Speech Recognition
and Deep Learning

Adam Coates

_ .0 0.
Bai® Research

Silicon Valley Al Lab

Speech recognition

* Important goal of Al research:

— Lots of applications
 Video/voice transcripts
 Natural interface to services and devices

@ R + il B 1000 AM
o

| € 1-323-555-9620
. 02-28-2014, 4:39 PM Today

Hey Bob this is Jennifer Sanders leaving you
a message. Call me. This is important.

and be a part of'special conference call
over towards the,same take care

— Transcription is often easy for people.
» Historically really hard for machines.

Speech recognition

* High-level goal: given speech audio, generate
a transcript.

Speech Recognizer

He l | o world

Speech recognition

* Difficulty depends on many factors.
— Type of speech:

e Conversational versus read.
— Variations in tempo, volume.
— Natural speaker variation
— Pronunciation and accents
— Disfluency (repeated words, stuttering, uhms)
— Environment: Signal to noise ratio; reverb.
— Lombard effect
— Large [likely superhuman] vocabulary.

* Very hard to engineer around all of these! Great place for
DL to make a difference.

Outline

* Traditional speech models

— Still dominant architecture behind state-of-the-art
systems.

— Commonly assumed throughout literature.

Think of this as DL Survival School for speech.

* Deep Learning for speech recognition
— Direct improvements on traditional method.
— CTC and end-to-end learning.

TRADITIONAL SPEECH MODELS

Basic pipeline

* Represents wide range of current practice.
— Will gloss over some algorithmic details.
— |If DL community is successful, a lot may go away!

Basic pipeline

* Goal: given raw audio, convert to sequence of

characters.
X = [513125‘2 ..]

Audio wave

He |l | o world

W* = [wiwy]| = argmax P(W|X)
%

Basic pipeline

* |n practice, systems factorize work into
several components:

Audio wave

Feature representation

Decoder Acoustic Model P(O’W)

W* = argmax P(W‘X) Language Model P(W)
%%

= argmax P(O|\W)P(W)
7%

Basic pipeline

e Usually represent words as sequence of “phonemes”:

wy = “hello” = [HH AH L OW] = [¢1¢2¢3G4]

 Phonemes are the perceptually distinct units of sound
that distinguish words.

— Quite approximate... but sorta standardized-ish.
— Some labeled corpora available (e.g., TIMIT)

Phone Phone Phone
Example Example Example
Label Label Label
1 1y beet 22 ch choke 43 en button

2 ih bit 23 b bee 44 eng Washington

Basic pipeline

* Traditional systems usually model phoneme sequences instead of
words. This necessitates a dictionary or other model to translate.

Audio wave

. , Pronunciation
eature representation Model

Decoder Acoustic Model JEd{@II®)

W* = argmax P(W‘X) Language Model P(W)
%%

= argmax) P(O|Q)P(QIW)P(W)
Vo

Basic pipeline
 We’ll just use a dictionary: only allow 1 pronunciation.

Audio wave

Pronunciation
Dictionary

Feature representation

Decoder Acoustic Model JEd{@II®)

W* — argmaX P(W’X) Language Model P(W)
%%

= argmax P(O|Q(W))P(W)
7%

Features

e As with most ML tasks, first want to convert
raw input into more convenient features.

— Spectrograms

— MFCC (Mel Frequency Cepstral Coefficients)
— PLP, RASTA [Hermansky, 1990; 1994]

— “Delta” features

Example: Spectrogram

* Take a small window (e.g., 20ms) of waveform.
— Compute FFT and take magnitude. (i.e., power)
— Describes frequency content in local window.

“Hello world”

_—)
AfpApripn — — £ -
B - 1. E

20ms Frequency
1 Frame

Example: Spectrogram

* Concatenate frames from adjacent windows to
form “spectrogram”.

B L 1 uaes i S

|

BACK TO MODELING

Acoustic model

We need a model of P(O|Q): a generative model of features
(e.g., spectrogram) given phoneme sequence Q.

Start with a simpler case: a single phoneme q.

Model sequence of observations generated while speaking g
using HMM.

