
Deep	 NLP	
Recurrent	 Neural	 Networks	

Richard	 Socher	
richard@metamind.io	

Overview:	 Today	

8/12/15	 Richard	 Socher	 2	

•  RNN	 language	 models	

•  Important	 training	 problems	 and	 tricks	

•  RNNs	 for	 other	 sequence	 tasks	

•  Bidirec@onal	 and	 deep	 RNNs	

•  RNN	 extensions:	 GRU,	 LSTM	 for	 MT	

•  Tomorrow:	 Fun	 applica@ons	 and	 new	 DMN	 model	

Language	 Models	

8/12/15	 Richard	 Socher	 3	

A	 language	 model	 computes	 a	 probability	 for	 a	 sequence	
of	 words:	

•  Useful	 for	 machine	 transla@on	 and	 speech	
•  Word	 choice:	 	

p(walking	 home	 aQer	 school)	 >	 p(walking	 house	 aQer	 school)	

•  Use	 incorrect	 but	 necessary	 Markov	 assump@ons	

	

Recurrent	 Neural	 Networks!	

8/12/15	 Richard	 Socher	 4	

•  RNNs	 @e	 the	 weights	 at	 each	 @me	 step	

•  Condi@on	 the	 neural	 network	 on	 all	 previous	 words	

•  RAM	 requirement	 only	 scales	 with	 number	 of	 words	

	

xt−1	 xt	 xt+1	

ht−1	 ht	 ht+1	
W	 W	

yt−1	 yt	 yt+1	

Recurrent	 Neural	 Network	 language	 model	

8/12/15	 Richard	 Socher	 5	

Given	 list	 of	 word	 vectors:	

At	 a	 single	 @me	 step:	

xt	 ht	

ßà	 	 	

Recurrent	 Neural	 Network	 language	 model	

We	 use	 the	 same	 set	 of	 W	 weights	 at	 all	 @me	 steps!	

Everything	 else	 is	 the	 same:	

	

	

	 	 	 	 	 is	 some	 ini@aliza@on	 vector	 for	 the	 hidden	 layer	
at	 @me	 step	 0	

	 	 	 	 	 	 	 	 is	 the	 column	 vector	 of	 L	 at	 index	 [t]	 at	 @me	 step	 t	

ObjecEve	 funcEon	 for	 language	 models	

8/12/15	 Richard	 Socher	 7	

	 	 	 	 	 	 	 	 	 	 	 is	 a	 probability	 distribu@on	 over	 the	 vocabulary	

	

Same	 cross	 entropy	 loss	 func@on	 but	 predic@ng	 words	
instead	 of	 classes	

	

	

	

Recurrent	 Neural	 Network	 language	 model	

8/12/15	 Richard	 Socher	 8	

Evalua@on	 could	 just	 be	 nega@ve	 of	 average	 log	
probability	 over	 dataset	 of	 size	 (number	 of	 words)	 T:	

	

	

	

But	 more	 common:	 Perplexity:	 	 	 	 2J	

Lower	 is	 beber!	

	

Training	 RNNs	 is	 hard	

•  Mul@ply	 the	 same	 matrix	 at	 each	 @me	 step	 during	 forward	 prop	

•  Ideally	 inputs	 from	 many	 @me	 steps	 ago	 can	 modify	 output	 y	
•  Take	 	 	 	 	 	 	 	 	 	 for	 an	 example	 RNN	 with	 2	 @me	 steps!	 Insighcul!	

8/12/15	 Richard	 Socher	 Lecture	 1,	 Slide	 9	

xt−1	 xt	 xt+1	

ht−1	 ht	 ht+1	
W	 W	

yt−1	 yt	 yt+1	

The	 vanishing/exploding	 gradient	 problem	

•  Mul@ply	 the	 same	 matrix	 at	 each	 @me	 step	 during	 backprop	

•  Detailed	 deriva@ons	 in	 the	 appendix	 of	 these	 slides!	

8/12/15	 Richard	 Socher	 Lecture	 1,	 Slide	 10	

xt−1	 xt	 xt+1	

ht−1	 ht	 ht+1	
W	 W	

yt−1	 yt	 yt+1	

Why	 is	 the	 vanishing	 gradient	 a	 problem?	

•  The	 error	 at	 a	 @me	 step	 ideally	 can	 tell	 a	 previous	 @me	 step	
from	 many	 steps	 away	 to	 change	 during	 backprop	

8/12/15	 Richard	 Socher	 Lecture	 1,	 Slide	 11	

xt−1	 xt	 xt+1	

ht−1	 ht	 ht+1	
W	 W	

yt−1	 yt	 yt+1	

The	 vanishing	 gradient	 problem	 for	 language	 models	

•  In	 the	 case	 of	 language	 modeling	 or	 ques@on	 answering	 words	
from	 @me	 steps	 far	 away	 are	 not	 taken	 into	 considera@on	 when	
training	 to	 predict	 the	 next	 word	

•  Example:	 	
	
Jane	 walked	 into	 the	 room.	 John	 walked	 in	 too.	 It	 was	 late	 in	 the	
day.	 Jane	 said	 hi	 to	 ____	

8/12/15	 Richard	 Socher	 Lecture	 1,	 Slide	 12	

Trick	 for	 exploding	 gradient:	 clipping	 trick	

•  The	 solu@on	 first	 introduced	 by	 Mikolov	 	 is	 to	 clip	 gradients	
to	 a	 maximum	 value.	 	

•  Makes	 a	 big	 difference	 in	 RNNs.	
	
	
	
	
	
	
	

13	

On the di�culty of training Recurrent Neural Networks

region of space. It has been shown that in practice
it can reduce the chance that gradients explode, and
even allow training generator models or models that
work with unbounded amounts of memory(Pascanu
and Jaeger, 2011; Doya and Yoshizawa, 1991). One
important downside is that it requires a target to be
defined at every time step.

