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•  RNN	
  language	
  models	
  

•  Important	
  training	
  problems	
  and	
  tricks	
  

•  RNNs	
  for	
  other	
  sequence	
  tasks	
  

•  Bidirec@onal	
  and	
  deep	
  RNNs	
  

•  RNN	
  extensions:	
  GRU,	
  LSTM	
  for	
  MT	
  

•  Tomorrow:	
  Fun	
  applica@ons	
  and	
  new	
  DMN	
  model	
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  Models	
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A	
  language	
  model	
  computes	
  a	
  probability	
  for	
  a	
  sequence	
  
of	
  words:	
  

•  Useful	
  for	
  machine	
  transla@on	
  and	
  speech	
  
•  Word	
  choice:	
  	
  

p(walking	
  home	
  aQer	
  school)	
  >	
  p(walking	
  house	
  aQer	
  school)	
  

•  Use	
  incorrect	
  but	
  necessary	
  Markov	
  assump@ons	
  

	
  



Recurrent	
  Neural	
  Networks!	
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•  RNNs	
  @e	
  the	
  weights	
  at	
  each	
  @me	
  step	
  

•  Condi@on	
  the	
  neural	
  network	
  on	
  all	
  previous	
  words	
  

•  RAM	
  requirement	
  only	
  scales	
  with	
  number	
  of	
  words	
  

	
  

xt−1	
   xt	
   xt+1	
  

ht−1	
   ht	
   ht+1	
  
W	
   W	
  

yt−1	
   yt	
   yt+1	
  



Recurrent	
  Neural	
  Network	
  language	
  model	
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Given	
  list	
  of	
  word	
  vectors:	
  

At	
  a	
  single	
  @me	
  step:	
  

xt	
   ht	
  

ßà	
  	
  	
  



Recurrent	
  Neural	
  Network	
  language	
  model	
  

We	
  use	
  the	
  same	
  set	
  of	
  W	
  weights	
  at	
  all	
  @me	
  steps!	
  

Everything	
  else	
  is	
  the	
  same:	
  

	
  

	
  

	
  	
  	
  	
  	
  is	
  some	
  ini@aliza@on	
  vector	
  for	
  the	
  hidden	
  layer	
  
at	
  @me	
  step	
  0	
  

	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  column	
  vector	
  of	
  L	
  at	
  index	
  [t]	
  at	
  @me	
  step	
  t	
  



ObjecEve	
  funcEon	
  for	
  language	
  models	
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  is	
  a	
  probability	
  distribu@on	
  over	
  the	
  vocabulary	
  

	
  

Same	
  cross	
  entropy	
  loss	
  func@on	
  but	
  predic@ng	
  words	
  
instead	
  of	
  classes	
  

	
  

	
  

	
  



Recurrent	
  Neural	
  Network	
  language	
  model	
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Evalua@on	
  could	
  just	
  be	
  nega@ve	
  of	
  average	
  log	
  
probability	
  over	
  dataset	
  of	
  size	
  (number	
  of	
  words)	
  T:	
  

	
  

	
  

	
  

But	
  more	
  common:	
  Perplexity:	
  	
  	
  	
  2J	
  

Lower	
  is	
  beber!	
  

	
  



Training	
  RNNs	
  is	
  hard	
  

•  Mul@ply	
  the	
  same	
  matrix	
  at	
  each	
  @me	
  step	
  during	
  forward	
  prop	
  

•  Ideally	
  inputs	
  from	
  many	
  @me	
  steps	
  ago	
  can	
  modify	
  output	
  y	
  
•  Take	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  an	
  example	
  RNN	
  with	
  2	
  @me	
  steps!	
  Insighcul!	
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xt−1	
   xt	
   xt+1	
  

ht−1	
   ht	
   ht+1	
  
W	
   W	
  

yt−1	
   yt	
   yt+1	
  



The	
  vanishing/exploding	
  gradient	
  problem	
  

•  Mul@ply	
  the	
  same	
  matrix	
  at	
  each	
  @me	
  step	
  during	
  backprop	
  

•  Detailed	
  deriva@ons	
  in	
  the	
  appendix	
  of	
  these	
  slides!	
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xt−1	
   xt	
   xt+1	
  

ht−1	
   ht	
   ht+1	
  
W	
   W	
  

yt−1	
   yt	
   yt+1	
  



Why	
  is	
  the	
  vanishing	
  gradient	
  a	
  problem?	
  

