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Restricted Boltzmann Machines 
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    Natural Images Learned bases:  “Edges” 
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     x      ~     1  *       b
36         +   1  *        b42          

+  1  *       b65 

 [0, 0, …, 0, 1, 0, …, 0, 1, 0, …, 0, 1, …]  
= coefficients (feature representation)  

Test example 

Motivation? 
Salient features, Compact representation 

Compact & easily 
interpretable 

Learning Feature Hierarchy 
[Lee et al., NIPS 2007; Ranzato et al., 2007] 
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Input image (pixels) 

“Sparse coding” 

(edges)  

Note: No explicit “pooling.”  

[Related work: Bengio et al., 2006; Ranzato et al., 2007, and others.]  

Lee et al., NIPS 2007: DBN (Hinton et al., 2006) with additional sparseness constraint. 

Higher layer 

(Combinations  

of edges) 

Describe more 
concretely.. 

Learning Feature Hierarchy 
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Restricted Boltzmann Machines (RBMs) 

• Representation 

– Undirected bipartite graphical model 

– 𝐯 ∈ 0,1 𝐷: observed (visible) binary variables 

– 𝐡 ∈ 0,1 𝑁: hidden binary variables. 
hidden (H) 

i 

j 

visible (V) 
= −ℎ1(𝐰1

𝑇𝐯) +ℎ2(𝐰2
𝑇𝐯) +ℎ3(𝐰3

𝑇𝐯) −𝐛𝑇𝐡 − 𝐜𝑇𝐯 
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Restricted Boltzmann Machines (RBMs) 

• Representation 

– Undirected bipartite graphical model 

– 𝐯 ∈ 0,1 𝐷: observed (visible) binary variables 

– 𝐡 ∈ 0,1 𝑁: hidden binary variables. 

h1 h2 h3 

hidden (H) 

i 

visible (V) 
= −ℎ1(𝐰1

𝑇𝐯) +ℎ2(𝐰2
𝑇𝐯) +ℎ3(𝐰3

𝑇𝐯) −𝐛𝑇𝐡 − 𝐜𝑇𝐯 

w1 w2 w3 
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Conditional Probabilities  
(RBM with binary-valued input data) 

• Given 𝐯, all the ℎ𝑗  are 
conditionally independent 

 

 

 

 

– P(h|v) can be used as “features” 
 

• Given 𝐡, all the 𝑣𝑖  are 
conditionally independent 

 

hidden (H) 

i 

j 

visible (V) 

𝒘𝟏 
𝒘𝟐 𝒘𝟑 

v1 v2 

h3 h2 h1 



8 

RBMs with real-valued input data 

• Representation 

– Undirected bipartite graphical model 

– V: observed (visible) real variables 

– H: hidden binary variables. 

8 

hidden (H) 

i 

j 

visible (V) 
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RBMs with real-valued input data 

• Given 𝐯, all the ℎ𝑗 are conditionally independent 

 

 

 

 

 

– P(h|v) can be used as “features” 
 

• Given 𝐡, all the 𝑣𝑖 are conditionally independent 

 

 

hidden (H) 

i 

j 

visible (V) 

𝒘𝟏 
𝒘𝟐 𝒘𝟑 

v1 v2 

h3 h2 h1 
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Inference 

• Conditional Distribution: P(v|h) or P(h|v) 

– Easy to compute (see previous slides). 

– Due to conditional independence, we can sample hidden 
units in parallel given visible units (& vice versa) 

• Joint Distribution: P(v,h) 

– Requires Gibbs Sampling (approximate) 

 Initialize with 𝐯0 
Sample 𝐡0 from 𝑃(𝐡|𝐯0) 
 
Repeat until convergence (t=1,…) { 
 Sample 𝐯𝑡 from 𝑃(𝐯𝑡|𝐡𝑡−1) 
 Sample 𝐡𝑡 from 𝑃(𝐡|𝐯𝑡) 
} 

v 

h 
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Training RBMs 

• Maximum likelihood training 
– Objective: Log-likelihood of the training data 

 

   
 
 
 

– Computing exact gradient intractable. 
– Typically sampling-based approximation is used (e.g., 

contrastive divergence). 
– Usually optimized via stochastic gradient descent 

 
 

where 
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Training RBMs 

• Model:  

• How can we find parameters 𝜃 that maximize 𝑃𝜃(𝐯)? 