In Hochreiter and Schmidhuber (1997); Graves et al.
(2009) a solution is proposed for the vanishing gra-
dients problem, where the structure of the model is
changed. Specifically it introduces a special set of
units called LSTM units which are linear and have a
recurrent connection to itself which is fixed to 1. The
flow of information into the unit and from the unit is
guarded by an input and output gates (their behaviour
is learned). There are several variations of this basic
structure. This solution does not address explicitly the
exploding gradients problem.

Sutskever et al. (2011) use the Hessian-Free opti-
mizer in conjunction with structural damping, a spe-
cific damping strategy of the Hessian. This approach
seems to deal very well with the vanishing gradient,
though more detailed analysis is still missing. Pre-
sumably this method works because in high dimen-
sional spaces there is a high probability for long term
components to be orthogonal to short term ones. This
would allow the Hessian to rescale these components
independently. In practice, one can not guarantee that
this property holds. As discussed in section 2.3, this
method is able to deal with the exploding gradient
as well. Structural damping is an enhancement that
forces the change in the state to be small, when the pa-
rameter changes by some small value�✓. This asks for
the Jacobian matrices @xt

@✓

to have small norm, hence
further helping with the exploding gradients problem.
The fact that it helps when training recurrent neural
models on long sequences suggests that while the cur-
vature might explode at the same time with the gradi-
ent, it might not grow at the same rate and hence not
be su�cient to deal with the exploding gradient.

Echo State Networks (Lukoševičius and Jaeger, 2009)
avoid the exploding and vanishing gradients problem
by not learning the recurrent and input weights. They
are sampled from hand crafted distributions. Because
usually the largest eigenvalue of the recurrent weight
is, by construction, smaller than 1, information fed in
to the model has to die out exponentially fast. This
means that these models can not easily deal with long
term dependencies, even though the reason is slightly
di↵erent from the vanishing gradients problem. An
extension to the classical model is represented by leaky
integration units (Jaeger et al., 2007), where

x

k

= ↵x

k�1 + (1� ↵)�(W
rec

x

k�1 +W

in

u

k

+ b).

While these units can be used to solve the standard
benchmark proposed by Hochreiter and Schmidhu-
ber (1997) for learning long term dependencies (see
(Jaeger, 2012)), they are more suitable to deal with
low frequency information as they act as a low pass
filter. Because most of the weights are randomly sam-
pled, is not clear what size of models one would need
to solve complex real world tasks.

We would make a final note about the approach pro-
posed by Tomas Mikolov in his PhD thesis (Mikolov,
2012)(and implicitly used in the state of the art re-
sults on language modelling (Mikolov et al., 2011)).
It involves clipping the gradient’s temporal compo-
nents element-wise (clipping an entry when it exceeds
in absolute value a fixed threshold). Clipping has been
shown to do well in practice and it forms the backbone
of our approach.

3.2. Scaling down the gradients

As suggested in section 2.3, one simple mechanism to
deal with a sudden increase in the norm of the gradi-
ents is to rescale them whenever they go over a thresh-
old (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

ĝ @E
@✓

if kĝk � threshold then

ĝ threshold

kĝk ĝ

end if

This algorithm is very similar to the one proposed by
Tomas Mikolov and we only diverged from the original
proposal in an attempt to provide a better theoretical
foundation (ensuring that we always move in a de-
scent direction with respect to the current mini-batch),
though in practice both variants behave similarly.

The proposed clipping is simple to implement and
computationally e�cient, but it does however in-
troduce an additional hyper-parameter, namely the
threshold. One good heuristic for setting this thresh-
old is to look at statistics on the average norm over
a su�ciently large number of updates. In our ex-
periments we have noticed that for a given task and
model size, training is not very sensitive to this hyper-
parameter and the algorithm behaves well even for
rather small thresholds.

The algorithm can also be thought of as adapting
the learning rate based on the norm of the gradient.
Compared to other learning rate adaptation strate-
gies, which focus on improving convergence by col-
lecting statistics on the gradient (as for example in

Gradient	 clipping	 intuiEon	

8/12/15	 Richard	 Socher	 14	

	

	

	

•  Error	 surface	 of	 a	 single	 hidden	 unit	 RNN,	 	

•  High	 curvature	 walls	

•  Solid	 lines:	 standard	 gradient	 descent	 trajectories	 	

•  Dashed	 lines	 gradients	 rescaled	 to	 fixed	 size	

	

On the di�culty of training Recurrent Neural Networks

Figure 6. We plot the error surface of a single hidden unit

recurrent network, highlighting the existence of high cur-

vature walls. The solid lines depicts standard trajectories

that gradient descent might follow. Using dashed arrow

the diagram shows what would happen if the gradients is

rescaled to a fixed size when its norm is above a threshold.

explode so does the curvature along v, leading to a
wall in the error surface, like the one seen in Fig. 6.

If this holds, then it gives us a simple solution to the
exploding gradients problem depicted in Fig. 6.

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.

The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. The key insight is that all the
steps taken when the gradient explodes are aligned
with v and ignore other descent direction (i.e. the
model moves perpendicular to the wall). At the wall, a
small-norm step in the direction of the gradient there-
fore merely pushes us back inside the smoother low-
curvature region besides the wall, whereas a regular
gradient step would bring us very far, thus slowing or
preventing further training. Instead, with a bounded
step, we get back in that smooth region near the wall
where SGD is free to explore other descent directions.

The important addition in this scenario to the classical
high curvature valley, is that we assume that the val-
ley is wide, as we have a large region around the wall
where if we land we can rely on first order methods
to move towards the local minima. This is why just
clipping the gradient might be su�cient, not requiring
the use a second order method. Note that this algo-

rithm should work even when the rate of growth of the
gradient is not the same as the one of the curvature
(a case for which a second order method would fail
as the ratio between the gradient and curvature could
still explode).