•  The	
  error	
  at	
  a	
  @me	
  step	
  ideally	
  can	
  tell	
  a	
  previous	
  @me	
  step	
  
from	
  many	
  steps	
  away	
  to	
  change	
  during	
  backprop	
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xt−1	
   xt	
   xt+1	
  

ht−1	
   ht	
   ht+1	
  
W	
   W	
  

yt−1	
   yt	
   yt+1	
  



The	
  vanishing	
  gradient	
  problem	
  for	
  language	
  models	
  

•  In	
  the	
  case	
  of	
  language	
  modeling	
  or	
  ques@on	
  answering	
  words	
  
from	
  @me	
  steps	
  far	
  away	
  are	
  not	
  taken	
  into	
  considera@on	
  when	
  
training	
  to	
  predict	
  the	
  next	
  word	
  

•  Example:	
  	
  
	
  
Jane	
  walked	
  into	
  the	
  room.	
  John	
  walked	
  in	
  too.	
  It	
  was	
  late	
  in	
  the	
  
day.	
  Jane	
  said	
  hi	
  to	
  ____	
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Trick	
  for	
  exploding	
  gradient:	
  clipping	
  trick	
  

•  The	
  solu@on	
  first	
  introduced	
  by	
  Mikolov	
  	
  is	
  to	
  clip	
  gradients	
  
to	
  a	
  maximum	
  value.	
  	
  

•  Makes	
  a	
  big	
  difference	
  in	
  RNNs.	
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On the di�culty of training Recurrent Neural Networks

region of space. It has been shown that in practice
it can reduce the chance that gradients explode, and
even allow training generator models or models that
work with unbounded amounts of memory(Pascanu
and Jaeger, 2011; Doya and Yoshizawa, 1991). One
important downside is that it requires a target to be
defined at every time step.

In Hochreiter and Schmidhuber (1997); Graves et al.
(2009) a solution is proposed for the vanishing gra-
dients problem, where the structure of the model is
changed. Specifically it introduces a special set of
units called LSTM units which are linear and have a
recurrent connection to itself which is fixed to 1. The
flow of information into the unit and from the unit is
guarded by an input and output gates (their behaviour
is learned). There are several variations of this basic
structure. This solution does not address explicitly the
exploding gradients problem.

Sutskever et al. (2011) use the Hessian-Free opti-
mizer in conjunction with structural damping, a spe-
cific damping strategy of the Hessian. This approach
seems to deal very well with the vanishing gradient,
though more detailed analysis is still missing. Pre-
sumably this method works because in high dimen-
sional spaces there is a high probability for long term
components to be orthogonal to short term ones. This
would allow the Hessian to rescale these components
independently. In practice, one can not guarantee that
this property holds. As discussed in section 2.3, this
method is able to deal with the exploding gradient
as well. Structural damping is an enhancement that
forces the change in the state to be small, when the pa-
rameter changes by some small value�✓. This asks for
the Jacobian matrices @xt

@✓

to have small norm, hence
further helping with the exploding gradients problem.
The fact that it helps when training recurrent neural
models on long sequences suggests that while the cur-
vature might explode at the same time with the gradi-
ent, it might not grow at the same rate and hence not
be su�cient to deal with the exploding gradient.

Echo State Networks (Lukoševičius and Jaeger, 2009)
avoid the exploding and vanishing gradients problem
by not learning the recurrent and input weights. They
are sampled from hand crafted distributions. Because
usually the largest eigenvalue of the recurrent weight
is, by construction, smaller than 1, information fed in
to the model has to die out exponentially fast. This
means that these models can not easily deal with long
term dependencies, even though the reason is slightly
di↵erent from the vanishing gradients problem. An
extension to the classical model is represented by leaky
integration units (Jaeger et al., 2007), where

x

k

= ↵x

k�1 + (1� ↵)�(W
rec

x

k�1 +W

in

u

k

+ b).

While these units can be used to solve the standard
benchmark proposed by Hochreiter and Schmidhu-
ber (1997) for learning long term dependencies (see
(Jaeger, 2012)), they are more suitable to deal with
low frequency information as they act as a low pass
filter. Because most of the weights are randomly sam-
pled, is not clear what size of models one would need
to solve complex real world tasks.

We would make a final note about the approach pro-
posed by Tomas Mikolov in his PhD thesis (Mikolov,
2012)(and implicitly used in the state of the art re-
sults on language modelling (Mikolov et al., 2011)).
It involves clipping the gradient’s temporal compo-
nents element-wise (clipping an entry when it exceeds
in absolute value a fixed threshold). Clipping has been
shown to do well in practice and it forms the backbone
of our approach.

3.2. Scaling down the gradients

As suggested in section 2.3, one simple mechanism to
deal with a sudden increase in the norm of the gradi-
ents is to rescale them whenever they go over a thresh-
old (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

ĝ @E
@✓

if kĝk � threshold then

ĝ threshold

kĝk ĝ

end if

This algorithm is very similar to the one proposed by
Tomas Mikolov and we only diverged from the original
proposal in an attempt to provide a better theoretical
foundation (ensuring that we always move in a de-
scent direction with respect to the current mini-batch),
though in practice both variants behave similarly.

