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Overview:	  Today	  
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•  RNN	  language	  models	  

•  Important	  training	  problems	  and	  tricks	  

•  RNNs	  for	  other	  sequence	  tasks	  

•  Bidirec@onal	  and	  deep	  RNNs	  

•  RNN	  extensions:	  GRU,	  LSTM	  for	  MT	  

•  Tomorrow:	  Fun	  applica@ons	  and	  new	  DMN	  model	  



Language	  Models	  
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A	  language	  model	  computes	  a	  probability	  for	  a	  sequence	  
of	  words:	  

•  Useful	  for	  machine	  transla@on	  and	  speech	  
•  Word	  choice:	  	  

p(walking	  home	  aQer	  school)	  >	  p(walking	  house	  aQer	  school)	  

•  Use	  incorrect	  but	  necessary	  Markov	  assump@ons	  

	  



Recurrent	  Neural	  Networks!	  
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•  RNNs	  @e	  the	  weights	  at	  each	  @me	  step	  

•  Condi@on	  the	  neural	  network	  on	  all	  previous	  words	  

•  RAM	  requirement	  only	  scales	  with	  number	  of	  words	  

	  

xt−1	   xt	   xt+1	  

ht−1	   ht	   ht+1	  
W	   W	  

yt−1	   yt	   yt+1	  



Recurrent	  Neural	  Network	  language	  model	  
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Given	  list	  of	  word	  vectors:	  

At	  a	  single	  @me	  step:	  

xt	   ht	  

ßà	  	  	  



Recurrent	  Neural	  Network	  language	  model	  

We	  use	  the	  same	  set	  of	  W	  weights	  at	  all	  @me	  steps!	  

Everything	  else	  is	  the	  same:	  

	  

	  

	  	  	  	  	  is	  some	  ini@aliza@on	  vector	  for	  the	  hidden	  layer	  
at	  @me	  step	  0	  

	  	  	  	  	  	  	  	  is	  the	  column	  vector	  of	  L	  at	  index	  [t]	  at	  @me	  step	  t	  



ObjecEve	  funcEon	  for	  language	  models	  
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	  	  	   	  	  	  	  	  	  	  	  is	  a	  probability	  distribu@on	  over	  the	  vocabulary	  

	  

Same	  cross	  entropy	  loss	  func@on	  but	  predic@ng	  words	  
instead	  of	  classes	  

	  

	  

	  



Recurrent	  Neural	  Network	  language	  model	  
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Evalua@on	  could	  just	  be	  nega@ve	  of	  average	  log	  
probability	  over	  dataset	  of	  size	  (number	  of	  words)	  T:	  

	  

	  

	  

But	  more	  common:	  Perplexity:	  	  	  	  2J	  

Lower	  is	  beber!	  

	  



Training	  RNNs	  is	  hard	  

•  Mul@ply	  the	  same	  matrix	  at	  each	  @me	  step	  during	  forward	  prop	  

•  Ideally	  inputs	  from	  many	  @me	  steps	  ago	  can	  modify	  output	  y	  
•  Take	  	  	  	  	  	  	  	  	  	  for	  an	  example	  RNN	  with	  2	  @me	  steps!	  Insighcul!	  
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xt−1	   xt	   xt+1	  

ht−1	   ht	   ht+1	  
W	   W	  

yt−1	   yt	   yt+1	  



The	  vanishing/exploding	  gradient	  problem	  

•  Mul@ply	  the	  same	  matrix	  at	  each	  @me	  step	  during	  backprop	  

•  Detailed	  deriva@ons	  in	  the	  appendix	  of	  these	  slides!	  
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ht−1	   ht	   ht+1	  
W	   W	  

yt−1	   yt	   yt+1	  



Why	  is	  the	  vanishing	  gradient	  a	  problem?	  

