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Overview: Today

 RNN language models

* |mportant training problems and tricks
* RNNs for other sequence tasks

* Bidirectional and deep RNNs

* RNN extensions: GRU, LSTM for MT

e Tomorrow: Fun applications and new DMN model
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Language Models

A language model computes a probability for a sequence
of words: P(w1,...,wr)

e Useful for machine translation and speech

*  Word choice:
p(walking home after school) > p(walking house after school)

e Use incorrect but necessary Markov assumptions

m m

P(wla"'awM) — HP(wZ | wl)"'awi—l) ~ HP(wZ | wi—(n—l)a"'vwi—l)
=1 =1
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Recurrent Neural Networks!

 RNNs tie the weights at each time step
* Condition the neural network on all previous words

* RAM requirement only scales with number of words
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Recurrent Neural Network language model

Given list of word vectors: <1,--->Tt—1,%t; Tt41,- -, T

At a single time step: he = o (W(hh>ht_1 + W(h“’)x[t])
UJ; = softmax (W(S)ht>
p(ajt—l—l = Uy | xta---axl) — Z,A/t,j
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Recurrent Neural Network language model

We use the same set of W weights at all time steps!

Everything else is the same:

hy = o (W(hh)ht—l + W(hm)x[ﬂ)
gr = softmax (W(S)ht)
f)(xtH = ’ xt,...,xl) = gt,j

ho € RP" js some initialization vector for the hidden layer
at time step O

Z[t] is the column vector of L at index [t] at time step t

W(hh) c RDh X Dy, W(h:c) c RDh X d W(S) c R|V|XDh



Objective function for language models
1y € RV isa probability distribution over the vocabulary

Same cross entropy loss function but predicting words
instead of classes

V]
JD6) = = yrjlog i,
j=1
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Recurrent Neural Network language model

Evaluation could just be negative of average log
probability over dataset of size (number of words) T:

T |V]

1
J = i ;: S:yt,j log 9z, ;

t=1 j=1

But more common: Perplexity: 2

Lower is better!
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Training RNNs is hard

e Multiply the same matrix at each time step during forward prop
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e |deally inputs from many time steps ago can modify output y

e Take % for an example RNN with 2 time steps! Insightful!
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The vanishing/exploding gradient problem

e Multiply the same matrix at each time step during backprop
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e Detailed derivations in the appendix of these slides!
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Why is the vanishing gradient a problem?

e The error at a time step ideally can tell a previous time step
from many steps away to change during backprop

),/f_l yt yt+1
ht—l ‘ ht 1 ht+1 /I/
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The vanishing gradient problem for language models
e |n the case of language modeling or question answering words

from time steps far away are not taken into consideration when
training to predict the next word

e Example:

Jane walked into the room. John walked in too. It was late in the
day. Jane said hi to
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Trick for exploding gradient: clipping trick

e The solution first introduced by Mikolov is to clip gradients
to a maximum value.

Algorithm 1 Pseudo-code for norm clipping the gra-

dients whenever they explode
85

8 3¢
if Hg” > threshold then
threshold 4
R
end if

e Makes a big difference in RNNs.
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Gradient clipping intuition
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Figure from paper:
On the difficulty of
'0.35 training Recurrent Neural
'0.30 Networks, Pascanu et al.
0.25 2013
0.20 £
Q
0.15

'0.10
'0.05

Error surface of a single hidden unit RNN,

High curvature walls

Solid lines: standard gradient descent trajectories

Dashed lines gradients rescaled to fixed size
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For vanishing gradients: Initialization + ReLus!

Pixel-by-pixel permuted MNIST
100 T T T T T

LSTM
90 | == RNN + Tanh

* Initialize W®)s to ol —
identity matrix |
and
f(z) = rect(z) =max(z,0)

cy

50

Test Accura

40

30

e = Huge difference! L"‘V?‘“"“ '

107

0

* |Initialization idea first introduced in Parsing with Compositional
Vector Grammars, Socher et al. 2013

* New experiments with recurrent neural nets in
A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units, Le et al. 2015
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Perplexity Results

KN5 = Count-based language model with Kneser-Ney
smoothing & 5-grams

Table 2. Comparison of different neural network architectures on
Penn Corpus (1M words) and Switchboard (4M words).