Modeling 1 phoneme

 Use an HMM with simple “left-to-right” state structure.
— Think of generating process as a state machine.
* Start in state O at t=0.
* At each time step: Jump from state s.=i to state s,,,=j with probability a,

* After each jump generate a frame according to P(o,|s,).
— E.g., use P(o,|s.=j) = Gaussian(p;, X))

[Gales & Young, 2008]

Modeling 1 phoneme

 Use an HMM with simple “left-to-right” state structure.
— Think of generating process as a state machine.
* Start in state O at t=0.
* At each time step: Jump from state s.=i to state s,,,=j with probability a,

* After each jump generate a frame according to P(o,|s,).
— E.g., use P(o,|s.=j) = Gaussian(p;, X))

[Gales & Young, 2008]

Modeling 1 phoneme

 Use an HMM with simple “left-to-right” state structure.

— Think of generating process as a state machine.
* Start in state O at t=0.
* At each time step: Jump from state s.=i to state s,,,=j with probability a,
* After each jump generate a frame according to P(o,|s,).

— E.g., use P(o,|s.=j) = Gaussian(p;, X))

dig dy) CEE!
=
/ \ N\
\ I \ f \ f
N
dg; [ap dy3 CEV
II
II
[

0, [Gales & Young, 2008]

Modeling 1 phoneme

 Use an HMM with simple “left-to-right” state structure.
— Think of generating process as a state machine.
* Start in state O at t=0.

* At each time step: Jump from state s,=i to state s,,,=j with probability a

* After each jump generate a frame according to P(o,|s,).
— E.g., use P(o,|s.=j) = Gaussian(p;, X))

j

0, O, [Gales & Young, 2008]

Modeling 1 phoneme

 Use an HMM with simple “left-to-right” state structure.

— Think of generating process as a state machine.
* Startin state O at t=0.

* At each time step: Jump from state s.=i to state s,,,=j with probability a,

* After each jump generate a frame according to P(o,|s,).
— E.g., use P(o,|s.=j) = Gaussian(p;, X))

0, O, 0, [Gales & Young, 2008]

Modeling 1 phoneme

 Use an HMM with simple “left-to-right” state structure.

— Think of generating process as a state machine.
* Startin state O at t=0.

* At each time step: Jump from state s.=i to state s,,,=j with probability a,
* After each jump generate a frame according to P(o,|s,).

— E.g., use P(o,|s.=j) = Gaussian(p;, X))

0, O, 0; Oy [Gales & Young, 2008]

Modeling 1 phoneme

 Use an HMM with simple “left-to-right” state structure.

— Think of generating process as a state machine.
* Startin state O at t=0.

* At each time step: Jump from state s.=i to state s,,,=j with probability a,
* After each jump generate a frame according to P(o,|s,).

— E.g., use P(o,|s.=j) = Gaussian(p;, X))

s 8
o, 0, o0 0, O [Gales & Young, 2008]

Modeling 1 phoneme

 Use an HMM with simple “left-to-right” state structure.

— Think of generating process as a state machine.
* Startin state O at t=0.

* At each time step: Jump from state s.=i to state s,,,=j with probability a,

* After each jump generate a frame according to P(o,|s,).
— E.g., use P(o,|s.=j) = Gaussian(p;, X))

s a2 F
o, 0, o0 0, O [Gales & Young, 2008]

Inference with 1 phoneme

* We now have HMM with parameters {a;, p, 2/}

— Given an observation sequence, 0, 0, 0; We can:

* Find most likely sequence of internal states s, s, ... s; that generated O.
— Viterbi algorithm.

4\ I NN
¥ N v K N ™a
[| [| L [| [| [|
= ™]]
Given observations: = . - i = -
= H . - - -

0; O, O3 O, O5 O

So S¢ S, S3 S; S5 Sg Sy

Viterbi output: 0 1 1 2 3 3 3 4

[Gales & Young, 2008]

Inference with 1 phoneme

* We now have HMM with parameters {aij, K, Zj}
— Given an observation sequence, 0, 0, 0O we can:

* Find most likely sequence of internal states s, s, ... s; that generated O.
— Viterbi algorithm.

* Also: Compute likelihood of observations P(O|q) by summing over all
possible state sequences in the HMM for g.

P(Ola) = X POIS)P(S

* Solved with forward-backward algorithm. (This is the acoustic model
likelihood we wanted!)