 

 

 

 

 

• We need to compute P(h|v) and P(v,h), and derivative of 
E w.r.t. parameters {W,b,c} 
– P(h|v): tractable (see previous slides) 

– P(v,h): intractable 
• Can approximate with Gibbs sampling, but requires lots of iterations 

Data Distribution 
(posterior of h given v) Model Distribution 



13 

Contrastive Divergence 

• Approximation of the log-likelihood gradient 

1. Replace the average over all possible inputs by samples 

 
 

 

 

2. Run the MCMC chain (Gibbs sampling) for only k steps 
starting from the observed example 

 

 
Initialize with 𝐯0 = 𝐯 
Sample 𝐡0 from 𝑃(𝐡|𝐯0) 
 
For t = 1,…,k { 
 Sample 𝐯𝑡 from 𝑃(𝐯𝑡|𝐡𝑡−1) 
 Sample 𝐡𝑡 from 𝑃(𝐡|𝐯𝑡) 
} 
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Maximum likelihood learning for RBM 

 

i 

j 

i 

j 

i 

j 

i 

j 

t = 0                 t = 1                  t = 2                               t = infinity 

Equilibrium 

distribution 

Slide Credit: Geoff Hinton  

0 jihv  jihv
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Contrastive divergence to learn RBM 

0 jihv

1 jihv

i 

j 

i 

j 

t = 0                 t = 1    

Start with a training vector on the 

visible units. 

Update all the hidden units in 

parallel 

Update the all the visible units in 

parallel to get a “reconstruction”. 

Update the hidden units again.  reconstruction data 

Slide Credit: Geoff Hinton  
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Update rule: Putting together 

• Training via stochastic gradient. 

• Note, 
𝜕𝐸

𝜕𝑊𝑖𝑗
= ℎ𝑖𝑣𝑗.  Therefore, 

 
 

 
 

– where 𝐯𝑘 is a sample from k-step CD 
– Can derive similar update rule for biases b and c 
– Mini-batch (~100 samples) are used to reduce the 

variance of the gradient estimate  
– Implemented in ~10 lines of matlab code 
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Other ways of training RBMs 

• Persistent CD (Tieleman, ICML 2008; Tieleman & Hinton, ICML 2009) 

– Keep a background MCMC chain to obtain the 
negative phase samples. 

– Related to Stochastic Approximation  

• Robbins and Monro, Ann. Math. Stats, 1957  

• L. Younes, Probability Theory 1989 

• Score Matching (Swersky et al., ICML 2011; Hyvarinen, JMLR 

2005)  

– Use score function to eliminate Z 

– Match model’s & empirical score function 
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Variants of RBMs 
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• Main idea 

– Constrain the hidden layer nodes to have “sparse” 
average values (activation). [cf. sparse coding] 

• Optimization 

– Tradeoff between “likelihood” and “sparsity penalty” 

 

 

 

Log-likelihood Sparsity penalty 

Average activation (over training data) Target sparsity 

Sparse RBM / DBN 

d( , ): penalty function 
on deviation from the 
target sparsity (e.g., 
KL-divergence) 

[Lee et al., NIPS 2008] 

where  
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Training examples 

We just need 4 bases. We 
are using salient features. 

We also have better 
features.  

Talk about secret 
sauce… 

 

Modeling handwritten digits 

• Sparse dictionary learning via sparse RBMs 

1W

input nodes (data) 

First layer bases 
(“pen-strokes”) 

[Lee et al., NIPS 2008; Ranzato et al, NIPS 2007] 

Learned sparse representations 
can be used as features. In 
practice, sparsity regularization is 
very often used. 
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3-way factorized RBM 

• Models the covariance structure of images using 
hidden variables 

– 3-way factorized RBM / mean-covariance RBM (mcRBM) 

 

x p x
q

hk

c

CC

F

F

x p x
q

F

[Ranzato et al., AISTATS 2010; Ranzato and Hinton, CVPR 2010] 

[Slide Credit: Marc’Aurelio Ranzato] 

Gaussian MRF 3-way (gated) RBM 
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Generating natural image patches 