•  The	  error	  at	  a	  @me	  step	  ideally	  can	  tell	  a	  previous	  @me	  step	  
from	  many	  steps	  away	  to	  change	  during	  backprop	  
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The	  vanishing	  gradient	  problem	  for	  language	  models	  

•  In	  the	  case	  of	  language	  modeling	  or	  ques@on	  answering	  words	  
from	  @me	  steps	  far	  away	  are	  not	  taken	  into	  considera@on	  when	  
training	  to	  predict	  the	  next	  word	  

•  Example:	  	  
	  
Jane	  walked	  into	  the	  room.	  John	  walked	  in	  too.	  It	  was	  late	  in	  the	  
day.	  Jane	  said	  hi	  to	  ____	  

8/12/15	  Richard	  Socher	  Lecture	  1,	  Slide	  12	  



Trick	  for	  exploding	  gradient:	  clipping	  trick	  

•  The	  solu@on	  first	  introduced	  by	  Mikolov	  	  is	  to	  clip	  gradients	  
to	  a	  maximum	  value.	  	  

•  Makes	  a	  big	  difference	  in	  RNNs.	  
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On the di�culty of training Recurrent Neural Networks

region of space. It has been shown that in practice
it can reduce the chance that gradients explode, and
even allow training generator models or models that
work with unbounded amounts of memory(Pascanu
and Jaeger, 2011; Doya and Yoshizawa, 1991). One
important downside is that it requires a target to be
defined at every time step.

In Hochreiter and Schmidhuber (1997); Graves et al.
(2009) a solution is proposed for the vanishing gra-
dients problem, where the structure of the model is
changed. Specifically it introduces a special set of
units called LSTM units which are linear and have a
recurrent connection to itself which is fixed to 1. The
flow of information into the unit and from the unit is
guarded by an input and output gates (their behaviour
is learned). There are several variations of this basic
structure. This solution does not address explicitly the
exploding gradients problem.

Sutskever et al. (2011) use the Hessian-Free opti-
mizer in conjunction with structural damping, a spe-
cific damping strategy of the Hessian. This approach
seems to deal very well with the vanishing gradient,
though more detailed analysis is still missing. Pre-
sumably this method works because in high dimen-
sional spaces there is a high probability for long term
components to be orthogonal to short term ones. This
would allow the Hessian to rescale these components
independently. In practice, one can not guarantee that
this property holds. As discussed in section 2.3, this
method is able to deal with the exploding gradient
as well. Structural damping is an enhancement that
forces the change in the state to be small, when the pa-
rameter changes by some small value�✓. This asks for
the Jacobian matrices @xt

@✓

to have small norm, hence
further helping with the exploding gradients problem.
The fact that it helps when training recurrent neural
models on long sequences suggests that while the cur-
vature might explode at the same time with the gradi-
ent, it might not grow at the same rate and hence not
be su�cient to deal with the exploding gradient.

Echo State Networks (Lukoševičius and Jaeger, 2009)
avoid the exploding and vanishing gradients problem
by not learning the recurrent and input weights. They
are sampled from hand crafted distributions. Because
usually the largest eigenvalue of the recurrent weight
is, by construction, smaller than 1, information fed in
to the model has to die out exponentially fast. This
means that these models can not easily deal with long
term dependencies, even though the reason is slightly
di↵erent from the vanishing gradients problem. An
extension to the classical model is represented by leaky
integration units (Jaeger et al., 2007), where

x

k

= ↵x

k�1 + (1� ↵)�(W
rec

x

k�1 +W

in

u

k

+ b).

While these units can be used to solve the standard
benchmark proposed by Hochreiter and Schmidhu-
ber (1997) for learning long term dependencies (see
(Jaeger, 2012)), they are more suitable to deal with
low frequency information as they act as a low pass
filter. Because most of the weights are randomly sam-
pled, is not clear what size of models one would need
to solve complex real world tasks.

We would make a final note about the approach pro-
posed by Tomas Mikolov in his PhD thesis (Mikolov,
2012)(and implicitly used in the state of the art re-
sults on language modelling (Mikolov et al., 2011)).
It involves clipping the gradient’s temporal compo-
nents element-wise (clipping an entry when it exceeds
in absolute value a fixed threshold). Clipping has been
shown to do well in practice and it forms the backbone
of our approach.

3.2. Scaling down the gradients

As suggested in section 2.3, one simple mechanism to
deal with a sudden increase in the norm of the gradi-
ents is to rescale them whenever they go over a thresh-
old (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

ĝ @E
@✓

if kĝk � threshold then

ĝ threshold

kĝk ĝ

end if

This algorithm is very similar to the one proposed by
Tomas Mikolov and we only diverged from the original
proposal in an attempt to provide a better theoretical
foundation (ensuring that we always move in a de-
scent direction with respect to the current mini-batch),
though in practice both variants behave similarly.