Our hypothesis could also help to understand the re-
cent success of the Hessian-Free approach compared
to other second order methods. There are two key dif-
ferences between Hessian-Free and most other second-
order algorithms. First, it uses the full Hessian matrix
and hence can deal with exploding directions that are
not necessarily axis-aligned. Second, it computes a
new estimate of the Hessian matrix before each up-
date step and can take into account abrupt changes in
curvature (such as the ones suggested by our hypothe-
sis) while most other approaches use a smoothness as-
sumption, i.e., averaging 2nd order signals over many
steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Given that the parame-
ters initialized with small values, the spectral radius of
W

rec

is probably smaller than 1, from which it follows
that the gradient can not explode (see necessary condi-
tion found in section 2.1). The regularization term can
ensure that during training the spectral radius never
exceeds 1. This approach limits the model to a sim-
ple regime (with a single point attractor at the origin),
where any information inserted in the model has to die
out exponentially fast in time. In such a regime we can
not train a generator network, nor can we exhibit long
term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if
the model exhibits from the beginning the same kind
of asymptotic behaviour as the one required by the
target, then there is no need to cross a bifurcation
boundary. The downside is that one can not always
know the required asymptotic behaviour, and, even if
such information is known, it is not trivial to initial-
ize a model in this specific regime. We should also
note that such initialization does not prevent cross-
ing the boundary between basins of attraction, which,
as shown, could happen even though no bifurcation
boundary is crossed.

Teacher forcing is a more interesting, yet a not very
well understood solution. It can be seen as a way of
initializing the model in the right regime and the right

Figure	 from	 paper:	 	
On	 the	 difficulty	 of	
training	 Recurrent	 Neural	
Networks,	 Pascanu	 et	 al.	
2013	

For	 vanishing	 gradients:	 IniEalizaEon	 +	 ReLus!	

8/12/15	 Richard	 Socher	 15	

•  Ini@alize	 W(*)‘s	 to	
iden@ty	 matrix	 I	
and	
f(z)	 	 =	

•  à	 Huge	 difference!	

•  Ini@aliza@on	 idea	 first	 introduced	 in	 Parsing	 with	 Composi4onal	
Vector	 Grammars,	 Socher	 et	 al.	 2013	

•  New	 experiments	 with	 recurrent	 neural	 nets	 in	 	
A	 Simple	 Way	 to	 Ini4alize	 Recurrent	 Networks	 of	 Rec4fied	
Linear	 Units,	 Le	 et	 al.	 2015	

T LSTM RNN + Tanh IRNN
150 lr = 0.01, gc = 10, fb = 1.0 lr = 0.01, gc = 100 lr = 0.01, gc = 100

200 lr = 0.001, gc = 100, fb = 4.0 N/A lr = 0.01, gc = 1

300 lr = 0.01, gc = 1, fb = 4.0 N/A lr = 0.01, gc = 10

400 lr = 0.01, gc = 100, fb = 10.0 N/A lr = 0.01, gc = 1

Table 1: Best hyperparameters found for adding problems after grid search. lr is the learning rate, gc
is gradient clipping, and fb is forget gate bias. N/A is when there is no hyperparameter combination
that gives good result.

4.2 MNIST Classification from a Sequence of Pixels

Another challenging toy problem is to learn to classify the MNIST digits [21] when the 784 pixels
are presented sequentially to the recurrent net. In our experiments, the networks read one pixel at a
time in scanline order (i.e. starting at the top left corner of the image, and ending at the bottom right
corner). The networks are asked to predict the category of the MNIST image only after seeing all
784 pixels. This is therefore a huge long range dependency problem because each recurrent network
has 784 time steps.

To make the task even harder, we also used a fixed random permutation of the pixels of the MNIST
digits and repeated the experiments.

All networks have 100 recurrent hidden units. We stop the optimization after it converges or when
it reaches 1,000,000 iterations and report the results in figure 3 (best hyperparameters are listed in
table 2).

0 1 2 3 4 5 6 7 8 9 10
x 105

0

10

20

30

40

50

60

70

80

90

100

Steps

Te
st

 A
cc

ur
ac

y

Pixel−by−pixel MNIST

LSTM
RNN + Tanh
RNN + ReLUs
IRNN

0 1 2 3 4 5 6 7 8 9 10
x 105

0

10

20

30

40

50

60

70

80

90

100

Steps

Te
st

 A
cc

ur
ac

y

Pixel−by−pixel permuted MNIST

LSTM
RNN + Tanh
RNN + ReLUs
IRNN

Figure 3: The results of recurrent methods on the “pixel-by-pixel MNIST” problem. We report the
test set accuracy for all methods. Left: normal MNIST. Right: permuted MNIST.

Problem LSTM RNN + Tanh RNN + ReLUs IRNN
MNIST lr = 0.01, gc = 1 lr = 10

−8, gc = 10 lr = 10
−8, gc = 10 lr = 10

−8, gc = 1

fb = 1.0

permuted lr = 0.01, gc = 1 lr = 10
−8, gc = 1 lr = 10

−6, gc = 10 lr = 10
−9, gc = 1

MNIST fb = 1.0

Table 2: Best hyperparameters found for pixel-by-pixelMNIST problems after grid search. lr is the
learning rate, gc is gradient clipping, and fb is the forget gate bias.

The results using the standard scanline ordering of the pixels show that this problem is so difficult
that standard RNNs fail to work, even with ReLUs, whereas the IRNN achieves 3% test error rate
which is better than most off-the-shelf linear classifiers [21]. We were surprised that the LSTM did
not work as well as IRNN given the various initialization schemes that we tried. While it still possi-
ble that a better tuned LSTM would do better, the fact that the IRNN perform well is encouraging.

