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(UNDIRECTED) GRAPHICAL MODELS

Overview:

* Directed versus undirected graphical models

» Conditional iIndependence

* Energy function formalism

* Maximum likelihood learning
* Restricted Boltzmann Machine

* Spike-and-slab RBM



Probabilistic Graphical Models

* Graphs endowed with a probability distribution
- Nodes represent random variables and the edges encode conditional independence
assumptions

* Graphical model express sets of conditional independence via graph
structure (and conditional independence Is useful)

* Graph structure plus associated parameters define joint probability
distribution of the set of nodes/variables

Probability
theory

Probabilistic
graphical
theory




Probabillistic Graphical Models

* Graphical models come In two main flavors:

|. Directed graphical models (a.k.a Bayes Net, Belief Networks):
- Consists of a set of nodes with arrows (directed edges) between some of the nodes
- Arrows encode factorized conditional probability distributions

2. Undirected graphical models (a.k.a Markov random fields):
- Consists of a set of nodes with undirected edges between some of the nodes
- Edges (or more accurately the lack of edges) encode conditional independence.

* Joday, we will focus almost exclusively on undirected graphs.



PROBABILITY REVIEW: CONDITIONAL INDEPENDENCE

Definition: X 1s conditionally independent of Y given Z if the probabil-

ity distribution governing X 1is independent of the value of Y, given the
value of Z: for all (4, j, k)

P =m0 = i VA AR 0. € — il VA= e W20 = | 7 = 2
P(X,Y|Z) = P(X|Z)P(Y|Z)

Or equivalently (by the product rule):

P Y ) = 1228 V) IBE 28 7)) — B | Z)
Why? Recall from the probability product rule
PX,) Y, Z)=P(X |Y,Z)P(Y | Z)P(Z)=P(X | Z)P(Y | Z)P(Z)

Example: P(Thunder | Rain, Lightning) = P(Thunder | Lightning)



TYPES OF GRAPHICAL MODELS




REPRESENTING CONDITIONAL INDEPENDENCE

Some conditional iIndependencies cannot be represented by directed graphical
models:

> Consider 4 variables: A, B, C, D (AL C|B,D)

> How do we represent the conditional independences: (B L D | A C)

(ALC)
(BLD|A,C) Undlrec:ted model




WHY UNDIRECTED GRAPHICAL MODELS?

Sometime 1ts awkward to model phenomena with directed models

)fl 1—9512—’)513—’)514—’)515 )|(1 1—)|(12—)|(13—)|(14—)|(15
)f 21—>)f 22—>)f 23—’)f 24—>)f 25 )l( 21—)|( 22—)|( 23—)|( 24—)|( 25
X31—>X 30> X33> X34~ X35 X31—X30—X33—X34—X35

! ! v v v | | | | |
X412 X 49> X 43> X414~ X145 Xg1—Xg9—Xy3—X14—Xy5

Image from “CRF as RNN Semantic Image Segmentation Live
Demo” (http://www.robots.ox.ac.uk/~szheng/crfasrnndemo/)



CONDITIONAL INDEPENDENCE PROPERTIES

* Undirected graphical models:

> Conditional independence encoded by simple graph separation.

> Formally, consider 3 sets of nodes: A, Band C,we say x4 L xp | x¢ iff C
separates A and B in the graph.

> ('separates A and B in the graph: If we remove all nodes in €, there is no path

from A to B in the graph.

.....
e” S~

--------

~

4 -~
S

L d
L4
4

’
4 ’
L4
L4

. 4 ~§
t' . A >
. N ’ A ‘s
¢ . Y .
4 LN ’ I .
4 . U ’ .

4 — i — — .
<211 12572137 /<214 15%
’ v LI .
1 (U | L | '
] v 1 I
1 (] [] 1

L Xo1—Xoo7+XogtrXog—Xos |

’

A . . ¢
b . ' ' A .
L4 ‘ '
. . ) / [N s
A L4 . - b4
Se o . Y N .
~ . [N L4 ~ o

~ - ~ -
................



MARKOV BLANKET

* Markov Blanket: For a given node z, the Markov Blanket Is the smallest set of nodes

which renders x conditionally independent of all other nodes In the graph.

e Markov blanket of the 2-d lattice MRF: X11—X12 X14—X15

’ @‘Xﬁ@ﬂ(%
)|< 31—)|( 324@*‘)'( 34—)|( 35

Xg1—Xg2—Xy3—X 14— Xy5
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e Markov blanket of the 2-d lattice MRF:

—LATING

DIR
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Q — neighbours of Xo3

e Markov blanket of the 2-d causal MRF:

Q — parents of Xa3
Q — children of Xa3

Q — parents of children of Xa3




PARAME |

“RIZING

Directed graphical models:

* Parameterized by local conditional probability densities (CPDs) @

DIR

=G

D GRAPHICAL MO

P(A | B)

* Joint distributions are given as products of CPDs:

X

Xn)

N

e H P(Xz | Xparents(i))

1=0

DELS




Undirected graphical models:

PARAME TERIZING MARKOV NETWORKS: FACTORS

* Parameterized by symmetric factors or potential functions. e

¢(A, B)

- Generalizes both the CPD and the joint distribution.

