 2 3 3 2 0�393 1�735 0�560 0�142 2�830
10 2 3 3 2 0�116 0�950 0�347 0�105 1�518
20 3 3 3 2 0�068 0�250 0�133 0�068 0�520
50 3 4 3 3 0�016 0�051 0�014 0�030 0�111
100 3 5 2 3 0�007 0�030 0�014 0�028 0�080
200 3 5 2 3 0�005 0�018 0�013 0�018 0�054
500 3 5 2 3 0�003 0�011 0�007 0�007 0�028

1�000 3 5 2 3 0�002 0�007 0�003 0�003 0�014
2�000 3 5 2 3 0�000 0�003 0�001 0�001 0�004
10�000 2 5 1 2 0�000 0�000 0�000 0�000 0�000

Table 21. Solutions after 10�000 iterations on Sioux
Falls network (SQP).

Minimum Strategic Cost

Heuristic OD1 OD2 OD3 OD4 Gap (%)

STRATEQ1 120�00 139�99 111�96 100�00 1�6× 10−3
STRATEQ2 120�00 140�00 111�81 100�00 1�8× 10−7

Table 22. Combined FW-projection under STRATEQ2
on Sioux Falls network (SQP).

Gap (%)

Projection Konnov Extragradient
# Cycles ��= 0�3� ��= 0�4, 
= 0�1, 9= 0�1� ��= 0�2�

1 1�4× 10−2 1�5× 10−2 1�4× 10−2
5 1�4× 10−2 1�3× 10−3 1�5× 10−2
10 6�9× 10−3 9�9× 10−4 1�3× 10−2
15 4�1× 10−4 4�2× 10−5 6�3× 10−3
20 4�0× 10−5 2�0× 10−6 8�8× 10−4

southwestern node is set to +�, thus allowing uncapac-
itated paths for every O-D pair. Other arc capacities are
randomly distributed according to a uniform distribution
�d/10mn���10�50�. The parameters used for each of five
grid networks are shown in Table 30. Because the outde-
gree of each arc is equal to 2, there is no need to distinguish
between the single queue and parallel cases.
The numerical tests were based on the FW algorithm

coupled with the STRATEQ2’s adaptive stepsize strategy.
Control parameters +1 and +2 were set to 0.1. On all grid
test problems, a relative gap measure of 1% was reached
after roughly 20 iterations (see Tables 31 to 35), and one
can visualize the rate of decrease of the gap in Figure 11.
As expected, the running time of a single iteration, illus-
trated in Figure 12, grows linearly with the number of
strategies, which is, on the average, equal to two for each
O-D pair. (The software was written in C and run on a Sun
Ultra 10 computer operating under Solaris.)
A statistic of interest is the running time of one main iter-

ation of STRATEQ2 as a function of the number of active
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Table 23. STRATEQ1 applied to Sioux Falls network (PQP).

Number of Strategies Gap Contribution (%)

# Iter. OD1 OD2 OD3 OD4 OD1 OD2 OD3 OD4 Total

0 1 1 1 1 10�840 5�463 5�125 4�370 25�798
1 2 2 2 2 0�879 3�357 2�048 1�518 7�802
2 2 3 3 2 3�123 3�823 0�599 0�643 8�188
3 2 4 3 3 2�048 1�447 1�231 0�238 4�963
5 3 5 3 4 0�893 0�513 0�569 0�163 2�139
10 3 5 3 4 1�074 0�450 0�314 0�071 1�909
20 4 7 5 5 0�225 0�140 0�108 0�068 0�540
50 4 8 5 5 0�179 0�119 0�068 0�036 0�402
100 4 11 5 5 0�058 0�049 0�033 0�009 0�149
200 4 12 5 5 0�020 0�022 0�019 0�007 0�068
500 4 13 4 5 0�005 0�025 0�004 0�012 0�046

1�000 4 11 4 5 0�021 0�029 0�007 0�007 0�064
2�000 4 11 4 5 0�001 0�005 0�001 0�002 0�008
10�000 3 9 4 4 0�001 0�001 0�000 0�000 0�003

Table 24. STRATEQ2 applied to Sioux Falls network (PQP).

Number of Strategies Gap Contribution (%)

# Iter. OD1 OD2 OD3 OD4 OD1 OD2 OD3 OD4 Total

0 1 1 1 1 10�840 5�463 5�125 4�370 25�798
1 2 2 2 2 5�237 1�348 2�955 0�998 10�537
2 2 2 3 2 2�473 1�586 1�938 0�399 6�397
3 3 3 3 2 2�503 1�379 1�685 0�332 5�900
5 3 5 3 2 1�460 1�349 1�109 0�213 4�131
10 3 7 3 2 0�509 0�982 0�490 0�221 2�201
20 3 7 3 2 0�239 0�302 0�196 0�111 0�849
50 4 8 4 3 0�046 0�058 0�073 0�005 0�181
100 4 8 4 5 0�019 0�008 0�038 0�005 0�070
200 4 8 3 5 0�008 0�003 0�014 0�002 0�027
500 4 10 3 5 0�002 0�003 0�004 0�001 0�009

1�000 4 10 3 5 0�001 0�002 0�002 0�001 0�006
2�000 4 10 3 5 0�001 0�001 0�001 0�000 0�003
10�000 4 10 3 5 0�000 0�000 0�000 0�000 0�000

Table 25. Solutions after 10�000 iterations on Sioux
Falls network (PQP).