[Gales & Young, 2008]

Modeling a word

* Given a phoneme sequence (word) we can “construct” a
word-level HMM by stringing state machines together.

P(O | Q-= q1q2)
d, d,
diq dy) ds3 by, b,, by;
do1 A 912 1 9 " d3y4 by, R by T b,
ll ‘\ : II \ II ll ‘\ ‘|
II \‘ 1 II \‘ i I \y 1
¥ 31 ¥ ¥ % ¥ 1 H
. 1 1 R
“ s T = - s F -
o0 0, ©0; 0, O Og 0, Og Oq

[Gales & Young, 2008]

Training from sentences

e Sentence is just a sequence of word models.
1. Convert sentence into sequence of phonemes.
2. Define HMM by composing phoneme models.

* Training:
— We have a fixed HMM structure defined by sentence.
— We have observations (training data) generated by the HMM.

— Use Expectation-Maximization (EM; aka Baum-Welch)

— E-step: Inference to find hidden state posterior [P(s|O)]

* Use forward-backward.

— M-step: Update parameters to maximize likelihood of O.

Training from sentences

e Sadly, EM is not guaranteed to give us a good answer. What
can go wrong?

* [llustration: imagine E-step just computes most likely state
sequence.

Viterbi Sg S, S, S3 S, Sc Se S, Sg Sg S10
0 1 2 2 2 2 3 4 5 6 7
diq dy; d33 by, b,, b3

This corresponds to an alignment between observations and phonemes.
If we get it wrong, parameter update might be poor.

E.g., tune observation models for wrong phoneme.

Obstacles...

* Lots of tricks to get this to work well.

— E.g., initialize observation models by pre-training
from small corpus of annotated data.

Language modeling

* |n addition to acoustic model, need LM: P(W)

— Many options, but a few desiderata are important:

* Reasonably fast to query.
— Used inside decoder.

 Ability to train on huge corpora.
— Make up for relative paucity of speech data.

* Ability to train quickly.

— Production systems often want to deal with shifting/trending
vocabulary.

* Very common default: N-gram model.

— P(wy [Wyg, Wyp, ey Wiensg)
e Lots of smoothing tricks to be used with large N.
* See, e.g., [Jurafsky & Martin, 2000] for intro.

Putting it together

Audio wave

X

Pronunciation
Feature representation O Dictionary Q(W)

Decoder Acoustic Model Jed(@II0)

W* — argmax P(W’X) Language Model P(W)
%%

= argmax P(O|Q(W))P(W)
7%

Decoder

e Basic problem: search for sequence of words W =
W, W, ... W, to maximize P(W|X).

W* = argmax P(W|X)
1%

= argmax P(O|Q(W))P(W)
7%

Decoder

e Basic problem: search for sequence of words W =
W, W, ... W, to maximize P(W|X).

W* = argmax P(W|X)
W
= argmax PO|Q(W))P(W)
= argmax }_ P(O|S)P(S|Q(W))P(W)
S

— Many strategies to do this. Often complex.

— Here: simplify the problem to illustrate idea.
* Only look for most likely state sequence S.
* Note: if we fix a choice of S, this gives us Q and W.

Decoder

e Simple problem: two word vocabulary.
— “Hi” [HHAY] or “Guy” [G AY].
— Language model:
e P(Guy|Hi) =0.9; P(Hi|Hi) = 0.1
* P(Hi|Guy) =0.5; P(Guy|Guy) = 0.5

— HMM acoustic models like earlier.

Decoder visualization

End of phoneme + word transition:

e Let’s build entire HMM: P(s,..|5,=8) * P(Hi[Hi)

IIH i”

AY

7

4 (J
* - U O
*
*
*
*
*
*
*
*
*
*
.
*
¢ G AY
.
*
*
.
*
*
;
-

Want to find state sequence that maximizes probability of observations.

Decoder

* Finding most likely sequence is easy with
Viterbi!

— Main issues:

* Not practical for big problems.

* We chose a bigram language model! Bigger N-gram
would violate the Markov assumption.

— Dynamic programming no longer works. :-(

* |n practice: use general search formalism.

— E.g., Beam search.