5

rect(z) =max(z, 0)

Perplexity	 Results	

8/12/15	 Richard	 Socher	 16	

KN5	 =	 Count-‐based	 language	 model	 with	 Kneser-‐Ney	
smoothing	 &	 5-‐grams	

	

	

	

	

Table	 from	 paper	 Extensions	 of	 recurrent	 neural	 network	
language	 model	 by	 Mikolov	 et	 al	 2011	

Problem:	 SoPmax	 is	 huge	 and	 slow	

8/12/15	 Richard	 Socher	 17	

Trick:	 Class-‐based	 word	 predic@on	

p(wt|history)	 	 =	 p(ct|history)p(wt|ct)	

	 	 	 =	 p(ct|ht)p(wt|ct)	

	

The	 more	 classes,	
the	 beber	 perplexity	
but	 also	 worse	 speed:	

	

	

	

One	 last	 implementaEon	 trick	

8/12/15	 Richard	 Socher	 18	

•  You	 only	 need	 to	 pass	 backwards	 through	 your	
sequence	 once	 and	 accumulate	 all	 the	 deltas	 from	
each	 Et	

Sequence	 modeling	 for	 other	 tasks	

8/12/15	 Richard	 Socher	 19	

•  Classify	 each	 word	 into:	 	
•  NER	

•  En@ty	 level	 sen@ment	 in	 context	 	

•  opinionated	 expressions	

•  Example	 applica@on	 and	 slides	 from	 paper	 	
Opinion	 Mining	 with	 Deep	 Recurrent	 Nets	 	
by	 Irsoy	 and	 Cardie	 2014	

Opinion	 Mining	 with	 Deep	 Recurrent	 Nets	 	

8/12/15	 Richard	 Socher	 20	

Goal:	 Classify	 each	 word	 as	

direct	 subjec4ve	 expressions	 (DSEs)	 and	 	
expressive	 subjec4ve	 expressions	 (ESEs).	 	

DSE:	 Explicit	 men@ons	 of	 private	 states	 or	 speech	 events	
expressing	 private	 states	 	

ESE:	 Expressions	 that	 indicate	 sen@ment,	 emo@on,	 etc.	
without	 explicitly	 conveying	 them.	 	

	

Example	 AnnotaEon	

8/12/15	 Richard	 Socher	 21	

In	 BIO	 nota@on	 (tags	 either	 begin-‐of-‐en@ty	 (B_X)	 or	
con@nua@on-‐of-‐en@ty	 (I_X)):	
The	 commibee,	 [as	 usual]ESE,	 [has	 refused	 to	 make	 any	
statements]DSE.	 	

	

Approach:	 Recurrent	 Neural	 Network	

8/12/15	 Richard	 Socher	 22	

•  Nota@on	 from	 paper	 (so	 you	 get	 used	 to	 different	 ones)	

•  x	 represents	 a	 token	 (word)	 as	 a	 vector.	 	

•  y	 represents	 the	 output	 label	 (B,	 I	 or	 O)	 –	 g	 =	 soQmax	 !	

•  h	 is	 the	 memory,	 computed	 from	 the	 past	 memory	 and	 current	
word.	 It	 summarizes	 the	 sentence	 up	 to	 that	 @me.	

Recurrent Neural Network

ht = f (Wxt +Vht−1 + b)
yt = g(Uht + c)

y

h

x

 represents a token (word) as a vector.
 represents the output label (B, I or O).
 is the memory, computed from the past memory and
current word. It summarizes the sentence up to that time.

x
y
h

BidirecEonal	 RNNs	

8/12/15	 Richard	 Socher	 23	

Problem:	 For	 classifica@on	 you	 want	 to	 incorporate	
informa@on	 from	 words	 both	 preceding	 and	 following	

Ideas?	

	

Bidirectionality

h
!
t = f (W

!"!
xt +V
!"
h
!
t−1 + b
!
)

h
!
t = f (W

!""
xt +V
!"
h
!
t+1 + b
!
)

yt = g(U[h
!
t;h
!
t]+ c)

y

h

x

 now represents (summarizes) the past and future
around a single token.
h = [h
!
;h
!
]

Deep	 BidirecEonal	 RNNs	

8/12/15	 Richard	 Socher	 24	

Going Deep

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L)
;h
!
t
(L)
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential
representation to the next.

h(2)

h(1)

Data	

8/12/15	 Richard	 Socher	 25	

•  MPQA	 1.2	 corpus	 (Wiebe	 et	 al.,	 2005)	 	

•  consists	 of	 535	 news	 ar@cles	 (11,111	 sentences)	 	

•  manually	 labeled	 with	 DSE	 and	 ESEs	 at	 the	 phrase	
level	 	

•  Evalua@on:	 F1	

EvaluaEon	

8/12/15	 Richard	 Socher	 26	

Results: Deep vs Shallow RNNs

57

59

61

63

65

67

Pr
op

 F
1

DSE

64
66
68
70
72
74

1 2 3 4 5

B
in

 F
1

Layers

47

49

51

53

55

57
ESE

24k

200k

58
60
62
64
66
68

1 2 3 4 5
Layers

Results: Deep vs Shallow RNNs

57

59

61

63

65

67

Pr
op

 F
1

DSE

64
66
68
70
72
74

1 2 3 4 5

B
in

 F
1

Layers

47

49

51

53

55

57
ESE

24k

200k

58
60
62
64
66
68

1 2 3 4 5
Layers

Machine	 TranslaEon	 (MT)	

8/12/15	 Richard	 Socher	 27	

•  TradiEonal	 MT:	
•  A	 lot	 of	 human	 feature	 engineering	

•  Very	 complex	 systems	

•  Many	 different,	 independent	 machine	 learning	 problems	

Deep	 learning	 to	 the	 rescue!	 …	 ?	

8/12/15	 Richard	 Socher	 28	

Maybe,	 we	 could	 translate	 directly	 with	 an	 RNN?	