Natural images 
mcRBM 

GRBM 

S-RBM + DBN 
from Osindero and Hinton NIPS 2008 

from Osindero and Hinton NIPS 2008 

Ranzato and Hinton  CVPR 2010 

Slide Credit: Marc’Aurelio Ranzato 
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Stacking of RBMs as 
Deep Belief Networks 
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Deep Belief Networks (DBNs) 

• Probabilistic generative model 

– With deep architecture (multiple layers) 

• Unsupervised pre-training with RBMs provides 
a good initialization of the model 

– Theoretically justified as maximizing the lower-
bound of the log-likelihood of the data 

• Supervised fine-tuning 

– Generative: Up-down algorithm 

– Discriminative: backpropagation (convert to NN) 

[Hinton et al., 2006] 

Related work: Deep Boltzmann Machine (Salakhutdinov and Hinton, 2009) 



25 

Deep Belief Networks (DBN) 

1
h

2
h

3
h

vVisible layer 

Hidden 
layers 

RBM 

Directed 
belief nets 

),()|()...|()|(),...,,,( 112 lllll PPPPP hhhhhhhvhhhv
21121 
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DBN structure 
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Hinton et al., 2006 

(approximate) inference Generative  
process 
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DBN Greedy training  

• First step: 

– Construct an RBM with 
an input layer v and a  
hidden layer h 

– Train the RBM 

Hinton et al., 2006 
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DBN Greedy training  

• Second step: 

– Stack another hidden  
layer on top of the RBM 
to form a new RBM 

– Fix      , sample     from  
             as input. Train 
       as RBM. 
 

 

2W 

1W 

1W 

2W 

)|( 1 vhQ

1
h

)|( 1 vhQ

Hinton et al., 2006 
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DBN Greedy training 

• Third step: 

– Continue to stack layers  
on top of the network,  
train it as previous step, 
with sample sampled  
from  

• And so on… 
2W 

1W 

3W 

3h

)|( 12 hhQ

)|( 1 vhQ

)|( 12 hhQ

Hinton et al., 2006 
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Why greedy training works? 

• RBM specifies P(v,h) from 
P(v|h) and P(h|v) 

– Implicitly defines P(v) and 
P(h) 

• Key idea of stacking 

– Keep P(v|h) from 1st RBM  

– Replace P(h) by the 
distribution generated by 
2nd level RBM 

Hinton et al., 2006 
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Why greedy training works? 

• Theoretical Justification 

– Variational lower-bound of the 
log-likelihood improves with 
greedy layerwise training of 
RBMs 

Trained by the second layer RBM 

Hinton et al., 2006 

1W )|( vhQ
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Why greedy training works? 

Trained by the second layer RBM 

Hinton et al., 2006 

2W 

1W )|( 1 vhQ

• Theoretical Justification 

– Variational lower-bound of the 
log-likelihood improves with 
greedy layerwise training of 
RBMs 

– Note: RBM and 2-layer DBN are 
equivalent when 𝑊2 = 𝑊1 𝑇. 
Therefore, the lower bound is 
tight and the log-likelihood 
improves by greedy training. 
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Derivation 

• Variational Bound (true for any probabilistic model) 

 

 

 

 

 

• When 𝑊2 = 𝑊1 𝑇, the RBM and 2-layer DBN are equivalent 
and the above lower bound is tight  

 

 

 

where 

2W 

1W )|( 1 vhQ
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Derivation 
• Variational Bound 

 

 

 

• When 𝑊2 = 𝑊1 𝑇, the RBM and 2-layer DBN are equivalent 
and the above lower bound is tight  

 

 

 

where 

Training the second layer “RBM” increases this “log-likelihood” of first layer hidden units 

After training the second layer RBM 
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Theoretical Justification (summary) 

• For the second layer DBN, the log-likelihood actually 
improves by greedy training. 

• Variational lower-bound of the log-likelihood 
improves with greedy layerwise training of RBMs (for 
all layers) 

 

 

1W 

(Hinton et al., 2006) 

)|( 1 vhQ

2W 
= 

(equiv.) 