The proposed clipping is simple to implement and
computationally e�cient, but it does however in-
troduce an additional hyper-parameter, namely the
threshold. One good heuristic for setting this thresh-
old is to look at statistics on the average norm over
a su�ciently large number of updates. In our ex-
periments we have noticed that for a given task and
model size, training is not very sensitive to this hyper-
parameter and the algorithm behaves well even for
rather small thresholds.

The algorithm can also be thought of as adapting
the learning rate based on the norm of the gradient.
Compared to other learning rate adaptation strate-
gies, which focus on improving convergence by col-
lecting statistics on the gradient (as for example in



Gradient	
  clipping	
  intuiEon	
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•  Error	
  surface	
  of	
  a	
  single	
  hidden	
  unit	
  RNN,	
  	
  

•  High	
  curvature	
  walls	
  

•  Solid	
  lines:	
  standard	
  gradient	
  descent	
  trajectories	
  	
  

•  Dashed	
  lines	
  gradients	
  rescaled	
  to	
  fixed	
  size	
  

	
  

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit

recurrent network, highlighting the existence of high cur-

vature walls. The solid lines depicts standard trajectories

that gradient descent might follow. Using dashed arrow

the diagram shows what would happen if the gradients is

rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
W

rec

is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure	
  from	
  paper:	
  	
  
On	
  the	
  difficulty	
  of	
  
training	
  Recurrent	
  Neural	
  
Networks,	
  Pascanu	
  et	
  al.	
  
2013	
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  vanishing	
  gradients:	
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•  Ini@alize	
  W(*)‘s	
  to	
  
iden@ty	
  matrix	
  I	
  
and	
  
f(z)	
  	
  =	
  

•  à	
  Huge	
  difference!	
  

•  Ini@aliza@on	
  idea	
  first	
  introduced	
  in	
  Parsing	
  with	
  Composi4onal	
  
Vector	
  Grammars,	
  Socher	
  et	
  al.	
  2013	
  

•  New	
  experiments	
  with	
  recurrent	
  neural	
  nets	
  in	
  	
  
A	
  Simple	
  Way	
  to	
  Ini4alize	
  Recurrent	
  Networks	
  of	
  Rec4fied	
  
Linear	
  Units,	
  Le	
  et	
  al.	
  2015	
  

T LSTM RNN + Tanh IRNN
150 lr = 0.01, gc = 10, fb = 1.0 lr = 0.01, gc = 100 lr = 0.01, gc = 100

200 lr = 0.001, gc = 100, fb = 4.0 N/A lr = 0.01, gc = 1

300 lr = 0.01, gc = 1, fb = 4.0 N/A lr = 0.01, gc = 10

400 lr = 0.01, gc = 100, fb = 10.0 N/A lr = 0.01, gc = 1

Table 1: Best hyperparameters found for adding problems after grid search. lr is the learning rate, gc
is gradient clipping, and fb is forget gate bias. N/A is when there is no hyperparameter combination
that gives good result.

4.2 MNIST Classification from a Sequence of Pixels

Another challenging toy problem is to learn to classify the MNIST digits [21] when the 784 pixels
are presented sequentially to the recurrent net. In our experiments, the networks read one pixel at a
time in scanline order (i.e. starting at the top left corner of the image, and ending at the bottom right
corner). The networks are asked to predict the category of the MNIST image only after seeing all
784 pixels. This is therefore a huge long range dependency problem because each recurrent network
has 784 time steps.

To make the task even harder, we also used a fixed random permutation of the pixels of the MNIST
digits and repeated the experiments.

All networks have 100 recurrent hidden units. We stop the optimization after it converges or when
it reaches 1,000,000 iterations and report the results in figure 3 (best hyperparameters are listed in
table 2).
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Figure 3: The results of recurrent methods on the “pixel-by-pixel MNIST” problem. We report the
test set accuracy for all methods. Left: normal MNIST. Right: permuted MNIST.

Problem LSTM RNN + Tanh RNN + ReLUs IRNN
MNIST lr = 0.01, gc = 1 lr = 10

−8, gc = 10 lr = 10
−8, gc = 10 lr = 10

−8, gc = 1

fb = 1.0

permuted lr = 0.01, gc = 1 lr = 10
−8, gc = 1 lr = 10

−6, gc = 10 lr = 10
−9, gc = 1

MNIST fb = 1.0

Table 2: Best hyperparameters found for pixel-by-pixelMNIST problems after grid search. lr is the
learning rate, gc is gradient clipping, and fb is the forget gate bias.