	 	 	 	 Decoder:	

Encoder	

x1	 x2	 x3	

h1	 h2	 h3	
W	 W	

y1	 y2	

Echt	 	 	 	 	 dicke 	 	 	 	 	 	 	 	 	 	 Kiste	
	 	

Awesome	 	 	 	 	 	 	 	 sauce	

This	 needs	 to	 	
capture	 the	 	
en@re	 phrase!	

MT	 with	 RNNs	 –	 Simplest	 Model	

8/12/15	 Richard	 Socher	 29	

Encoder:	

Decoder:	 	 	

	

Minimize	 cross	 entropy	 error	 for	 all	 target	 words	
condi@oned	 on	 source	 words	

	

It’s	 not	 quite	 that	 simple	 ;)	 	

RNN	 TranslaEon	 Model	 Extensions	

8/12/15	 Richard	 Socher	 30	

1.	 Train	 different	 RNN	 weights	 for	 encoding	 and	 decoding	

	

x1	 x2	 x3	

h1	 h2	 h3	
W	 W	

y1	 y2	

Echt	 	 	 	 	 dicke 	 	 	 	 	 	 	 	 	 	 Kiste	
	 	

Awesome	 	 	 	 	 	 	 	 sauce	

RNN	 TranslaEon	 Model	 Extensions	

8/12/15	 Richard	 Socher	 31	

Nota@on:	 Each	 input	 of	 Á	 has	 its	 own	 linear	
transforma@on	 matrix.	 Simple:	

2.  Compute	 every	 hidden	 state	 in	 	
decoder	 from	

•  Previous	 hidden	 state	 (standard)	

•  Last	 hidden	 vector	 of	 encoder	 c=hT	

•  Previous	 predicted	 output	 word	 yt-‐1	

	

2 RNN Encoder–Decoder

2.1 Preliminary: Recurrent Neural Networks
A recurrent neural network (RNN) is a neural net-
work that consists of a hidden state h and an
optional output y which operates on a variable-
length sequence x = (x1, . . . , xT). At each time
step t, the hidden state hhti of the RNN is updated
by

hhti = f

�

hht�1i, xt
�

, (1)

where f is a non-linear activation func-
tion. f may be as simple as an element-
wise logistic sigmoid function and as com-
plex as a long short-term memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997).

An RNN can learn a probability distribution
over a sequence by being trained to predict the
next symbol in a sequence. In that case, the output
at each timestep t is the conditional distribution
p(xt | xt�1, . . . , x1). For example, a multinomial
distribution (1-of-K coding) can be output using a
softmax activation function

p(xt,j = 1 | xt�1, . . . , x1) =
exp

�

wjhhti
�

PK
j0=1 exp

�

wj0hhti
�

,

(2)

for all possible symbols j = 1, . . . ,K, where wj

are the rows of a weight matrix W. By combining
these probabilities, we can compute the probabil-
ity of the sequence x using

p(x) =
T
Y

t=1

p(xt | xt�1, . . . , x1). (3)

From this learned distribution, it is straightfor-
ward to sample a new sequence by iteratively sam-
pling a symbol at each time step.

2.2 RNN Encoder–Decoder
In this paper, we propose a novel neural network
architecture that learns to encode a variable-length
sequence into a fixed-length vector representation
and to decode a given fixed-length vector rep-
resentation back into a variable-length sequence.
From a probabilistic perspective, this new model
is a general method to learn the conditional dis-
tribution over a variable-length sequence condi-
tioned on yet another variable-length sequence,
e.g. p(y1, . . . , yT 0 | x1, . . . , xT), where one

�� �� ��

��� �� ��

�

�	�
�	�

��
�	�
Figure 1: An illustration of the proposed RNN
Encoder–Decoder.

should note that the input and output sequence
lengths T and T

0 may differ.
The encoder is an RNN that reads each symbol

of an input sequence x sequentially. As it reads
each symbol, the hidden state of the RNN changes
according to Eq. (1). After reading the end of
the sequence (marked by an end-of-sequence sym-
bol), the hidden state of the RNN is a summary c
of the whole input sequence.

The decoder of the proposed model is another
RNN which is trained to generate the output se-
quence by predicting the next symbol yt given the
hidden state hhti. However, unlike the RNN de-
scribed in Sec. 2.1, both yt and hhti are also con-
ditioned on yt�1 and on the summary c of the input
sequence. Hence, the hidden state of the decoder
at time t is computed by,

hhti = f

�

hht�1i, yt�1, c
�

,

and similarly, the conditional distribution of the
next symbol is

P (yt|yt�1, yt�2, . . . , y1, c) = g

�

hhti, yt�1, c
�

.

for given activation functions f and g (the latter
must produce valid probabilities, e.g. with a soft-
max).

See Fig. 1 for a graphical depiction of the pro-
posed model architecture.

The two components of the proposed RNN
Encoder–Decoder are jointly trained to maximize
the conditional log-likelihood

max

✓

1

N

N
X

n=1

log p✓(yn | xn), (4)

Cho	 et	 al.	 2014	
	

Different	 picture,	 same	 idea	

8/12/15	 Richard	 Socher	 32	 e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-
of

-K
 c

od
in

g
C

on
tin

uo
us

-s
pa

ce
W

or
d

R
ep

re
se

nt
at

io
n

si

wi

R
ec

ur
re

nt
St

at
e hi

W
or

d
Ss

am
pl

e

ui

R
ec

ur
re

nt
St

at
ez i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

W
or

d
Pr

ob
ab

ili
ty

Encoder

D
ecoder

Kyunghyun	 Cho	 et	 al.	 2014	
	

RNN	 TranslaEon	 Model	 Extensions	

8/12/15	 Richard	 Socher	 33	

3.  Train	 stacked/deep	 RNNs	 	
with	 mul@ple	 layers	

4.  Poten@ally	 train	 	
bidirec@onal	 encoder	

5.  Train	 input	 sequence	 in	 reverse	 order	 for	 easier	
op@miza@on	 problem:	 Instead	 of	 A	 B	 C	 à	 X	 Y,	 	
train	 with	 C	 B	 A	 à	 X	 Y	

	

Going Deep

h
! (i)
t = f (W

!"! (i)
ht
(i−1) +V

!" (i)
h
! (i)
t−1 + b
! (i)
)

h
! (i)
t = f (W

!"" (i)
ht
(i−1) +V

!" (i)
h
! (i)
t+1 + b
! (i)
)

yt = g(U[h
!
t
(L)
;h
!
t
(L)
]+ c)

y

h(3)

x
Each memory layer passes an intermediate sequential
representation to the next.

h(2)

h(1)

6.	 Main	 Improvement:	 Be\er	 Units	

8/12/15	 Richard	 Socher	 34	

•  More	 complex	 hidden	 unit	 computa@on	 in	 recurrence!	