Penn Corpus Switchboard
Model NN | NN+KN || NN | NN+KN
KNS5 (baseline) - 141 - 92.9
feedforward NN 141 118 85.1 77.5
RNN trained by BP 137 113 81.3 75.4
RNN trained by BPTT | 123 106 77.5 72.5

Table from paper Extensions of recurrent neural network
language model by Mikolov et al 2011
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Problem: Softmax is huge and slow

Trick: Class-based word prediction

p(w, | history) = p(c, | history)p(w,|c,)

= p(c, | hy)p(w,]|c,)

Table 3. Perplexities on Penn corpus with factorization of the output
layer by the class model. All models have the same basic configura-
tion (200 hidden units and BPTT=5). The Full model is a baseline
and does not use classes, but the whole 10K vocabulary.

The more C|aSSES, | Classes || RNN | RNN+KN5 | Min/epoch | Sec/test |
1 30 134 112 12.8 8.8
the better perplexity o e e P o
. 100 136 114 0.1 5.6
but also worse speed: 00 e s s e
400 134 112 10.9 8.1
1000 131 111 16.1 15.7
2000 128 109 25.3 28.7
4000 127 108 44 4 57.8
6000 127 109 70 96.5
8000 124 107 107 148
17 Full 123 106 154 212




One last implementation trick

* You only need to pass backwards through your
sequence once and accumulate all the deltas from
each E,
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Sequence modeling for other tasks

19

Classify each word into:
* NER
* Entity level sentiment in context

* opinionated expressions

Example application and slides from paper

Opinion Mining with Deep Recurrent Nets
by Irsoy and Cardie 2014
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Opinion Mining with Deep Recurrent Nets

Goal: Classify each word as

direct subjective expressions (DSEs) and
expressive subjective expressions (ESESs).

DSE: Explicit mentions of private states or speech events
expressing private states

ESE: Expressions that indicate sentiment, emotion, etc.
without explicitly conveying them.
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Example Annotation

In BIO notation (tags either begin-of-entity (B_X) or
continuation-of-entity (I_X)):

The committee, [as usual]g, [has refused to make any
statements] ;.

The committee ) as usual has
O O O B_ESE |_ESE O B_DSE
refused to make any statements

I_DSE |_DSE |_DSE |_DSE |_DSE O
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Approach: Recurrent Neural Network

* Notation from paper (so you get used to different ones)

V e [ ® °
A A A A

i h =f(Wx,+Vh_ +b)
A A A A yt — g(Uht +C)

X e [ ® ()

* x represents a token (word) as a vector.
* yrepresents the output label (B, | or O) — g = softmax !

* histhe memory, computed from the past memory and current
word. It summarizes the sentence up to that time.
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Bidirectional RNNs

Problem: For classification you want to incorporate
information from words both preceding and following

Y e o o °
/K [ [ /‘ ;lt = f(th + ‘—/7)%—1 + l;)
" '-. '-. '-.
A A A

Zt = f(WXt + (‘71;”1 + (I;)

A . . . -
'\ ’\ \ ’\ y, =8WUlhs;hi]+c)

X o ° ° °

h=[h;h] now represents (summarizes) the past and future

around a single token.
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Deep Bidirectional RNNs

-

Y
JACIEN

o ([
“‘.‘.> o “‘.
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ht=f(W ht(i_l)+V hi-i+b )

«(1) «— (i) (i-1) —() <) <)
ht=f(W ht +V hiwa+b )

—(L) «(L)

y,=8WUlh: ;h: ]+c)

X o o o
Each memory layer passes an intermediate sequential
representation to the next.
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Data

25

MPQA 1.2 corpus (Wiebe et al., 2005)
consists of 535 news articles (11,111 sentences)

manually labeled with DSE and ESEs at the phrase
level

: . tp
. precision =
Evaluation: F1 P
recall = 'p
tp+ fn
—o. precision - recall

precision + recall
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Evaluation

74
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1 2 3 4 S

# Layers

68
66
64
62
60
58

1 2 3 4 S

# Layers

W 24k
m 200k
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Machine Translation (MT)

* Traditional MT:

* Alot of human feature engineering

* Very complex systems

*  Many different, independent machine learning problems
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Deep learning to the rescue! ... ?

Maybe, we could translate directly with an RNN?