The results using the standard scanline ordering of the pixels show that this problem is so difficult
that standard RNNs fail to work, even with ReLUs, whereas the IRNN achieves 3% test error rate
which is better than most off-the-shelf linear classifiers [21]. We were surprised that the LSTM did
not work as well as IRNN given the various initialization schemes that we tried. While it still possi-
ble that a better tuned LSTM would do better, the fact that the IRNN perform well is encouraging.

5

rect(z) =max(z, 0)
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KN5	
  =	
  Count-­‐based	
  language	
  model	
  with	
  Kneser-­‐Ney	
  
smoothing	
  &	
  5-­‐grams	
  

	
  

	
  

	
  

	
  

Table	
  from	
  paper	
  Extensions	
  of	
  recurrent	
  neural	
  network	
  
language	
  model	
  by	
  Mikolov	
  et	
  al	
  2011	
  



Problem:	
  SoPmax	
  is	
  huge	
  and	
  slow	
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Trick:	
  Class-­‐based	
  word	
  predic@on	
  

p(wt|history)	
   	
  =	
  p(ct|history)p(wt|ct)	
  

	
   	
   	
  =	
  p(ct|ht)p(wt|ct)	
  

	
  

The	
  more	
  classes,	
  
the	
  beber	
  perplexity	
  
but	
  also	
  worse	
  speed:	
  

	
  

	
  

	
  



One	
  last	
  implementaEon	
  trick	
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•  You	
  only	
  need	
  to	
  pass	
  backwards	
  through	
  your	
  
sequence	
  once	
  and	
  accumulate	
  all	
  the	
  deltas	
  from	
  
each	
  Et	
  



Sequence	
  modeling	
  for	
  other	
  tasks	
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•  Classify	
  each	
  word	
  into:	
  	
  
•  NER	
  

•  En@ty	
  level	
  sen@ment	
  in	
  context	
  	
  

•  opinionated	
  expressions	
  

•  Example	
  applica@on	
  and	
  slides	
  from	
  paper	
  	
  
Opinion	
  Mining	
  with	
  Deep	
  Recurrent	
  Nets	
  	
  
by	
  Irsoy	
  and	
  Cardie	
  2014	
  



Opinion	
  Mining	
  with	
  Deep	
  Recurrent	
  Nets	
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Goal:	
  Classify	
  each	
  word	
  as	
  

direct	
  subjec4ve	
  expressions	
  (DSEs)	
  and	
  	
  
expressive	
  subjec4ve	
  expressions	
  (ESEs).	
  	
  

DSE:	
  Explicit	
  men@ons	
  of	
  private	
  states	
  or	
  speech	
  events	
  
expressing	
  private	
  states	
  	
  

ESE:	
  Expressions	
  that	
  indicate	
  sen@ment,	
  emo@on,	
  etc.	
  
without	
  explicitly	
  conveying	
  them.	
  	
  

	
  



Example	
  AnnotaEon	
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In	
  BIO	
  nota@on	
  (tags	
  either	
  begin-­‐of-­‐en@ty	
  (B_X)	
  or	
  
con@nua@on-­‐of-­‐en@ty	
  (I_X)):	
  
The	
  commibee,	
  [as	
  usual]ESE,	
  [has	
  refused	
  to	
  make	
  any	
  
statements]DSE.	
  	
  

	
  



Approach:	
  Recurrent	
  Neural	
  Network	
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•  Nota@on	
  from	
  paper	
  (so	
  you	
  get	
  used	
  to	
  different	
  ones)	
  

•  x	
  represents	
  a	
  token	
  (word)	
  as	
  a	
  vector.	
  	
  

•  y	
  represents	
  the	
  output	
  label	
  (B,	
  I	
  or	
  O)	
  –	
  g	
  =	
  soQmax	
  !	
  

•  h	
  is	
  the	
  memory,	
  computed	
  from	
  the	
  past	
  memory	
  and	
  current	
  
word.	
  It	
  summarizes	
  the	
  sentence	
  up	
  to	
  that	
  @me.	
  

Recurrent Neural Network 

ht = f (Wxt +Vht−1 + b)
yt = g(Uht + c)

y

h

x

    represents a token (word) as a vector. 
    represents the output label (B, I or O). 
    is the memory, computed from the past memory and 
current word. It summarizes the sentence up to that time. 

x
y
h
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Problem:	
  For	
  classifica@on	
  you	
  want	
  to	
  incorporate	
  
informa@on	
  from	
  words	
  both	
  preceding	
  and	
  following	
  

Ideas?	
  