•  Gated	 Recurrent	 Units	 (GRU)	
introduced	 by	 Cho	 et	 al.	 2014	 	

•  Main	 ideas:	 	

•  keep	 around	 memories	 to	 capture	 long	 distance	
dependencies	

•  allow	 error	 messages	 to	 flow	 at	 different	 strengths	
depending	 on	 the	 inputs	

GRUs	

8/12/15	 Richard	 Socher	 35	

•  Standard	 RNN	 computes	 hidden	 layer	 at	 next	 @me	 step	
directly:	

•  GRU	 first	 computes	 an	 update	 gate	 (another	 layer)	
based	 on	 current	 input	 word	 vector	 and	 hidden	 state	

•  Compute	 reset	 gate	 similarly	 but	 with	 different	 weights	

GRUs	

8/12/15	 Richard	 Socher	 36	

•  Update	 gate	 	

•  Reset	 gate	

•  New	 memory	 content:	
If	 reset	 gate	 unit	 is	 ~0,	 then	 this	 ignores	 previous	
memory	 and	 only	 stores	 the	 new	 word	 informa@on	 	

•  Final	 memory	 at	 @me	 step	 combines	 current	 and	
previous	 @me	 steps:	 	 	

A\empt	 at	 a	 clean	 illustraEon	

8/12/15	 Richard	 Socher	 37	

rt	 rt-‐1	

zt-‐1	

~	 ht	 ~	 ht-‐1	

zt	

ht-‐1	 ht	

xt	 xt-‐1	 Input:	

Reset	 gate	

Update	 gate	

Memory	 (reset)	

Final	 memory	

GRU	 intuiEon	

8/12/15	 Richard	 Socher	 38	

•  If	 reset	 is	 close	 to	 0,	 	
ignore	 previous	 hidden	 state	
à	 Allows	 model	 to	 drop	 	
informa@on	 that	 is	 irrelevant	
in	 the	 future	

•  Update	 gate	 z	 controls	 how	 much	 of	 past	 state	 should	
maber	 now.	

•  If	 z	 close	 to	 1,	 then	 we	 can	 copy	 informa@on	 in	 that	 unit	
through	 many	 @me	 steps!	 Less	 vanishing	 gradient!	

•  Units	 with	 short-‐term	 dependencies	 oQen	 have	 reset	
gates	 very	 ac@ve	

GRU	 intuiEon	

8/12/15	 Richard	 Socher	 39	

•  Units	 with	 long	 term	 	
dependencies	 have	 ac@ve	
update	 gates	 z	

•  Illustra@on:	 	

•  Deriva@ve	 of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ?	 à	 rest	 is	 same	 chain	 rule,	 but	
implement	 with	 modularizaEon	 or	 automa@c	
differen@a@on	

where ✓ is the set of the model parameters and
each (xn,yn) is an (input sequence, output se-
quence) pair from the training set. In our case,
as the output of the decoder, starting from the in-
put, is differentiable, we can use a gradient-based
algorithm to estimate the model parameters.

Once the RNN Encoder–Decoder is trained, the
model can be used in two ways. One way is to use
the model to generate a target sequence given an
input sequence. On the other hand, the model can
be used to score a given pair of input and output
sequences, where the score is simply a probability
p✓(y | x) from Eqs. (3) and (4).

2.3 Hidden Unit that Adaptively Remembers
and Forgets

In addition to a novel model architecture, we also
propose a new type of hidden unit (f in Eq. (1))
that has been motivated by the LSTM unit but is
much simpler to compute and implement.1 Fig. 2
shows the graphical depiction of the proposed hid-
den unit.

Let us describe how the activation of the j-th
hidden unit is computed. First, the reset gate rj is
computed by

rj = �

⇣

[Wrx]j +
⇥

Urhht�1i
⇤

j

⌘

, (5)

where � is the logistic sigmoid function, and [.]j
denotes the j-th element of a vector. x and ht�1

are the input and the previous hidden state, respec-
tively. Wr and Ur are weight matrices which are
learned.

Similarly, the update gate zj is computed by

zj = �

⇣

[Wzx]j +
⇥

Uzhht�1i
⇤

j

⌘

. (6)

The actual activation of the proposed unit hj is
then computed by

h

hti
j = zjh

ht�1i
j + (1� zj)

˜

h

hti
j , (7)

where

˜

h

hti
j = �

⇣

[Wx]j +
⇥

U
�

r� hht�1i
�⇤

j

⌘

. (8)

In this formulation, when the reset gate is close
to 0, the hidden state is forced to ignore the pre-
vious hidden state and reset with the current input

1 The LSTM unit, which has shown impressive results in
several applications such as speech recognition, has a mem-
ory cell and four gating units that adaptively control the in-
formation flow inside the unit, compared to only two gating
units in the proposed hidden unit. For details on LSTM net-
works, see, e.g., (Graves, 2012).