DECOder: Awesome sauce
Y1 Y,
Encoder | T
® O
® O
h, ° h, ° hy ° —> ® > ®
_Jo WV Je| w e ® ®
@) - @ o
o @) [

X1 r X, X3
This needs to

0000 0000 o000 capture the

Echt dicke Kiste entire phrase!
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MT with RNNs — Simplest Model

Encoder: he = ¢(ht—1,ffit) = f (W(hh)ht_l + W(hx)xt)

Decoder: [t =ohi-1) =1 (W(hh)ht‘l)

Yy = softmax (W(S)ht)

Minimize cross entropy error for all target words
conditioned on source words

N
1
EE (n)|.(n)
mgXNE og po(y*"™ |z\")

n=1

It’s not quite that simple ;)
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RNN Translation Model Extensions

1. Train different RNN weights for encoding and decoding

Awesome sauce

1 1

o o

o ()

— >

hl ‘ hZ ‘ h3 ‘ ‘ ‘

_Jo W Je[ w e d ®
[ - @ @)
o @) [

0000 0000 0000
Echt dicke Kiste
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RNN Translation Model Extensions

Notation: Each input of ¢ has its own linear
transformation matrix. Simple: h. = ¢(hi—1) = f (W(hh)ht—l)

Decoder
2. Compute every hidden state in Yo Vs
decoder from T//
- —A
. Previous hidden state (standard) |~ %

* Last hidden vector of encoder c=h; ?

*  Previous predicted output word y, ,

Encoder

hpt=odp(hi—1,¢,Yt—1)

Cho et al. 2014
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Different picture, same idea

f= (La, croissance, économique, s'est, ralentie, ces, dernicres, années, .)

o [ [ ] [ ] [ [
) [ | [ | ||

2 U, u

: :

o

B _-— L

[T [ 11—~
]

Word Probability
=

Recurrent| Recurrent
State
NN

Word Representation  State

Continuous-space

Kyunghyun Cho et al. 2014

1-0of-K coding

e = (Economic, growth, has, slowed, down, in, recent, years, .) 8/12/15



RNN Translation Model Extensions

3. Train stacked/deep RNNs P
with multiple layers

4. Potentially train
bidirectional encoder h

5. Train input sequence in reverse order for easier

optimization problem: Instead of AB C 2 XY,
train withCBA 2 XY
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6. Main Improvement: Better Units

* More complex hidden unit computation in recurrence!

 Gated Recurrent Units (GRU)
introduced by Cho et al. 2014

e Main ideas:

* keep around memories to capture long distance
dependencies

* allow error messages to flow at different strengths
depending on the inputs
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GRUs

35

Standard RNN computes hidden layer at next time step
directly: he = f (W<hh>ht_1 + W(hx)azt)

GRU first computes an update gate (another layer)
based on current input word vector and hidden state

2 =0 (W(Z)aﬁt 4+ U(Z>ht_1>

Compute reset gate similarly but with different weights
Tt = O (W(T)xt -+ U(T)ht_l)

Richard Socher 8/12/15



GRUs

36

Update gate w=0 (W(z)xt + U(z)ht—l)
Reset gate re=o (W(%t +U (”ht_l)

New memory content: h: = tanh (Wa, + 70 Uh 1)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

Final memory at time step combines current and
previous time steps: hi =z 0hi_14+ (1 —2z)o0hy

Richard Socher 8/12/15



Attempt at a clean illustration

2t =0 (W(z>xt + U(z)ht_l)
Ty =0 (W(T)aﬁt + U(T)ht_1>

Final memory

h; = tanh (Waxy+ri0Uhg_q)

~

hy = 2z 0 hy_ 1—2z,)0h
Memory (reset) t t t 1+( t) t

Update gate

Reset gate

Input:

37 Richard Socher 8/12/15



GRU intuition

38

If reset is close to O, % =0 (W(z)"”t * U(zmt‘l)
ignore previous hidden state re=o (W<”’)ast + U(”ht_l)
— Allows model to drop hy = tanh (Wxy + 7 0 Uhy_1)

information that is irrelevant -
. ht:ZtOht_1+(1—Zt>Oht
in the future

Update gate z controls how much of past state should
matter now.

* Ifzclose to 1, then we can copy information in that unit
through many time steps! Less vanishing gradient!

Units with short-term dependencies often have reset

gates very active
Richard Socher 8/12/15



GRU intuition
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Units with long term

dependencies have active

update gates z

2t — O (W(z)xt + U(z>ht_1>
e = O (W(T)xt + U(T)ht_l)
h; = tanh (Waxy+ri0Uhg_q)

~

lllustration: <

4

(h)

NG

e —>
r

|

ht:ZtOht_1+(1—Zt>Oht

— 0 . .
Derivative of 77172 ? = rest is same chain rule, but
implement with modularization or automatic

differentiation

Richard Socher
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Long-short-term-memories (LSTMs)

40

We can make the units even more complex

Allow each time step to modify

* Input gate (current cell matters) it =0 (W(%t + U(i)ht—l)

* Forget (gate O, forget past) fe=0 (W(‘f)wt + U(f)ht—l)

*  Output (how much cell is exposed) ot =0 (W(O)wt + U(O)ht—l)