Decoder

Beam search:
— Keep a list of top N candidate partial state sequences.
— Propose extensions (next state) for each candidate.
— If we had entire state sequence, likelihood is:
log P(O|S) + log P(S|Q(W)) + log(P(W)) =
> “log P(O4]Sy) +1og P(S]Si—1) + Y _log P(Wi|Wi—1)
t k

— During search, keep track of partial sum:
t' K’
> "log P(O4|S;) + log P(Si|Si—1) +) log P(Wi|Wi—_1)

t=1 k=1

Observations and state transitions so far. Words in sequence so far.

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HH III
HH AY
Q“ uG Uy"
/ G AY

888

1
¥

-]

—
—t

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HHIII
HH AY

Add log P(s,|s,=0) “Guy”
G AY

111 JI
—
—
w1

=

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HHIII
HH AY

Add log P(o,|s;) “Guy”
| G AY

111 JI
—
—
w1

=

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HH III
HH AY
Add log P(s,|s,) “Guy”
G AY

8848

1
¥

—

—

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HHIII
HH AY

Add log P(o,|s,) “Guy”
“ G AY

+

—
—

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

llHIII
HH AY
Keep top 2 candidates. “Guy”
G AY

8848

1
¥

—

—

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

llH I”
HH AY
Add log P(s;]s,) "Guy”
G AY

8848

1
¥

—
—t

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HH III
HH AY
R S
Add log P(o;]s,) “Guy”
5 AY

8848

1
¥

—

—

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HHIII
HH AY
Keep top 2. “Guy”
G AY

8848

1
¥

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HHIII
HH AY
Q“ uGuyn
/ G AY

8848

1
¥

-

e

+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HHIII
HH AY

999 || 888

Q‘:’ “Guy”
G AY

-
.
=

+

TR
| O
CRETTR T |

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

HHIII
HH AY
G“ uGuyn
/ G AY

888

1
¥

—
—

1 ommn o]

T
-
....+.

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

llHiII
HH AY

Add log P(s|s;) [Add log P(W,,; [W,)

G AY

T

o

-
!
1
+

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

llHiII
HH AY

Keep top 2.

Q‘:’ “Guy”
G AY

-t
T

Jl
_—
—
......,.

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

IIH iII
HH AY

Fast forward

3
*
*
*
*
*
.

|

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

llHiII
HH AY

*
.
*
*
*
O
o" 7
* Guy
"
*

T
—
—

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

llHiII
HH AY
l(Guyll
G AY
'
. O [| [| [|
—+—— 33— 1 1 3

Decoder visualization

Example Beam search: keep top 2 paths; accumulate likelihood of O as we go.

llHiII
HH AY

-— >—< — [\

(i e (vl Al 8
‘ Recorded state sequenceS: 123 678 91011 121314

0 Phoneme sequence Q: HH AY G AY
g Word sequence W: Hi

Is that all?

* No.

— Highly simplified model here, but with all the
major moving pieces.

* More components of real systems:
— Phoneme models = Triphones (HH-AH-LL)
— Normalization and noise filtering.

— Speaker adaptation
* “Vocal Tract Length Normalization”

DEEP LEARNING!

Where can DL help?

Basic pipeline
 We’ll just use a dictionary: only allow 1 pronunciation.

Audio wave

Proiiunciation
Dictionary

Feature icpicscntatian

Decoder

W* = argmax P(W|X)
1%

= argmax P(O|Q(W))P(W)
7%

DNN acoustic models

* One classic improvement: HMM+DNN

— Basic idea: Enhance P(O|Q) with neural network.
— Still re-use HMM machinery to model sequences, words, etc.
* So usually only aim to replace P(O|S)

Usually we work with DNNs that are trained for a
discriminative task:

Take in O, make a prediction.

But here trying to plug into generative model.

DNN acoustic models

e Clearly: DNN useful to model P(s]|o) if we know the
target for s.

Discrete label s 2 Predict with softmax neurons

a=Wh-+b
Ui = Plsilo) = exp(as)/ 3 exp(ay)

| J
Hidden Units g

Sigmoid or RelLu units.

Hidden Units %

Speech frame
Features, o WO Jm .

HMM state: P(s|o)?

il

DNN acoustic models

* Where do we get targets for P(s|0)?