Minimum Strategic Cost

Heuristic OD1 OD2 OD3 OD4 Gap (%)

STRATEQ1 120�00 140�00 114�30 100�00 2�9× 10−3
STRATEQ2 120�00 140�00 114�31 100�00 3�2× 10−4

Table 26. Combined FW-projection under STRATEQ2
(Sioux Falls) (PQP).

Gap (%)

Projection Konnov Extragradient
# Cycles ��= 0�2� ��= 0�2, 
= 0�1, 9= 0�1� ��= 0�1�

1 1�2× 10−2 1�2× 10−2 1�3× 10−2
5 4�8× 10−3 4�8× 10−3 7�4× 10−3
10 2�3× 10−3 2�3× 10−3 4�6× 10−3
15 1�3× 10−3 1�3× 10−3 3�1× 10−3
20 7�1× 10−4 7�1× 10−4 2�1× 10−3

strategies (see Table 36), which was obtained by running
FW without an upper bound on the size of the working
set W . To obtain a reliable estimate, the running time was
averaged over three iterations for each fixed size of the
working set.
Finally, we implemented the standard projection algo-

rithm within an RSD (restricted simplicial decomposition)
framework. Each main iteration consists of five steps of
the projection algorithm followed by one STRATEQ2 step.
The initial strategic flow vector was obtained by perform-
ing five STRATEQ2 steps. The results (see Table 37) show
a clear improvement over strategy STRATEQ2 and lead us
to believe that truly large-scale instances could be tackled
using this algorithmic approach.

9. Conclusion
In this paper, we have shown that the concept of “strategy,”
previously proposed as a paradigm for transit assignment
models, can be adapted in a nontrivial fashion to the realm
of assignment on capacitated, acyclic networks. Although



Marcotte, Nguyen, and Schoeb: A Strategic Flow Model of Traffic Assignment
Operations Research 52(2), pp. 191–212, © 2004 INFORMS 209

Table 27. STRATEQ1: Heuristic approach on Sioux
Falls network (PQP).

# Iter. �W � Heuristic Gap (%) True Gap (%)

0 4 25�798 25�798
1 8 7�802 7�802
2 10 6�310 6�310
3 14 3�229 3�229
5 15 4�208 4�208
10 15 1�616 1�622
20 16 1�022 1�061
50 16 0�474 0�536
100 16 0�133 0�430
200 16 0�104 0�316
500 16 0�019 0�359

1�000 16 0�009 0�333
2�000 15 0�004 0�345

Table 28. STRATEQ2: Heuristic approach on Sioux
Falls network (PQP).

# Iter. �W � Heuristic Gap (%) True Gap (%)

0 4 25�798 25�798
1 8 10�537 10�537
2 9 6�397 6�397
3 11 5�725 5�900
5 13 4�327 4�327
10 14 1�988 2�458
20 14 0�933 0�933
50 16 0�214 0�342
100 16 0�074 0�372
200 15 −0�089 0�626
500 15 −0�044 0�663

1�000 15 −0�016 0�732
2�000 11 −0�001 0�725

Table 29. Influence of queue discipline (Sioux Falls).

Counterexample to

Queue Pseudo- Suboptimality
Discipline # Tests Monotonicity monotonicity of CAPSHORT

SQP 1�000 24 1 0
PQP 1�000 1 0 213

Figure 10. A grid network (m= 4 and n= 3).
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Table 30. Parameters of the grid networks.

A B C D E

m 10 20 20 20 40
n 8 8 16 32 32
l 10 10 20 20 40
d 1�000 1�000 1�000 1�000 1�000

Table 31. Numerical results: Grid network A.

# Iter. �W � Gap (%) CPU (sec)

0 10 30�70 0�04
1 16 9�23 0�10
2 20 6�91 0�18
3 21 5�61 0�26
5 22 4�10 0�44
10 24 2�35 0�95
20 24 1�07 2�01
40 23 0�35 4�33
60 22 0�15 6�24
80 21 0�08 8�00
100 20 0�05 9�63

Table 32. Numerical results: Grid network B.

# Iter. �W � Gap (%) CPU (sec)

0 10 65�11 0�08
1 19 20�04 0�22
2 28 8�49 0�44
3 33 6�56 0�71
5 35 4�61 1�28
10 39 2�56 2�87
20 40 1�15 6�28
40 40 0�39 13�21
60 35 0�19 19�72
80 29 0�12 25�02
100 27 0�09 29�75

Table 33. Numerical results: Grid network C.