	
  

Bidirectionality 

h
!
t = f (W

!"!
xt +V
!"
h
!
t−1 + b
!
)

h
!
t = f (W

!""
xt +V
!"
h
!
t+1 + b
!
)

yt = g(U[h
!
t;h
!
t ]+ c)

y

h

x

                 now represents (summarizes) the past and future 
around a single token. 
h = [h
!
;h
!
]
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Going Deep 

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L )
;h
!
t
(L )
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential 
representation to the next. 

h(2)

h(1)
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•  MPQA	
  1.2	
  corpus	
  (Wiebe	
  et	
  al.,	
  2005)	
  	
  

•  consists	
  of	
  535	
  news	
  ar@cles	
  (11,111	
  sentences)	
  	
  

•  manually	
  labeled	
  with	
  DSE	
  and	
  ESEs	
  at	
  the	
  phrase	
  
level	
  	
  

•  Evalua@on:	
  F1	
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Results: Deep vs Shallow RNNs 
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•  TradiEonal	
  MT:	
  
•  A	
  lot	
  of	
  human	
  feature	
  engineering	
  

•  Very	
  complex	
  systems	
  

•  Many	
  different,	
  independent	
  machine	
  learning	
  problems	
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Maybe,	
  we	
  could	
  translate	
  directly	
  with	
  an	
  RNN?	
  

	
   	
   	
   	
  Decoder:	
  

Encoder	
  

x1	
   x2	
   x3	
  

h1	
   h2	
   h3	
  
W	
   W	
  

y1	
   y2	
  

Echt	
   	
   	
  	
  	
  dicke 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  Kiste	
  
	
  	
  

Awesome	
   	
  	
  	
  	
  	
  	
  	
  sauce	
  

This	
  needs	
  to	
  	
  
capture	
  the	
  	
  
en@re	
  phrase!	
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Encoder:	
  

Decoder:	
  	
  	
  

	
  

Minimize	
  cross	
  entropy	
  error	
  for	
  all	
  target	
  words	
  
condi@oned	
  on	
  source	
  words	
  

	
  

It’s	
  not	
  quite	
  that	
  simple	
  ;)	
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1.	
  Train	
  different	
  RNN	
  weights	
  for	
  encoding	
  and	
  decoding	
  

	
  

x1	
   x2	
   x3	
  

h1	
   h2	
   h3	
  
W	
   W	
  

y1	
   y2	
  

Echt	
   	
   	
  	
  	
  dicke 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  Kiste	
  
	
  	
  

Awesome	
   	
  	
  	
  	
  	
  	
  	
  sauce	
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Nota@on:	
  Each	
  input	
  of	
  Á	
  has	
  its	
  own	
  linear	
  
transforma@on	
  matrix.	
  Simple:	
  

2.  Compute	
  every	
  hidden	
  state	
  in	
  	
  
decoder	
  from	
  

•  Previous	
  hidden	
  state	
  (standard)	
  

•  Last	
  hidden	
  vector	
  of	
  encoder	
  c=hT	
  

•  Previous	
  predicted	
  output	
  word	
  yt-­‐1	
  

	
  

2 RNN Encoder–Decoder

2.1 Preliminary: Recurrent Neural Networks
A recurrent neural network (RNN) is a neural net-
work that consists of a hidden state h and an
optional output y which operates on a variable-
length sequence x = (x1, . . . , xT ). At each time
step t, the hidden state hhti of the RNN is updated
by

hhti = f

�

hht�1i, xt
�

, (1)

where f is a non-linear activation func-
tion. f may be as simple as an element-
wise logistic sigmoid function and as com-
plex as a long short-term memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997).

An RNN can learn a probability distribution
over a sequence by being trained to predict the
next symbol in a sequence. In that case, the output
at each timestep t is the conditional distribution
p(xt | xt�1, . . . , x1). For example, a multinomial
distribution (1-of-K coding) can be output using a
softmax activation function

p(xt,j = 1 | xt�1, . . . , x1) =
exp

�

wjhhti
�

PK
j0=1 exp

�

wj0hhti
�

,

(2)

for all possible symbols j = 1, . . . ,K, where wj

are the rows of a weight matrix W. By combining
these probabilities, we can compute the probabil-
ity of the sequence x using

p(x) =
T
Y

t=1

p(xt | xt�1, . . . , x1). (3)

From this learned distribution, it is straightfor-
ward to sample a new sequence by iteratively sam-
pling a symbol at each time step.