The proposed clipping is simple to implement and
computationally e�cient, but it does however in-
troduce an additional hyper-parameter, namely the
threshold. One good heuristic for setting this thresh-
old is to look at statistics on the average norm over
a su�ciently large number of updates. In our ex-
periments we have noticed that for a given task and
model size, training is not very sensitive to this hyper-
parameter and the algorithm behaves well even for
rather small thresholds.

The algorithm can also be thought of as adapting
the learning rate based on the norm of the gradient.
Compared to other learning rate adaptation strate-
gies, which focus on improving convergence by col-
lecting statistics on the gradient (as for example in



Gradient	  clipping	  intuiEon	  

8/12/15	  Richard	  Socher	  14	  

	  

	  

	  

•  Error	  surface	  of	  a	  single	  hidden	  unit	  RNN,	  	  

•  High	  curvature	  walls	  

•  Solid	  lines:	  standard	  gradient	  descent	  trajectories	  	  

•  Dashed	  lines	  gradients	  rescaled	  to	  fixed	  size	  

	  

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit

recurrent network, highlighting the existence of high cur-

vature walls. The solid lines depicts standard trajectories

that gradient descent might follow. Using dashed arrow

the diagram shows what would happen if the gradients is

rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
W

rec

is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure	  from	  paper:	  	  
On	  the	  difficulty	  of	  
training	  Recurrent	  Neural	  
Networks,	  Pascanu	  et	  al.	  
2013	  



For	  vanishing	  gradients:	  IniEalizaEon	  +	  ReLus!	  
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•  Ini@alize	  W(*)‘s	  to	  
iden@ty	  matrix	  I	  
and	  
f(z)	  	  =	  

•  à	  Huge	  difference!	  

•  Ini@aliza@on	  idea	  first	  introduced	  in	  Parsing	  with	  Composi4onal	  
Vector	  Grammars,	  Socher	  et	  al.	  2013	  

•  New	  experiments	  with	  recurrent	  neural	  nets	  in	  	  
A	  Simple	  Way	  to	  Ini4alize	  Recurrent	  Networks	  of	  Rec4fied	  
Linear	  Units,	  Le	  et	  al.	  2015	  

T LSTM RNN + Tanh IRNN
150 lr = 0.01, gc = 10, fb = 1.0 lr = 0.01, gc = 100 lr = 0.01, gc = 100

200 lr = 0.001, gc = 100, fb = 4.0 N/A lr = 0.01, gc = 1

300 lr = 0.01, gc = 1, fb = 4.0 N/A lr = 0.01, gc = 10

400 lr = 0.01, gc = 100, fb = 10.0 N/A lr = 0.01, gc = 1

Table 1: Best hyperparameters found for adding problems after grid search. lr is the learning rate, gc
is gradient clipping, and fb is forget gate bias. N/A is when there is no hyperparameter combination
that gives good result.

4.2 MNIST Classification from a Sequence of Pixels

Another challenging toy problem is to learn to classify the MNIST digits [21] when the 784 pixels
are presented sequentially to the recurrent net. In our experiments, the networks read one pixel at a
time in scanline order (i.e. starting at the top left corner of the image, and ending at the bottom right
corner). The networks are asked to predict the category of the MNIST image only after seeing all
784 pixels. This is therefore a huge long range dependency problem because each recurrent network
has 784 time steps.

To make the task even harder, we also used a fixed random permutation of the pixels of the MNIST
digits and repeated the experiments.

All networks have 100 recurrent hidden units. We stop the optimization after it converges or when
it reaches 1,000,000 iterations and report the results in figure 3 (best hyperparameters are listed in
table 2).
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Figure 3: The results of recurrent methods on the “pixel-by-pixel MNIST” problem. We report the
test set accuracy for all methods. Left: normal MNIST. Right: permuted MNIST.