�

�� �� �

Figure 2: An illustration of the proposed hidden
activation function. The update gate z selects
whether the hidden state is to be updated with
a new hidden state ˜

h. The reset gate r decides
whether the previous hidden state is ignored. See
Eqs. (5)–(8) for the detailed equations of r, z, h
and ˜

h.

only. This effectively allows the hidden state to
drop any information that is found to be irrelevant
later in the future, thus, allowing a more compact
representation.

On the other hand, the update gate controls how
much information from the previous hidden state
will carry over to the current hidden state. This
acts similarly to the memory cell in the LSTM
network and helps the RNN to remember long-
term information. Furthermore, this may be con-
sidered an adaptive variant of a leaky-integration
unit (Bengio et al., 2013).

As each hidden unit has separate reset and up-
date gates, each hidden unit will learn to capture
dependencies over different time scales. Those
units that learn to capture short-term dependencies
will tend to have reset gates that are frequently ac-
tive, but those that capture longer-term dependen-
cies will have update gates that are mostly active.

In our preliminary experiments, we found that
it is crucial to use this new unit with gating units.
We were not able to get meaningful result with an
oft-used tanh unit without any gating.

3 Statistical Machine Translation

In a commonly used statistical machine translation
system (SMT), the goal of the system (decoder,
specifically) is to find a translation f given a source
sentence e, which maximizes

p(f | e) / p(e | f)p(f),

where the first term at the right hand side is called
translation model and the latter language model
(see, e.g., (Koehn, 2005)). In practice, however,
most SMT systems model log p(f | e) as a log-
linear model with additional features and corre-

Long-‐short-‐term-‐memories	 (LSTMs)	

8/12/15	 Richard	 Socher	 40	

•  We	 can	 make	 the	 units	 even	 more	 complex	

•  Allow	 each	 @me	 step	 to	 modify	 	

•  Input	 gate	 (current	 cell	 mabers)	

•  Forget	 (gate	 0,	 forget	 past)	

•  Output	 (how	 much	 cell	 is	 exposed)	

•  New	 memory	 cell	

•  Final	 memory	 cell:	

•  Final	 hidden	 state:	 	

IllustraEons	 a	 bit	 overwhelming	 ;)	

8/12/15	 Richard	 Socher	 41	

hbp://people.idsia.ch/~juergen/lstm/sld017.htm	

hbp://deeplearning.net/tutorial/lstm.html	

Intui@on:	 memory	 cells	 can	 keep	 informa@on	 intact,	 unless	 inputs	 makes	 them	
forget	 it	 or	 overwrite	 it	 with	 new	 input.	
Cell	 can	 decide	 to	 output	 this	 informa@on	 or	 just	 store	 it	

Long	 Short-‐Term	 Memory	 by	 Hochreiter	 and	 Schmidhuber	 (1997)	

inj

inj
out j

out j

w ic j

wic j

yc j

g h1.0

net
w i w i

yinj yout j

net c j

g yinj

= g+sc j
sc j

yinj

h yout j

net

LSTMs	 are	 currently	 very	 hip!	

8/12/15	 Richard	 Socher	 42	

•  En	 vogue	 default	 model	 for	 most	 sequence	 labeling	
tasks	

•  Very	 powerful,	 especially	 when	 stacked	 and	 made	
even	 deeper	 (each	 hidden	 layer	 is	 already	 computed	
by	 a	 deep	 internal	 network)	

•  Most	 useful	 if	 you	 have	 lots	 and	 lots	 of	 data	

	

Deep	 LSTMs	 don’t	 outperform	 tradiEonal	 MT	 yet	

43	

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

−8 −6 −4 −2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

John respects Mary

Mary respects John
John admires Mary

Mary admires John

Mary is in love with John

John is in love with Mary

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	 to	 Sequence	 Learning	 by	 Sutskever	 et	 al.	 2014	 	

Deep	 LSTM	 for	 Machine	 TranslaEon	

8/12/15	 Richard	 Socher	 44	

Method test BLEU score (ntst14)
Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of
size 12.

Method test BLEU score (ntst14)
Baseline System [29] 33.30

Cho et al. [5] 34.54
Best WMT’14 result [9] 37.0

Rescoring the baseline 1000-best with a single forward LSTM 35.61
Rescoring the baseline 1000-best with a single reversed LSTM 35.85

Rescoring the baseline 1000-best with an ensemble of 5 reversed LSTMs 36.5

Oracle Rescoring of the Baseline 1000-best lists ∼45

Table 2: Methods that use neural networks together with an SMT system on the WMT’14 English
to French test set (ntst14).

task by a sizeable margin, despite its inability to handle out-of-vocabulary words. The LSTM is
within 0.5 BLEU points of the best WMT’14 result if it is used to rescore the 1000-best list of the
baseline system.

3.7 Performance on long sentences

We were surprised to discover that the LSTM did well on long sentences, which is shown quantita-
tively in figure 3. Table 3 presents several examples of long sentences and their translations.

3.8 Model Analysis

−8 −6 −4 −2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

2

3

4

John respects Mary

Mary respects John
John admires Mary

Mary admires John

Mary is in love with John

John is in love with Mary

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

I gave her a card in the garden

In the garden , I gave her a card
She was given a card by me in the garden

She gave me a card in the garden
In the garden , she gave me a card

I was given a card by her in the garden

Figure 2: The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are obtained
after processing the phrases in the figures. The phrases are clustered by meaning, which in these examples is
primarily a function of word order, which would be difficult to capture with a bag-of-words model. Notice that
both clusters have similar internal structure.

One of the attractive features of our model is its ability to turn a sequence of words into a vector
of fixed dimensionality. Figure 2 visualizes some of the learned representations. The figure clearly
shows that the representations are sensitive to the order of words, while being fairly insensitive to the

6

Sequence	 to	 Sequence	 Learning	 by	 Sutskever	 et	 al.	 2014	 	

PCA	 of	 vectors	 from	 last	 @me	 step	 hidden	 layer	

Further	 Improvements:	 More	 Gates!	