Train 2nd layer 
RBM 

Trained by the second layer RBM 
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DBN and supervised fine-tuning 

• Discriminative fine-tuning 

– Initializing with neural nets + backpropagation 

– Maximizes                         (X: data  Y: label) 

• Generative fine-tuning 

– Up-down algorithm  

– Maximizes                       (joint likelihood of data and labels) 

 

• Hinton et al. used supervised + generative fine-tuning in 
their Neural Computation paper. However, it is possible 
to use unsupervised + generative fine-tuning as well. 

)|(log XYP

),(log XYP
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2000 top-level neurons 

500 neurons 

500 neurons  

28 x 28 
pixel     

image  

10 label 
neurons  

The model learns to generate 
combinations of labels and images.  

To perform recognition we start with a 
neutral state of the label units and do an 
up-pass from the image followed by a few 
iterations of the top-level associative 
memory. 

The top two layers form an 
associative memory 

The energy valleys have names 

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt Slide Credit: Geoff Hinton  

A model for digit recognition 

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt
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After pre-training many layers of features, we can fine-
tune the features to improve generation. 

1. Do a stochastic bottom-up pass 

• Adjust the top-down weights to be good at reconstructing 
the feature activities in the layer below. 

2. Do a few iterations of sampling in the top level RBM 

• Adjust the weights in the top-level RBM. 

3. Do a stochastic top-down pass 

• Adjust the bottom-up weights to be good at reconstructing 
the feature activities in the layer above. 

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt Slide Credit: Geoff Hinton  

Generative fine-tuning via Up-down algorithm 

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt


39 

Generating sample from a DBN 

• Want to sample from 

 

– Sample        using Gibbs sampling in the RBM 

– Sample the lower layer       from   

1l
h

)|( 1 iiP hh
1i

h

),()|()...|()|(),...,,,( 112 lllll PPPPP hhhhhhhvhhhv
21121 
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Generating samples from DBN 

 

Hinton et al, A Fast Learning Algorithm for Deep Belief Nets, 2006 
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Result for supervised fine-tuning on MNIST 

• Very carefully trained backprop net with      1.6% 
one or two hidden layers (Platt; Hinton) 

 
• SVM (Decoste & Schoelkopf, 2002)                          1.4% 

 
• Generative model of joint density of             1.25% 

images and labels (+ generative fine-tuning) 
 

• Generative model of unlabelled digits          1.15% 
followed by gentle backpropagation                 
(Hinton & Salakhutdinov, Science 2006) 

 

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt Slide Credit: Geoff Hinton  

http://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.ppt
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• More details on up-down algorithm: 
– Hinton, G. E., Osindero, S. and Teh, Y. (2006) “A fast learning algorithm 

for deep belief nets”, Neural Computation, 18, pp 1527-1554. 

http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf 

 

• Handwritten digit demo: 
– http://www.cs.toronto.edu/~hinton/digits.html 

http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf
http://www.cs.toronto.edu/~hinton/digits.html
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Stacking of RBMs as 
Deep Neural Networks 
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Using Stacks of RBMs as Neural Networks 

• The feedforward (approximate) inference of 
the DBN looks the same as the sigmoid deep 
neural networks 

• Idea: use the DBN as an initialization of the 
deep neural network, and then do fine-tuning 
with back-propagation 
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DBN for classification 

 

Slide credit: Russ Salakhutdinov 
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Stacks of RBMs as deep autoencoders 

 

Hinton and Salakhutdinov, Science 2006 
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Stacks of RBMs as deep autoencoders 

 

Hinton and Salakhutdinov, Science 2006 

PCA Deep AE 
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Learning similarity metric 

• Stacks of RBMs as initialization for DNN 

Salakhutdinov and Hinton, 2007 
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Learning feature hierarchy for images 

Pixels -> edges -> contours -> … 

 

[Lee et al., 2007 & 2009;  

Ranzato et al., 2007; etc.] 
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Speech recognition using DBNs 

• Pre-training RBMs followed by fine-tuning 
with back propagation 

(Dahl et al., 2010) 
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Learning feature hierarchy for speech 

 

Image from: Dong Yu and Li Deng, 2012 

Related work: Dahl et al., 2010; Hinton et al., 2012; and others 
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Other applications 

• Human pose/motion modeling with MOCAP data 
(Taylor et al., 2007; Taylor et al., 2009; ..) 