Problem LSTM RNN + Tanh RNN + ReLUs IRNN
MNIST lr = 0.01, gc = 1 lr = 10

−8, gc = 10 lr = 10
−8, gc = 10 lr = 10

−8, gc = 1

fb = 1.0

permuted lr = 0.01, gc = 1 lr = 10
−8, gc = 1 lr = 10

−6, gc = 10 lr = 10
−9, gc = 1

MNIST fb = 1.0

Table 2: Best hyperparameters found for pixel-by-pixelMNIST problems after grid search. lr is the
learning rate, gc is gradient clipping, and fb is the forget gate bias.

The results using the standard scanline ordering of the pixels show that this problem is so difficult
that standard RNNs fail to work, even with ReLUs, whereas the IRNN achieves 3% test error rate
which is better than most off-the-shelf linear classifiers [21]. We were surprised that the LSTM did
not work as well as IRNN given the various initialization schemes that we tried. While it still possi-
ble that a better tuned LSTM would do better, the fact that the IRNN perform well is encouraging.

5

rect(z) =max(z, 0)



Perplexity	  Results	  
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KN5	  =	  Count-‐based	  language	  model	  with	  Kneser-‐Ney	  
smoothing	  &	  5-‐grams	  

	  

	  

	  

	  

Table	  from	  paper	  Extensions	  of	  recurrent	  neural	  network	  
language	  model	  by	  Mikolov	  et	  al	  2011	  



Problem:	  SoPmax	  is	  huge	  and	  slow	  
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Trick:	  Class-‐based	  word	  predic@on	  

p(wt|history)	   	  =	  p(ct|history)p(wt|ct)	  

	   	   	  =	  p(ct|ht)p(wt|ct)	  

	  

The	  more	  classes,	  
the	  beber	  perplexity	  
but	  also	  worse	  speed:	  

	  

	  

	  



One	  last	  implementaEon	  trick	  
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•  You	  only	  need	  to	  pass	  backwards	  through	  your	  
sequence	  once	  and	  accumulate	  all	  the	  deltas	  from	  
each	  Et	  



Sequence	  modeling	  for	  other	  tasks	  
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•  Classify	  each	  word	  into:	  	  
•  NER	  

•  En@ty	  level	  sen@ment	  in	  context	  	  

•  opinionated	  expressions	  

•  Example	  applica@on	  and	  slides	  from	  paper	  	  
Opinion	  Mining	  with	  Deep	  Recurrent	  Nets	  	  
by	  Irsoy	  and	  Cardie	  2014	  



Opinion	  Mining	  with	  Deep	  Recurrent	  Nets	  	  
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Goal:	  Classify	  each	  word	  as	  

direct	  subjec4ve	  expressions	  (DSEs)	  and	  	  
expressive	  subjec4ve	  expressions	  (ESEs).	  	  

DSE:	  Explicit	  men@ons	  of	  private	  states	  or	  speech	  events	  
expressing	  private	  states	  	  

ESE:	  Expressions	  that	  indicate	  sen@ment,	  emo@on,	  etc.	  
without	  explicitly	  conveying	  them.	  	  

	  



Example	  AnnotaEon	  
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In	  BIO	  nota@on	  (tags	  either	  begin-‐of-‐en@ty	  (B_X)	  or	  
con@nua@on-‐of-‐en@ty	  (I_X)):	  
The	  commibee,	  [as	  usual]ESE,	  [has	  refused	  to	  make	  any	  
statements]DSE.	  	  

	  



Approach:	  Recurrent	  Neural	  Network	  
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•  Nota@on	  from	  paper	  (so	  you	  get	  used	  to	  different	  ones)	  

•  x	  represents	  a	  token	  (word)	  as	  a	  vector.	  	  

•  y	  represents	  the	  output	  label	  (B,	  I	  or	  O)	  –	  g	  =	  soQmax	  !	  

•  h	  is	  the	  memory,	  computed	  from	  the	  past	  memory	  and	  current	  
word.	  It	  summarizes	  the	  sentence	  up	  to	  that	  @me.	  

Recurrent Neural Network 

ht = f (Wxt +Vht−1 + b)
yt = g(Uht + c)

y

h

x

    represents a token (word) as a vector. 
    represents the output label (B, I or O). 
    is the memory, computed from the past memory and 
current word. It summarizes the sentence up to that time. 

x
y
h



BidirecEonal	  RNNs	  
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Problem:	  For	  classifica@on	  you	  want	  to	  incorporate	  
informa@on	  from	  words	  both	  preceding	  and	  following	  

Ideas?	  