2.2 RNN Encoder–Decoder
In this paper, we propose a novel neural network
architecture that learns to encode a variable-length
sequence into a fixed-length vector representation
and to decode a given fixed-length vector rep-
resentation back into a variable-length sequence.
From a probabilistic perspective, this new model
is a general method to learn the conditional dis-
tribution over a variable-length sequence condi-
tioned on yet another variable-length sequence,
e.g. p(y1, . . . , yT 0 | x1, . . . , xT ), where one

�� �� ��

��� �� ��

�

�	�
�	�


��
�	�
Figure 1: An illustration of the proposed RNN
Encoder–Decoder.

should note that the input and output sequence
lengths T and T

0 may differ.
The encoder is an RNN that reads each symbol

of an input sequence x sequentially. As it reads
each symbol, the hidden state of the RNN changes
according to Eq. (1). After reading the end of
the sequence (marked by an end-of-sequence sym-
bol), the hidden state of the RNN is a summary c
of the whole input sequence.

The decoder of the proposed model is another
RNN which is trained to generate the output se-
quence by predicting the next symbol yt given the
hidden state hhti. However, unlike the RNN de-
scribed in Sec. 2.1, both yt and hhti are also con-
ditioned on yt�1 and on the summary c of the input
sequence. Hence, the hidden state of the decoder
at time t is computed by,

hhti = f

�

hht�1i, yt�1, c
�

,

and similarly, the conditional distribution of the
next symbol is

P (yt|yt�1, yt�2, . . . , y1, c) = g

�

hhti, yt�1, c
�

.

for given activation functions f and g (the latter
must produce valid probabilities, e.g. with a soft-
max).

See Fig. 1 for a graphical depiction of the pro-
posed model architecture.

The two components of the proposed RNN
Encoder–Decoder are jointly trained to maximize
the conditional log-likelihood

max

✓

1

N

N
X

n=1

log p✓(yn | xn), (4)

Cho	
  et	
  al.	
  2014	
  
	
  



Different	
  picture,	
  same	
  idea	
  

8/12/15	
  Richard	
  Socher	
  32	
  e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-
of

-K
 c

od
in

g
C

on
tin

uo
us

-s
pa

ce
W

or
d 

R
ep

re
se

nt
at

io
n

si

wi

R
ec

ur
re

nt
St

at
e hi

W
or

d 
Ss

am
pl

e

ui

R
ec

ur
re

nt
St

at
ez i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

W
or

d 
Pr

ob
ab

ili
ty

Encoder

D
ecoder

Kyunghyun	
  Cho	
  et	
  al.	
  2014	
  
	
  



RNN	
  TranslaEon	
  Model	
  Extensions	
  

8/12/15	
  Richard	
  Socher	
  33	
  

3.  Train	
  stacked/deep	
  RNNs	
  	
  
with	
  mul@ple	
  layers	
  

4.  Poten@ally	
  train	
  	
  
bidirec@onal	
  encoder	
  

5.  Train	
  input	
  sequence	
  in	
  reverse	
  order	
  for	
  easier	
  
op@miza@on	
  problem:	
  Instead	
  of	
  A	
  B	
  C	
  à	
  X	
  Y,	
  	
  
train	
  with	
  C	
  B	
  A	
  à	
  X	
  Y	
  

	
  

Going Deep 

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L )
;h
!
t
(L )
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential 
representation to the next. 

h(2)

h(1)
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•  More	
  complex	
  hidden	
  unit	
  computa@on	
  in	
  recurrence!	
  

•  Gated	
  Recurrent	
  Units	
  (GRU)	
  
introduced	
  by	
  Cho	
  et	
  al.	
  2014	
  	
  

•  Main	
  ideas:	
  	
  

•  keep	
  around	
  memories	
  to	
  capture	
  long	
  distance	
  
dependencies	
  

•  allow	
  error	
  messages	
  to	
  flow	
  at	
  different	
  strengths	
  
depending	
  on	
  the	
  inputs	
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•  Standard	
  RNN	
  computes	
  hidden	
  layer	
  at	
  next	
  @me	
  step	
  
directly:	
  

•  GRU	
  first	
  computes	
  an	
  update	
  gate	
  (another	
  layer)	
  
based	
  on	
  current	
  input	
  word	
  vector	
  and	
  hidden	
  state	
  

•  Compute	
  reset	
  gate	
  similarly	
  but	
  with	
  different	
  weights	
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•  Update	
  gate	
  	
  

•  Reset	
  gate	
  

•  New	
  memory	
  content:	
  
If	
  reset	
  gate	
  unit	
  is	
  ~0,	
  then	
  this	
  ignores	
  previous	
  
memory	
  and	
  only	
  stores	
  the	
  new	
  word	
  informa@on	
  	
  

•  Final	
  memory	
  at	
  @me	
  step	
  combines	
  current	
  and	
  
previous	
  @me	
  steps:	
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rt	
  rt-­‐1	
  

zt-­‐1	
  

~	
  ht	
  ~	
  ht-­‐1	
  

zt	
  

ht-­‐1	
   ht	
  

xt	
  xt-­‐1	
  Input:	
  

Reset	
  gate	
  

Update	
  gate	
  

Memory	
  (reset)	
  

Final	
  memory	
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•  If	
  reset	
  is	
  close	
  to	
  0,	
  	
  
ignore	
  previous	
  hidden	
  state	
  
à	
  Allows	
  model	
  to	
  drop	
  	
  
informa@on	
  that	
  is	
  irrelevant	
  
in	
  the	
  future	
  

•  Update	
  gate	
  z	
  controls	
  how	
  much	
  of	
  past	
  state	
  should	
  
maber	
  now.	
  