* Use standard pipeline to find most likely state
sequence, S, for training utterance input, O.
— Recall: We have word labels, so this is just “alignment”.
— Hack up into training pairs s, and o, for DNN.

* Use a small carefully annotated training set to train
DNN (bootstrap), re-run alignment, retrain.

* Train to predict phonemes directly: P(q| o).

— Phoneme-annotated data (bootstrap) is more plentiful.

— Can rework HMMs so that emission/observation from
“hidden” state is phoneme itself.

DNN acoustic models

* But we want observation model P(o|s) to integrate into
HMM framework.

— Bayes rule:
P(o|s) = P(s|o)P(0)/P(s)
P(o|s) o< P(s|o)/P(s)

Introduces harmless constant
into recognizer since o is given.

* Thus, normalize output of DNN by prior probability of state.
— Just take empirical frequency of state in training data.

— If you’re getting great frame accuracy but poor word accuracy,
this can be culprit. Especially when labels are skewed.

Early wins for DNN models

* From Dahl et al., ICASSP 2011:

DBN-HMM 5 from DBN-HMM Triphone Senones yes 71.8% 69.6%
ML GMM-HMM baseline 629% | 604% |
MMI GMM-HMM baseline 65.1% 62.8%
MPE GMM-HMM baseline 65.5% 63.8%

- 62.9% [13]

ML GMM-HMM baseline 2100 hours of training data (transcription is 90% accurate)

* ~“10% relative improvement with DBN.
— Later results improve with ReLu and Dropout.

More powerful acoustic models

e Can replace DNN with more powerful networks.
— E.g., use large context, or recurrent network (RNN).

Rescoring

* Another place to plug in better algorithms:
Systems usually produce N-best list.
Use fancier algorithms to “rescore” (pick best)

Rescoring with Neural LM

 Example: train neural language model and rescore
word transcriptions.
— Cheap to evaluate P(w, |w, ;,W, ,, ..., w;) NLM on many
sentences.

— In practice, often combine with N-gram trained from big
corpora.

(-25.45) I’'m a connoisseur looking for wine and porkchops. -24.45
(-26.32) I’'m a connoisseur looking for wine and port shops. -23.45

1.
2.
3. ..
4
5

TRAINING FROM UNSEGMENTED
DATA WITH CTC

Complexity

* Alignment and bootstrapping makes training
cumbersome and error prone.

e What if we could train acoustic model without
alignment step?

— One proposal by Graves et al., ICML 2006:
“Connectionist Temporal Classification” (CTC)

Network setup

We create a neural network that outputs sequence of “probability
vectors” y, = P(q,| O) of same length as input.

Assume that P(Q|O) =]], P(q,|O).

Allow q to take “blank” value so that Q can be same length as O.

Y117 = P(q,;, =iy | O)

“blank”
Iy Z

o ITTTTITITITIITITTITITITTITIT1T71]

$ g Zwewers 23

Problem

* We don’t know phoneme alignment with
input, so can’t train supervised directly.

— Previously, we solved this by letting EM “guess”
the alignment iteratively.

— We want alignment to be irrelevant.

e Solution idea: introduce an operation that
makes the transcription from P(q| o)
“invariant” to misalignment.

Collapsing operator

Suppose we start with decent predictions
Y, = P(q,|O) from a neural network.

Consider a string sampled from this distribution:

HH HH HH AH AH _

LLL__OW

Make true “transcription” invariant by removing
repeats, then blanks:

HH AH L OW == “Hello”

Under this operation, these also map to “Hello”:
HH HH AHAH _ LLL__OW

_ HH AH__ LLLLLLLL__OWOWOW

Likelihood of a sequence

 Want to compute likelihood of a label sequence:

d,d,9;9,=HH AH L OW

 Sum over all possible transcriptions that collapse to the

label string:

P(q,0,0950,410)=P(____HHHHHH____AHAH___LLL__OW___)
+P(HHHH AHAH _ LLL__OW___)
+P(__HH AH___LLLLLLLL__OWOWOW______)
+

For fixed Q, Graves et al. give a forward-backward algorithm to compute this summation!