	  

Bidirectionality 

h
!
t = f (W

!"!
xt +V
!"
h
!
t−1 + b
!
)

h
!
t = f (W

!""
xt +V
!"
h
!
t+1 + b
!
)

yt = g(U[h
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Going Deep 
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•  MPQA	  1.2	  corpus	  (Wiebe	  et	  al.,	  2005)	  	  

•  consists	  of	  535	  news	  ar@cles	  (11,111	  sentences)	  	  

•  manually	  labeled	  with	  DSE	  and	  ESEs	  at	  the	  phrase	  
level	  	  

•  Evalua@on:	  F1	  
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Results: Deep vs Shallow RNNs 
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•  TradiEonal	  MT:	  
•  A	  lot	  of	  human	  feature	  engineering	  

•  Very	  complex	  systems	  

•  Many	  different,	  independent	  machine	  learning	  problems	  
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Maybe,	  we	  could	  translate	  directly	  with	  an	  RNN?	  

	   	   	   	  Decoder:	  

Encoder	  

x1	   x2	   x3	  

h1	   h2	   h3	  
W	   W	  

y1	   y2	  

Echt	   	   	  	  	  dicke 	   	  	  	  	  	  	  	  	  	  Kiste	  
	  	  

Awesome	   	  	  	  	  	  	  	  sauce	  

This	  needs	  to	  	  
capture	  the	  	  
en@re	  phrase!	  
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Encoder:	  

Decoder:	  	  	  

	  

Minimize	  cross	  entropy	  error	  for	  all	  target	  words	  
condi@oned	  on	  source	  words	  

	  

It’s	  not	  quite	  that	  simple	  ;)	  	  
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1.	  Train	  different	  RNN	  weights	  for	  encoding	  and	  decoding	  

	  

x1	   x2	   x3	  

h1	   h2	   h3	  
W	   W	  

y1	   y2	  

Echt	   	   	  	  	  dicke 	   	  	  	  	  	  	  	  	  	  Kiste	  
	  	  

Awesome	   	  	  	  	  	  	  	  sauce	  
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Nota@on:	  Each	  input	  of	  Á	  has	  its	  own	  linear	  
transforma@on	  matrix.	  Simple:	  

2.  Compute	  every	  hidden	  state	  in	  	  
decoder	  from	  

•  Previous	  hidden	  state	  (standard)	  

•  Last	  hidden	  vector	  of	  encoder	  c=hT	  

•  Previous	  predicted	  output	  word	  yt-‐1	  

	  

2 RNN Encoder–Decoder

2.1 Preliminary: Recurrent Neural Networks
A recurrent neural network (RNN) is a neural net-
work that consists of a hidden state h and an
optional output y which operates on a variable-
length sequence x = (x1, . . . , xT ). At each time
step t, the hidden state hhti of the RNN is updated
by

hhti = f

�

hht�1i, xt
�

, (1)

where f is a non-linear activation func-
tion. f may be as simple as an element-
wise logistic sigmoid function and as com-
plex as a long short-term memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997).

An RNN can learn a probability distribution
over a sequence by being trained to predict the
next symbol in a sequence. In that case, the output
at each timestep t is the conditional distribution
p(xt | xt�1, . . . , x1). For example, a multinomial
distribution (1-of-K coding) can be output using a
softmax activation function

p(xt,j = 1 | xt�1, . . . , x1) =
exp

�

wjhhti
�

PK
j0=1 exp

�

wj0hhti
�

,

(2)

for all possible symbols j = 1, . . . ,K, where wj

are the rows of a weight matrix W. By combining
these probabilities, we can compute the probabil-
ity of the sequence x using

p(x) =
T
Y

t=1

p(xt | xt�1, . . . , x1). (3)

From this learned distribution, it is straightfor-
ward to sample a new sequence by iteratively sam-
pling a symbol at each time step.