•  If	
  z	
  close	
  to	
  1,	
  then	
  we	
  can	
  copy	
  informa@on	
  in	
  that	
  unit	
  
through	
  many	
  @me	
  steps!	
  Less	
  vanishing	
  gradient!	
  

•  Units	
  with	
  short-­‐term	
  dependencies	
  oQen	
  have	
  reset	
  
gates	
  very	
  ac@ve	
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•  Units	
  with	
  long	
  term	
  	
  
dependencies	
  have	
  ac@ve	
  
update	
  gates	
  z	
  

•  Illustra@on:	
  	
  

•  Deriva@ve	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ?	
  à	
  rest	
  is	
  same	
  chain	
  rule,	
  but	
  
implement	
  with	
  modularizaEon	
  or	
  automa@c	
  
differen@a@on	
  

where ✓ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
p✓(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers
and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = �

⇣

[Wrx]j +
⇥

Urhht�1i
⇤

j

⌘

, (5)

where � is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht�1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = �

⇣

[Wzx]j +
⇥

Uzhht�1i
⇤

j

⌘

. (6)

The actual activation of the proposed unit hj is
then computed by

h

hti
j = zjh

ht�1i
j + (1� zj)

˜

h

hti
j , (7)

where

˜

h

hti
j = �

⇣

[Wx]j +
⇥

U
�

r� hht�1i
�⇤

j

⌘

. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

�

�� �� �

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state ˜

h. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and ˜

h.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) / p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-
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•  We	
  can	
  make	
  the	
  units	
  even	
  more	
  complex	
  

•  Allow	
  each	
  @me	
  step	
  to	
  modify	
  	
  

•  Input	
  gate	
  (current	
  cell	
  mabers)	
  

•  Forget	
  (gate	
  0,	
  forget	
  past)	
  

•  Output	
  (how	
  much	
  cell	
  is	
  exposed)	
  

•  New	
  memory	
  cell	
  

•  Final	
  memory	
  cell:	
  

•  Final	
  hidden	
  state:	
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hbp://people.idsia.ch/~juergen/lstm/sld017.htm	
  

hbp://deeplearning.net/tutorial/lstm.html	
  

Intui@on:	
  memory	
  cells	
  can	
  keep	
  informa@on	
  intact,	
  unless	
  inputs	
  makes	
  them	
  
forget	
  it	
  or	
  overwrite	
  it	
  with	
  new	
  input.	
  
Cell	
  can	
  decide	
  to	
  output	
  this	
  informa@on	
  or	
  just	
  store	
  it	
  

Long	
  Short-­‐Term	
  Memory	
  by	
  Hochreiter	
  and	
  Schmidhuber	
  (1997)	
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•  En	
  vogue	
  default	
  model	
  for	
  most	
  sequence	
  labeling	
  
tasks	
  

•  Very	
  powerful,	
  especially	
  when	
  stacked	
  and	
  made	
  
even	
  deeper	
  (each	
  hidden	
  layer	
  is	
  already	
  computed	
  
by	
  a	
  deep	
  internal	
  network)	
  

•  Most	
  useful	
  if	
  you	
  have	
  lots	
  and	
  lots	
  of	
  data	
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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John respects Mary

Mary respects John
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Mary admires John
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John is in love with Mary
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I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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Gated	
  Feedback	
  Recurrent	
  Neural	
  Networks,	
  Chung	
  et	
  al.	
  2015	
  
Gated Feedback Recurrent Neural Networks

(a) Conventional stacked RNN (b) Gated Feedback RNN

Figure 1. Illustrations of (a) conventional stacking approach and (b) gated-feedback approach to form a deep RNN architecture. Bullets
in (b) correspond to global reset gates. Skip connections are omitted to simplify the visualization of networks.

The global reset gate is computed as:

g

i!j

= �

⇣
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i!j
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j�1
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⇤
t�1

⌘
, (12)

where L is the number of hidden layers, wi!j

g

and u

i!j

g

are the weight vectors for the input and the hidden states of
all the layers at time-step t � 1, respectively. For j = 1,
h

j�1
t

is x
t

.