8/12/15	 Richard	 Socher	 45	

Gated	 Feedback	 Recurrent	 Neural	 Networks,	 Chung	 et	 al.	 2015	
Gated Feedback Recurrent Neural Networks

(a) Conventional stacked RNN (b) Gated Feedback RNN

Figure 1. Illustrations of (a) conventional stacking approach and (b) gated-feedback approach to form a deep RNN architecture. Bullets
in (b) correspond to global reset gates. Skip connections are omitted to simplify the visualization of networks.

The global reset gate is computed as:

g

i!j

= �

⇣
w

i!j

g

h

j�1
t

+ u

i!j

g

h

⇤
t�1

⌘
, (12)

where L is the number of hidden layers, wi!j

g

and u

i!j

g

are the weight vectors for the input and the hidden states of
all the layers at time-step t � 1, respectively. For j = 1,
h

j�1
t

is x
t

.

The global reset gate gi!j is applied collectively to the sig-
nal from the i-th layer hi

t�1 to the j-th layer hj

t

. In other
words, the signal from the layer i to the layer j is controlled
based on the input and the previous hidden states.

Fig. 1 illustrates the difference between the conventional
stacked RNN and our proposed GF-RNN. In both mod-
els, information flows from lower layers to upper layers,
respectively, corresponding to finer timescale and coarser
timescale. The GF-RNN, however, further allows infor-
mation from the upper recurrent layer, corresponding to
coarser timescale, flows back into the lower layers, corre-
sponding to finer timescales.

We call this RNN with a fully-connected recurrent tran-
sition and global reset gates, a gated-feedback RNN (GF-
RNN). In the remainder of this section, we describe how to
use the previously described LSTM unit, GRU, and more
traditional tanh unit in the GF-RNN.

3.1. Practical Implementation of GF-RNN

3.1.1. tanh UNIT

For a stacked tanh-RNN, the signal from the previous
time-step is gated. The hidden state of the j-th layer is

computed by

h

j

t

=tanh

W

j�1!j

h

j�1
t

+

LX

i=1

g

i!j

U

i!j

h

i

t�1

!
,

where W

j�1!j and U

i!j are the weight matrices of the
incoming connections from the input and the i-th module,
respectively. Compared to Eq. (2), the only difference is
that the previous hidden states are controlled by the global
reset gates.

3.1.2. LONG SHORT-TERM MEMORY AND GATED
RECURRENT UNIT

In the cases of LSTM and GRU, we do not use the global
reset gates when computing the unit-wise gates. In other
words, Eqs. (5)–(7) for LSTM, and Eqs. (9) and (11) for
GRU are not modified. We only use the global reset gates
when computing the new state (see Eq. (4) for LSTM, and
Eq. (10) for GRU).

The new memory content of an LSTM at the j-th layer is
computed by

˜

c

j

t

= tanh

W

j�1!j

c

h

j�1
t

+

LX

i=1

g

i!j

U

i!j

c

h

i

t�1

!
.

In the case of a GRU, similarly,

˜

h

j

t

= tanh

W

j�1!j

h

j�1
t

+ r

j

t

�
LX

i=1

g

i!j

U

i!j

h

i

t�1

!
.

4. Experiment Settings

4.1. Tasks

We evaluated the proposed gated-feedback RNN (GF-
RNN) on character-level language modeling and Python

Summary	

8/12/15	 Richard	 Socher	 46	

•  Recurrent	 Neural	 Networks	 are	 powerful	

•  Gated	 Recurrent	 Units	 even	 beber	

•  LSTMs	 maybe	 even	 beber	 (jury	 s@ll	 out)	

•  A	 lot	 of	 ongoing	 work	 right	 now	

•  Next	 lecture:	 Pu~ng	 it	 all	 together	 for	 fun	 applica@ons	
and	 dynamic	 memory	 networks	

8/12/15	 Richard	 Socher	 47	

The	 vanishing	 gradient	 problem	 -‐	 Details	

•  Similar	 but	 simpler	 RNN	 formula@on:	

•  Total	 error	 is	 the	 sum	 of	 each	 error	 at	 @me	 steps	 t	

•  Hardcore	 chain	 rule	 applica@on:	

8/12/15	 Richard	 Socher	 Lecture	 1,	 Slide	 48	

The	 vanishing	 gradient	 problem	 -‐	 Details	

•  Similar	 to	 backprop	 but	 less	 efficient	 formula@on	
•  Useful	 for	 analysis,	 we’ll	 look	 at:	

•  Remember:	
•  More	 chain	 rule,	 remember:	

•  Each	 par@al	 is	 a	 Jacobian:	

8/12/15	 Richard	 Socher	 Lecture	 1,	 Slide	 49	

The	 vanishing	 gradient	 problem	 -‐	 Details	

•  From	 previous	 slide:	 	

•  Remember:	

•  To	 compute	 Jacobian,	 derive	 each	 element	 of	 matrix:	 	

•  Where:	

8/12/15	 Richard	 Socher	 Lecture	 1,	 Slide	 50	

ht−1	 ht	

Check	 at	 home	 	
that	 you	 understand	
the	 diag	 matrix	 	
formula@on	

The	 vanishing	 gradient	 problem	 -‐	 Details	

•  Analyzing	 the	 norms	 of	 the	 Jacobians,	 yields:	

•  Where	 we	 defined	 ¯‘s	 as	 upper	 bounds	 of	 the	 norms	
•  The	 gradient	 is	 a	 product	 of	 Jacobian	 matrices,	 each	 associated	

with	 a	 step	 in	 the	 forward	 computa@on.	 	

•  This	 can	 become	 very	 small	 or	 very	 large	 quickly	 [Bengio	 et	 al	
1994],	 and	 the	 locality	 assump@on	 of	 gradient	 descent	 breaks	
down.	 à	 Vanishing	 or	 exploding	 gradient	

8/12/15	 Richard	 Socher	 Lecture	 1,	 Slide	 51	