2.2 RNN Encoder–Decoder
In this paper, we propose a novel neural network
architecture that learns to encode a variable-length
sequence into a fixed-length vector representation
and to decode a given fixed-length vector rep-
resentation back into a variable-length sequence.
From a probabilistic perspective, this new model
is a general method to learn the conditional dis-
tribution over a variable-length sequence condi-
tioned on yet another variable-length sequence,
e.g. p(y1, . . . , yT 0 | x1, . . . , xT ), where one

�� �� ��

��� �� ��

�

�	�
�	�

��
�	�
Figure 1: An illustration of the proposed RNN
Encoder–Decoder.

should note that the input and output sequence
lengths T and T

0 may differ.
The encoder is an RNN that reads each symbol

of an input sequence x sequentially. As it reads
each symbol, the hidden state of the RNN changes
according to Eq. (1). After reading the end of
the sequence (marked by an end-of-sequence sym-
bol), the hidden state of the RNN is a summary c
of the whole input sequence.

The decoder of the proposed model is another
RNN which is trained to generate the output se-
quence by predicting the next symbol yt given the
hidden state hhti. However, unlike the RNN de-
scribed in Sec. 2.1, both yt and hhti are also con-
ditioned on yt�1 and on the summary c of the input
sequence. Hence, the hidden state of the decoder
at time t is computed by,

hhti = f

�

hht�1i, yt�1, c
�

,

and similarly, the conditional distribution of the
next symbol is

P (yt|yt�1, yt�2, . . . , y1, c) = g

�

hhti, yt�1, c
�

.

for given activation functions f and g (the latter
must produce valid probabilities, e.g. with a soft-
max).

See Fig. 1 for a graphical depiction of the pro-
posed model architecture.

The two components of the proposed RNN
Encoder–Decoder are jointly trained to maximize
the conditional log-likelihood

max

✓

1

N

N
X

n=1

log p✓(yn | xn), (4)

Cho	  et	  al.	  2014	  
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3.  Train	  stacked/deep	  RNNs	  	  
with	  mul@ple	  layers	  

4.  Poten@ally	  train	  	  
bidirec@onal	  encoder	  

5.  Train	  input	  sequence	  in	  reverse	  order	  for	  easier	  
op@miza@on	  problem:	  Instead	  of	  A	  B	  C	  à	  X	  Y,	  	  
train	  with	  C	  B	  A	  à	  X	  Y	  

	  

Going Deep 
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representation to the next. 
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•  More	  complex	  hidden	  unit	  computa@on	  in	  recurrence!	  

•  Gated	  Recurrent	  Units	  (GRU)	  
introduced	  by	  Cho	  et	  al.	  2014	  	  

•  Main	  ideas:	  	  

•  keep	  around	  memories	  to	  capture	  long	  distance	  
dependencies	  

•  allow	  error	  messages	  to	  flow	  at	  different	  strengths	  
depending	  on	  the	  inputs	  



GRUs	  
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•  Standard	  RNN	  computes	  hidden	  layer	  at	  next	  @me	  step	  
directly:	  

•  GRU	  first	  computes	  an	  update	  gate	  (another	  layer)	  
based	  on	  current	  input	  word	  vector	  and	  hidden	  state	  

•  Compute	  reset	  gate	  similarly	  but	  with	  different	  weights	  



GRUs	  
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•  Update	  gate	  	  

•  Reset	  gate	  

•  New	  memory	  content:	  
If	  reset	  gate	  unit	  is	  ~0,	  then	  this	  ignores	  previous	  
memory	  and	  only	  stores	  the	  new	  word	  informa@on	  	  

•  Final	  memory	  at	  @me	  step	  combines	  current	  and	  
previous	  @me	  steps:	  	  	  



A\empt	  at	  a	  clean	  illustraEon	  
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rt	  rt-‐1	  

zt-‐1	  

~	  ht	  ~	  ht-‐1	  

zt	  

ht-‐1	   ht	  

xt	  xt-‐1	  Input:	  

Reset	  gate	  

Update	  gate	  

Memory	  (reset)	  

Final	  memory	  
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•  If	  reset	  is	  close	  to	  0,	  	  
ignore	  previous	  hidden	  state	  
à	  Allows	  model	  to	  drop	  	  
informa@on	  that	  is	  irrelevant	  
in	  the	  future	  

•  Update	  gate	  z	  controls	  how	  much	  of	  past	  state	  should	  
maber	  now.	  