The global reset gate gi!j is applied collectively to the sig-
nal from the i-th layer hi

t�1 to the j-th layer hj

t

. In other
words, the signal from the layer i to the layer j is controlled
based on the input and the previous hidden states.

Fig. 1 illustrates the difference between the conventional
stacked RNN and our proposed GF-RNN. In both mod-
els, information flows from lower layers to upper layers,
respectively, corresponding to finer timescale and coarser
timescale. The GF-RNN, however, further allows infor-
mation from the upper recurrent layer, corresponding to
coarser timescale, flows back into the lower layers, corre-
sponding to finer timescales.

We call this RNN with a fully-connected recurrent tran-
sition and global reset gates, a gated-feedback RNN (GF-
RNN). In the remainder of this section, we describe how to
use the previously described LSTM unit, GRU, and more
traditional tanh unit in the GF-RNN.

3.1. Practical Implementation of GF-RNN

3.1.1. tanh UNIT

For a stacked tanh-RNN, the signal from the previous
time-step is gated. The hidden state of the j-th layer is

computed by

h

j

t

=tanh
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!
,

where W

j�1!j and U

i!j are the weight matrices of the
incoming connections from the input and the i-th module,
respectively. Compared to Eq. (2), the only difference is
that the previous hidden states are controlled by the global
reset gates.

3.1.2. LONG SHORT-TERM MEMORY AND GATED
RECURRENT UNIT

In the cases of LSTM and GRU, we do not use the global
reset gates when computing the unit-wise gates. In other
words, Eqs. (5)–(7) for LSTM, and Eqs. (9) and (11) for
GRU are not modified. We only use the global reset gates
when computing the new state (see Eq. (4) for LSTM, and
Eq. (10) for GRU).

The new memory content of an LSTM at the j-th layer is
computed by

˜
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= tanh
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In the case of a GRU, similarly,
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4. Experiment Settings

4.1. Tasks

We evaluated the proposed gated-feedback RNN (GF-
RNN) on character-level language modeling and Python
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•  Recurrent	
  Neural	
  Networks	
  are	
  powerful	
  

•  Gated	
  Recurrent	
  Units	
  even	
  beber	
  

•  LSTMs	
  maybe	
  even	
  beber	
  (jury	
  s@ll	
  out)	
  

•  A	
  lot	
  of	
  ongoing	
  work	
  right	
  now	
  

•  Next	
  lecture:	
  Pu~ng	
  it	
  all	
  together	
  for	
  fun	
  applica@ons	
  
and	
  dynamic	
  memory	
  networks	
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The	
  vanishing	
  gradient	
  problem	
  -­‐	
  Details	
  

•  Similar	
  but	
  simpler	
  RNN	
  formula@on:	
  

•  Total	
  error	
  is	
  the	
  sum	
  of	
  each	
  error	
  at	
  @me	
  steps	
  t	
  

•  Hardcore	
  chain	
  rule	
  applica@on:	
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The	
  vanishing	
  gradient	
  problem	
  -­‐	
  Details	
  

•  Similar	
  to	
  backprop	
  but	
  less	
  efficient	
  formula@on	
  
•  Useful	
  for	
  analysis,	
  we’ll	
  look	
  at:	
  

•  Remember:	
  
•  More	
  chain	
  rule,	
  remember:	
  

•  Each	
  par@al	
  is	
  a	
  Jacobian:	
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The	
  vanishing	
  gradient	
  problem	
  -­‐	
  Details	
  

•  From	
  previous	
  slide:	
  	
  

•  Remember:	
  

•  To	
  compute	
  Jacobian,	
  derive	
  each	
  element	
  of	
  matrix:	
  	
  

•  Where:	
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ht−1	
   ht	
  

Check	
  at	
  home	
  	
  
that	
  you	
  understand	
  
the	
  diag	
  matrix	
  	
  
formula@on	
  



The	
  vanishing	
  gradient	
  problem	
  -­‐	
  Details	
  

•  Analyzing	
  the	
  norms	
  of	
  the	
  Jacobians,	
  yields:	
  

•  Where	
  we	
  defined	
  ¯‘s	
  as	
  upper	
  bounds	
  of	
  the	
  norms	
  
•  The	
  gradient	
  is	
  a	
  product	
  of	
  Jacobian	
  matrices,	
  each	
  associated	
  

with	
  a	
  step	
  in	
  the	
  forward	
  computa@on.	
  	
  

•  This	
  can	
  become	
  very	
  small	
  or	
  very	
  large	
  quickly	
  [Bengio	
  et	
  al	
  
1994],	
  and	
  the	
  locality	
  assump@on	
  of	
  gradient	
  descent	
  breaks	
  
down.	
  à	
  Vanishing	
  or	
  exploding	
  gradient	
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