* New memory cell ¢t = tanh (W(C)flft + U(C)ht—l)
Final memory cell: ct = froci1+ipod

Final hidden state: ht = o4 o tanh(cy)
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lllustrations a bit overwhelming ;)

net, S, =S +gy" A

g gv‘“'ﬂ h  hy*
O —e>0O>0O—e

S\

w

ymi @ youti ey
net,, net,,,
wy AN, AN

Long Short-Term Memory by Hochreiter and Schmidhuber (1997)

W

N out = f(netout)

forget =
f(netforget)

forget gate

e self-recurrent
in= f(net,) ‘ S ~ connection
memory cell N m— » memory cell
1114120 17 input j SE— output
http://people.idsia.ch/~juergen/Istm/sId017.htm Input gate output gate

http://deeplearning.net/tutorial/lstm.html

Intuition: memory cells can keep information intact, unless inputs makes them
forget it or overwrite it with new input.
Cell can decide to output this information or just store it
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LSTMs are currently very hip!

42

En vogue default model for most sequence labeling
tasks

Very powerful, especially when stacked and made
even deeper (each hidden layer is already computed
by a deep internal network)

Most useful if you have lots and lots of data
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Deep LSTMs don’t outperform traditional MT yet

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’ 14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Cho et al. [5] 34.54
Best WMT’ 14 result [9] 37.0
Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85
Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5
Oracle Rescoring of the Baseline 1000-best lists ~45

Sequence to Sequence Learning by Sutskever et al. 2014
43



Deep LSTM for Machine Translation

PCA of vectors from last time step hidden layer

151 . .
4l O | was given a card by her in the garden
3r OMary admires John 10 O In the garden , she gave me a card
O She gave me a card in the garden
2r OMary is in love with John
5 |-
1+
or OMary respects John or
s OdJohn admires Mary
-5r O She was given a card by me in the garden
-2r OdJohn is in love with Mar
y O Inthe garden , | gave her a card
3 -10
4+
5l OJohn respects Mary 151 O | gave her a card in the garden
_6 1 1 1 1 1 1 1 1 J _20 1 1 1 1 1 1 J
-8 -6 -4 -2 0 2 4 6 8 10 -15 -10 -5 0 5 10 15 20

Sequence to Sequence Learning by Sutskever et al. 2014
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Further Improvements: More Gates!

Gated Feedback Recurrent Neural Networks, Chung et al. 2015

(a) Conventional stacked RNN (b) Gated Feedback RNN
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Summary

 Recurrent Neural Networks are powerful
* Gated Recurrent Units even better

 LSTMs maybe even better (jury still out)

* Aot of ongoing work right now

* Next lecture: Putting it all together for fun applications
and dynamic memory networks
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The vanishing gradient problem - Details

e Similar but simpler RNN formulation:

he = Wf(ht—l)—l—W(hx)l’[t]
g = W9 f(h)

e Total error is the sum of each error at time steps t

OB _ <~ 0B
oW &~ oW

t=1

e Hardcore chain rule application'

8Et Z 6Et 8yt 8ht 8hk
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The vanishing gradient problem - Details

e Similar to backprop but less efficient formulation

e Useful for analysis, we’ll Iook at:
8Et Z 8Et 8yt 8ht 8hk

e Remember: he = Wf(hi—1)+ W(’“”)x[t]
e More chain rule, remember:
Ohy L Oh;

8hk ikl 8hj_1
* Each partial is a Jacobian: o 0N
d_f_[é?f 8f]_ o Ot
—=l  5—|=|: L
X 0x1 0z, of,. of,,
| 0xq ox,, |
8/12/15
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The vanishing gradient problem - Details

t

8ht 8h3 ht—l

* From previous slide: o H . 0 " 0
B ok 0TI o 5 @
O ®
* Remember: hy, = Wf(h—1)+ Wy A id
e To compute Jacobian, derive each element of matrix: ET
1—1n
Ohy 1 Oh; t
a_ht: o= [] W"diaglf'(hj-1)]
N B S t  B |
(= )
29 O
. o B . Check at home
Where: diag(z) = " that you understand
O P the diag matrix
\ Zn) formulation
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The vanishing gradient problem - Details

e Analyzing the norms of the Jacobians, yields:
Oh;

| Ohj—1
e Where we defined 3‘s as upper bounds of the norms

< W ||l diag[f'(hj-0)]ll < Bw Bn

e The gradient is a product of Jacobian matrices, each associated
with a step in the forward computation.

ohy
Ohy,

— | < (BwBn) "

e This can become very small or very large quickly [Bengio et al

1994], and the locality assumption of gradient descent breaks
down. = Vanishing or exploding gradient
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