# Iter. �W � Gap (%) CPU (sec)

0 20 47�45 0�55
1 40 15�16 1�66
2 58 9�55 3�39
3 64 7�80 5�38
5 68 5�67 9�83
10 70 3�09 21�38
20 72 1�26 45�92
40 63 0�37 92�57
60 55 0�17 129�69
80 50 0�10 161�56
100 45 0�06 190�78

the model lacks the theoretical properties that would guar-
antee the uniqueness of the equilibrium solution, our
algorithms converged to identical solutions on randomly
generated networks, which is reassuring.
The next step of our study will be the analysis of a modi-

fied model involving access priorities. Such a model would
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Table 34. Numerical results: Grid network D.

# Iter. �W � Gap (%) CPU (sec)

0 20 68�87 1�26
1 36 27�75 3�71
2 52 11�25 7�59
3 61 8�53 12�49
5 65 5�70 22�87
10 65 2�73 49�43
20 64 0�95 101�60
40 52 0�25 186�62
60 43 0�12 252�32
80 40 0�09 308�99
100 38 0�07 361�00

Table 35. Numerical results: Grid network E.

# Iter. �W � Gap (%) CPU (sec)

0 40 80�06 8�17
1 76 20�69 26�07
2 111 9�56 57�48
3 132 7�28 99�32
5 134 5�06 185�78
10 144 2�81 470�69
20 151 1�24 1�044�05
40 146 0�36 2�074�35
60 124 0�13 2�955�51
80 107 0�06 3�637�78
100 98 0�03 4�229�89

Figure 11. Decrease of the gap function for grids A
and E (STRATEQ2).
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subsume a time-discretized formulation of a dynamic traf-
fic assignment model where the FIFO rule would be auto-
matically satisfied and where arc capacities would be an
integral part of the model. The time-dependent network on
which the model is based will naturally be topologically
ordered with respect to the time increments, thus fulfilling
the acyclicity condition ensuring the validity of the loading
procedure CAPLOAD.

Figure 12. Running time per iteration for grids C and D
(STRATEQ2).
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Table 36. Running times per iteration (STRATEQ2).

CPU per Iteration (sec)

�W � A B C D E

10 0�04 0�08 — — —
20 0�07 0�14 0�55 1�27 —
40 0�14 0�30 1�12 2�58 8�83
80 0�35 0�87 2�73 6�40 18�01
120 0�75 1�84 5�27 12�35 32�30
160 1�13 2�91 8�33 19�69 47�83

Table 37. Projection algorithm applied to grid net-
work E.

# Cycles �W � Gap (%) CPU (sec)

0 134 5�1× 100 120
1 53 6�3× 10−2 241
2 50 5�0× 10−2 273
3 51 4�0× 10−2 306
4 51 5�0× 10−2 340
5 51 4�0× 10−2 376

Appendix. Cyclic Networks
Subproblems associated with a given origin being cycle-
free, one can address cyclic networks by iteratively solving
for equilibria with respect to the origin nodes of the net-
work, à la Gauss-Seidel.
Another approach consists of performing the loading

process through an iterative procedure operating on acyclic
subnetworks. To illustrate this concept, we consider the
“extreme” situation corresponding to the symmetric trian-
gular network of Figure 13, where demand is set to one on
the O-D pairs �1�3�, �2�1�, and �3�2�, cost (respectively,
capacity) is equal to 2 (respectively, 1) on the capacitated
arcs �1�2�, �2�3�, �3�1�, and cost is 10 on the uncapaci-
tated parallel arcs.
At each iteration, one loads the strategic flow associ-

ated with a given O-D pair, assuming that strategic flows
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Figure 13. A cyclic network.
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for the remaining O-D pairs have been fixed at their pre-
ceding values, at every node of the transportation network.
In this example, optimal strategies are clearly achieved by
trying to access a short (capacitated) arc whenever possi-
ble. A description of the iterative process is as follows.
See also Figure 14, where link flows on capacitated arcs,
together with nodal strategic flows, are displayed. The

Figure 14. Loading on an acyclic network.
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loading process converges in two iteration cycles, when the
expected travel cost of each user is equal to 12.

Iteration 1

Flow for O-D pair �1�3� is simply assigned to the shortest
path 1–2–3.

Iteration 2

The entire demand on O-D pair �2�1� competes with one
unit of nodal strategic flow for access to the capacitated arc
�2�3�. According to the proportionality rule, half a unit of
flow is able to access arc �2�3�. The flows then regroup at
node 3 to gain access to arc �3�1�. At this point, note that
the total flow on arc �2�3� exceeds its capacity.

Iteration 3

The same process yields the symmetric situation described
in the third network of Figure 14.

Iteration 4

A second assignment of the �1�3� flow, which now takes
into account the competition at the entrance of arcs �1�2�
and �2�3�, yields the situation of the fourth network.

Iteration 5

A second iteration for O-D pair �2�1� achieves a coherent
solution, i.e., terminates the loading process.

Remark. Although we could not prove it, we conjecture
that the above procedure converges in a finite number of
steps.
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