Training

 We want to do gradient ascent to maximize
likelihood of a training label. We need:
VeP(Q|O) =
VoP(q1q2-..9x]0) =

Training

 We want to do gradient ascent to maximize
likelihood of a training label. We need:

VoP(Q|0) =
VoP(q1q2 ... qk|0) =

Vo > Pual@de...dr|O)
Q:collapse(Q)=Q

Luckily, output of forward-backward algorithm can be
used to compute gradient, including summation.

Training

* What happens?

yit=P(qt=iIO)I -

vit=P(qt=i|0)I

yit=P(qt=i|O)I

Time Time

Vy;. log P(Q|O)

Vy;. log P(Q|O)

Vy, log P(Q|O)

output error

[From Graves et al., 2006]

Decoding

* Given outputs, we still need to find most likely
sequence and convert to words.

— |.e., want to compute:

argmax P(Q|0))
@

= argmax Z Poet(G1Gs - .. G7|O)
@ Q:collapse(@)z@

Decoding

* Quick and dirty solution:

argmax P(Q|O))
@

~ collapse(argmax Ppe(G1G2 - - - ¢r|0))
Q

* Not guaranteed to be best sequence, but
useful sanity-check.

Decoding

e Alternatively, resort to beam search over Q, as
with traditional systemes.

— Can also incorporate LM score at this point as with
traditional systems.

e See, Hannun, Maas, Jurafsky & Ng, 2014.

* Or: don’t bother to decode and just use

P(Q|O) to rescore N-best from traditional
baseline.

— See, e.g., Graves & Jaitly, 2014.

End-to-end learning

* No fundamental reason we must use phonemes.

» Jettison HMM infrastructure for transcribing
phonemes/words, and use CTC to transcribe directly to
characters/graphemes.

— Let neural network (RNN) do all the work.
* See, e.g., Graves & Jaitly, ICML 2014.

— Still probably want LM.

 No major changes to training algorithm!

— But needs a lot of training data / large models to compete
with traditional systems.

— Yet much simpler to build (Hannun et al., 2014).

probability

o

End-to-end learning

* Graves & Jaitly, 2014:

H 1S _ F R I

1 /ﬂ -

e Caveat: character transcription leads to “hearing errors”

cropping up.
target USTRATE THE POINT
outpu! ALSTRAIT THE POINT

 These can be hard to fix with language model because
words look very different though sound the same.

=

Example transcriptions

* End-to-end networks can still work well on
their own, but LM is still needed.

Max Decoding: LM Decoding:
what is the weather like in bostin right now | what is the weather like in boston right now
prime miniter nerenr modi prime minister narendra modi
arther n tickets for the game are there any tickets for the game

From Hannun et al., 2014.

Conclusion

* Traditional HMM-DNN hybrid speech system
still very common in the wild.

— Multiple places for DL to plug in and make
Improvements.

* More recent trend: replace with more end-to-
end DL approach.
— Speech works significantly better today due to DL.

— Next wave of DL systems should be even better as
end-to-end methods supplant engineering.

Thank you

Special thanks to Awni Hannun for his
help checking these slides.

References

Gales and Young. “The Application of Hidden Markov Models in Speech Recognition” Foundations and Trends in
Signal Processing, 2008.

Jurafsky and Martin. “Speech and Language Processing”. Prentice Hall, 2000.
Bourlard and Morgan. “CONNECTIONIST SPEECH RECOGNITION: A Hybrid Approach”. Kluwer Publishing, 1994.

A Graves, S Fernandez, F Gomez, J Schmidhuber. “Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks.” ICML, 2006.

Dahl, Yu, Deng, Acero, “Large Vocabulary Continuous Speech Recognition with Context-Dependent DBN-HMMs”.
ICASSP, 2011

Hannun, Maas, Jurafsky, Ng. “First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional
Recurrent DNNs” ArXiv:1408.2873

Hannun, et al. “Deep Speech: Scaling up end-to-end speech recognition”. ArXiv:1412.5567

H. Hermansky, "Perceptual linear predictive (PLP) analysis of speech", J. Acoust. Soc. Am., vol. 87, no. 4, pp.
1738-1752, Apr. 1990.

H. Hermansky and N. Morgan, "RASTA processing of speech", IEEE Trans. on Speech and Audio Proc., vol. 2, no. 4,
pp. 578-589, Oct. 1994.

H. Schwenk, “Continuous space language models”, 2007.