• Multimodal deep learning: audio-visual speech 
recognition (Ngiam et al., 2011) 

• Audio-visual emotion recognition (Kim et al., 2013) 

• Facial Expression recognition (Ranzato et al., 2011) 

• Face verification (Huang et al., 2012) 

• Many others…. 
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Remarks 

• RBM is a generative model with distributed 
representation 
– Can handle well high dimensionality 

• Stacks of RBMs can be used for initializing 
deep belief networks or deep neural networks 

• For classification, pretraining (stacks of RBMs) 
helps when the amount of labeled data is not 
huge. 

• DBN can be used for performing approximate 
probabilistic inference 
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- 7 synthetic occlusions 
- use generative model to fill-in 
   (conditional on the known pixels) 

... 

gMRF 

RBM 

RBM 

RBM RBM 

RBM 

RBM 

gMRF gMRF 

RBM 

RBM 

RBM RBM 

RBM 

RBM 

gMRF gMRF 

RBM 

RBM 

RBM 

Ranzato, et al. CVPR 2011 

DBN inference example: Image Inpainting  
for Facial Expression Recognition 

originals 

occlusion: top half 

Restored images 
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Another Example of a hybrid graphical model: 
Learning Output Representation  

for Structured Prediction 
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Learning Output Representations 

• Most work in deep learning so far have focused 
on learning input representations (constructing 
input features) 

– Reasonable for complex input data (statistical 
dependencies, high dimensionality, etc.) and labels 
with simple structures (e.g., classification) 

• However, relatively much less work has been 
done for learning output representations 

– Challenging when output space exhibits complex 
dependencies (e.g., structured output prediction: 
Joachims et al., Taskar et al.; Lafferty et al., …) 
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Structured output prediction: Examples 

 

image segmentation  
and  labeling 

object detection 

human pose estimation 

phoneme recognition 

protein structure  
prediction 



59 

Combining Global and Local Consistencies 
for Structured Output Prediction 

• Task: scene segmentation 
 
 
 
 
 
 
 
 
 
 
 

• Problem of standard CRFs: only enforces local consistency 
• Approach: a hybrid graphical model (with a high-order 

potential) can enforce both local and global consistency 
 

Image Over-segmentation Target Output 

CRF with 
superpixels 

s 

(Kae et al., CVPR 2013) 
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CRF: baseline segmentation labeler 

output 

input 

CRF 
. . . 

hidden 

visible 

RBM 

RBM: generative model of face shape 

Kae, Sohn, Lee & Learned-Miller 
Augmenting CRFs with Boltzmann 
machine shape priors for image 
labeling. CVPR 2013. 
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Output of CRF = Visible of RBM 

. . . 

hidden 

visible 

output 

input 

CRF 

RBM 

62 Kae, Sohn, Lee & Learned-Miller. Augmenting CRFs with Boltzmann machine shape priors for image 
labeling. CVPR 2013. 
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Formulation 

• Energy function 

 

 

 

. . . H 

Y 

X 



64 

H learns shape patterns 

 . . . H 

Y 

X 

RBM filter visualization  (red: hair, green: skin, black: bg) 
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Generated Samples from RBM prior 

 

 

 

 

 

– Top: generated samples (for outputs) from RBM prior 

– Bottom: Closest training example to each generated 
sample above 



67 

Prediction: mean-field approximation 

• Infer Y given H, X 

– augmented unary potential: 

 

 

. . . H 

Y 

X 
Any CRF inference algorithm (e.g., 
LBP, graph cut, …) can be used. 

Kae, Sohn, Lee & Learned-Miller. Augmenting CRFs with Boltzmann machine shape priors for image 
labeling. CVPR 2013. 
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Experimental results 

• Visualization of segmentation 
 
 
 
 
 
 
 
 

 

– LR: singleton potential 
– CRF: singleton + pairwise potential 
– GLOC: singleton + pairwise + RBM potential 

 

LR CRF GLOC 
Ground 

truth LR CRF GLOC 
Ground 

truth 

(Kae et al., CVPR 2013) 
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Quantitative Evaluation on Labeling 

0.0%

2.0%

4.0%

6.0%

8.0%

Test Labeling Error

CRF

Spatial CRF

CRBM

GLOC (ours)

~17% relative error reduction over spatial CRF 