•  If	  z	  close	  to	  1,	  then	  we	  can	  copy	  informa@on	  in	  that	  unit	  
through	  many	  @me	  steps!	  Less	  vanishing	  gradient!	  

•  Units	  with	  short-‐term	  dependencies	  oQen	  have	  reset	  
gates	  very	  ac@ve	  
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•  Units	  with	  long	  term	  	  
dependencies	  have	  ac@ve	  
update	  gates	  z	  

•  Illustra@on:	  	  

•  Deriva@ve	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ?	  à	  rest	  is	  same	  chain	  rule,	  but	  
implement	  with	  modularizaEon	  or	  automa@c	  
differen@a@on	  

where ✓ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
p✓(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers
and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = �

⇣

[Wrx]j +
⇥

Urhht�1i
⇤

j

⌘

, (5)

where � is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht�1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = �

⇣

[Wzx]j +
⇥

Uzhht�1i
⇤

j

⌘

. (6)

The actual activation of the proposed unit hj is
then computed by

h

hti
j = zjh

ht�1i
j + (1� zj)

˜

h

hti
j , (7)

where

˜

h

hti
j = �

⇣

[Wx]j +
⇥

U
�

r� hht�1i
�⇤

j

⌘

. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

�

�� �� �

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state ˜

h. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and ˜

h.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) / p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-
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•  We	  can	  make	  the	  units	  even	  more	  complex	  

•  Allow	  each	  @me	  step	  to	  modify	  	  

•  Input	  gate	  (current	  cell	  mabers)	  

•  Forget	  (gate	  0,	  forget	  past)	  

•  Output	  (how	  much	  cell	  is	  exposed)	  

•  New	  memory	  cell	  

•  Final	  memory	  cell:	  

•  Final	  hidden	  state:	  	  



IllustraEons	  a	  bit	  overwhelming	  ;)	  
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hbp://people.idsia.ch/~juergen/lstm/sld017.htm	  

hbp://deeplearning.net/tutorial/lstm.html	  

Intui@on:	  memory	  cells	  can	  keep	  informa@on	  intact,	  unless	  inputs	  makes	  them	  
forget	  it	  or	  overwrite	  it	  with	  new	  input.	  
Cell	  can	  decide	  to	  output	  this	  informa@on	  or	  just	  store	  it	  

Long	  Short-‐Term	  Memory	  by	  Hochreiter	  and	  Schmidhuber	  (1997)	  
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•  En	  vogue	  default	  model	  for	  most	  sequence	  labeling	  
tasks	  

•  Very	  powerful,	  especially	  when	  stacked	  and	  made	  
even	  deeper	  (each	  hidden	  layer	  is	  already	  computed	  
by	  a	  deep	  internal	  network)	  

•  Most	  useful	  if	  you	  have	  lots	  and	  lots	  of	  data	  
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

−8 −6 −4 −2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

John respects Mary

Mary respects John
John admires Mary

Mary admires John

Mary is in love with John

John is in love with Mary
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I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	  to	  Sequence	  Learning	  by	  Sutskever	  et	  al.	  2014	  	  
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Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis
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I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	  to	  Sequence	  Learning	  by	  Sutskever	  et	  al.	  2014	  	  

PCA	  of	  vectors	  from	  last	  @me	  step	  hidden	  layer	  



Further	  Improvements:	  More	  Gates!	  
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Gated	  Feedback	  Recurrent	  Neural	  Networks,	  Chung	  et	  al.	  2015	  
Gated Feedback Recurrent Neural Networks

(a) Conventional stacked RNN (b) Gated Feedback RNN

Figure 1. Illustrations of (a) conventional stacking approach and (b) gated-feedback approach to form a deep RNN architecture. Bullets
in (b) correspond to global reset gates. Skip connections are omitted to simplify the visualization of networks.

The global reset gate is computed as:
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where L is the number of hidden layers, wi!j

g

and u

i!j

g

are the weight vectors for the input and the hidden states of
all the layers at time-step t � 1, respectively. For j = 1,
h

j�1
t

is x
t

.

The global reset gate gi!j is applied collectively to the sig-
nal from the i-th layer hi

t�1 to the j-th layer hj

t

. In other
words, the signal from the layer i to the layer j is controlled
based on the input and the previous hidden states.

Fig. 1 illustrates the difference between the conventional
stacked RNN and our proposed GF-RNN. In both mod-
els, information flows from lower layers to upper layers,
respectively, corresponding to finer timescale and coarser
timescale. The GF-RNN, however, further allows infor-
mation from the upper recurrent layer, corresponding to
coarser timescale, flows back into the lower layers, corre-
sponding to finer timescales.

We call this RNN with a fully-connected recurrent tran-
sition and global reset gates, a gated-feedback RNN (GF-
RNN). In the remainder of this section, we describe how to
use the previously described LSTM unit, GRU, and more
traditional tanh unit in the GF-RNN.

3.1. Practical Implementation of GF-RNN

3.1.1. tanh UNIT

For a stacked tanh-RNN, the signal from the previous
time-step is gated. The hidden state of the j-th layer is

computed by
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where W

j�1!j and U

i!j are the weight matrices of the
incoming connections from the input and the i-th module,
respectively. Compared to Eq. (2), the only difference is
that the previous hidden states are controlled by the global
reset gates.

3.1.2. LONG SHORT-TERM MEMORY AND GATED
RECURRENT UNIT

In the cases of LSTM and GRU, we do not use the global
reset gates when computing the unit-wise gates. In other
words, Eqs. (5)–(7) for LSTM, and Eqs. (9) and (11) for
GRU are not modified. We only use the global reset gates
when computing the new state (see Eq. (4) for LSTM, and
Eq. (10) for GRU).

The new memory content of an LSTM at the j-th layer is
computed by
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In the case of a GRU, similarly,
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4. Experiment Settings

4.1. Tasks

We evaluated the proposed gated-feedback RNN (GF-
RNN) on character-level language modeling and Python



Summary	  
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•  Recurrent	  Neural	  Networks	  are	  powerful	  

•  Gated	  Recurrent	  Units	  even	  beber	  

•  LSTMs	  maybe	  even	  beber	  (jury	  s@ll	  out)	  

•  A	  lot	  of	  ongoing	  work	  right	  now	  

•  Next	  lecture:	  Pu~ng	  it	  all	  together	  for	  fun	  applica@ons	  
and	  dynamic	  memory	  networks	  
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The	  vanishing	  gradient	  problem	  -‐	  Details	  

•  Similar	  but	  simpler	  RNN	  formula@on:	  

•  Total	  error	  is	  the	  sum	  of	  each	  error	  at	  @me	  steps	  t	  

•  Hardcore	  chain	  rule	  applica@on:	  
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The	  vanishing	  gradient	  problem	  -‐	  Details	  

•  Similar	  to	  backprop	  but	  less	  efficient	  formula@on	  
•  Useful	  for	  analysis,	  we’ll	  look	  at:	  

•  Remember:	  
•  More	  chain	  rule,	  remember:	  

•  Each	  par@al	  is	  a	  Jacobian:	  
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The	  vanishing	  gradient	  problem	  -‐	  Details	  

•  From	  previous	  slide:	  	  

•  Remember:	  

•  To	  compute	  Jacobian,	  derive	  each	  element	  of	  matrix:	  	  

•  Where:	  

8/12/15	  Richard	  Socher	  Lecture	  1,	  Slide	  50	  

ht−1	   ht	  

Check	  at	  home	  	  
that	  you	  understand	  
the	  diag	  matrix	  	  
formula@on	  



The	  vanishing	  gradient	  problem	  -‐	  Details	  

•  Analyzing	  the	  norms	  of	  the	  Jacobians,	  yields:	  

•  Where	  we	  defined	  ¯‘s	  as	  upper	  bounds	  of	  the	  norms	  
•  The	  gradient	  is	  a	  product	  of	  Jacobian	  matrices,	  each	  associated	  

with	  a	  step	  in	  the	  forward	  computa@on.	  	  

•  This	  can	  become	  very	  small	  or	  very	  large	  quickly	  [Bengio	  et	  al	  
1994],	  and	  the	  locality	  assump@on	  of	  gradient	  descent	  breaks	  
down.	  à	  Vanishing	  or	  exploding	  gradient	  
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