- Note: unlike the CPDs, the potential function are not required to normalize.

* Definition: Let C be a set of ¢

called potential function or clic

iques. For each ¢ € C, we define a factor (also
ue potential) @c as a nonnegative function

dc(xe) — R

where & Is the set of variables in clique ¢
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PARAME TERIZING MARKOV NETWORKS: JOINT DISTRIBUTION

* Joint distribution given by a normalized product of factors:

Ry % IT 6e(a.)

ceC
* Zis the partition function, it's the normalization constant: Z = Z H G ()

* Our 4 variable example:

P(a,b,¢,d) = —61(a,b)da(b, a(c, d)éu(d, @.@

Z =Y ¢1(a,b)da(b,c)ps(c,d)pa(d, a)

a,b,c,d



CLIQUES AND MAXIMAL CLIQUES

* What is a clique! A subset of nodes who's induced subgraph is complete

* A maximal clique is one where you cannot add any more nodes and remain a
clique

“"Examples of maximal cliques.



OF GRAPHS AND DISTRIBU TIONS

* Interesting fact: any positive distribution whose conditional independencies can be
represented with an undirected graph can be parameterize by a product of

factors (Hammersley-Clifford theorem).

“"Examples of maximal cliques.



TYPES OF GRAPHICAL MODELS




RELATING DIRECTE

D AN

D UN

DIRECTE

D MO

DELS

* What kind of probability models can be encoded by both a directed and an

undirected graphical model.

= Answer:any probability mode whose cond. indep. relations are consistent with

a chordal graph.

* Chordal graph: All undirected cycles of four or more vertices have a chord.

* Chord: Edge that Is not part of the cycle but connects two vertices of the cycle.

Not chordal:

Chordal:




TYPES OF GRAPHICAL MODELS




ENERGY-BASED MODELS

* [he undirected models that most interest us are energy-based models.

* We reformulate the factor ¢(x.) in log-space: ¢(x.) = exp(—e(x,))

20

or alternatively, €(x.) = —log ¢(x.), where €(x.) € R,
1
* Energy-based formulation of joint dist: P(x1,...,Z,) = - XD (—E(zy ety
| | 1
E(x1,...,%y) is called the energy function. = 7 SRR Z ec(c)
ceC



L OG-LINEAR MODEL

* Log-linear models are a type of energy-based model with a particular, linear,
barametrization.

* In log-linear models, for cligue ¢, the coresponding element of the energy
function €c(xc) is composed of:

|. A parameterw,

2. A feature of the observed dataf,(x.)

shliine joint aistribution is given by P(xq, ..., %y) = %exp (— Z W el a2 )
ceC

)

2|



MAXIMUM LIKELIHOOD LEARNING

* Maximum likelihood learning in the context of a fully observable MRF.
D
w™" = argmax log Hp(w(i); w)
o i=1

D
= argmax Z (Z log ¢ (' w,) — log Z(’w))
= 1=1 C

- s | (3 o (a0 ) — Dl 20

w )
1=1 cC

~ argmax (wacfc(w@)) - Pllog 2w

1=1 ¢ j |
decomposes over the cliques does not decompose

log-linear model

22



MAXIMUM LIKELIHOOD LEARNING

* In general, there Is no closed form solution for the optimal parameters.

log Z(w) = log Z exp (Z We fe(@e )

* We can compute a gradient of the partition function.

6,?0 log Z(w) (ZeXp (ch for(Ter ))

ch exp (Wefe(xc)) fe(c)
2w, XD (2 Wefe(Tc))

o 4110(313(;;100) [fc(mc)]

23



MAXIMUM LIKELIHOOD L

* [he gradient of the log-likelihood

0

D

1=1 <’

D : 5

=D <1Ip(da,ta,) [fc(ajc)] =D

t

data term

often tractable
(e.g. Tully observable @)

E M st
i . 8 —~ —~ (Z)
;bgp(w( )a w) = Yy (L Lwcffcf (wc, )) — Dlog Z(w)

Ow, “

EARNING

log Z(w)

C

(@ e;we) fe(xe)]

t

model term

often Intractable
(e.g. Tully observable @)
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MAXIMUM LIKELIHOOD LEARNING

* How do we estimate the intractable expectation from the model term (due to
the partition function contribution of the gradient)?

0

ow,.

log Z(w) =

(e iwe) fe(e))

* We can sometimes use approximations methods such as pseudo-likelihood.

* More generally we can use Monte Carlo (i.e. sampling) methods to estimate this

expectation.

= [ his comes with some disadvantages, more on this when we discuss restricted

Boltzmann machines.

25



Restricted Boltzmmann Machines

An Introduction



RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

[OOOOOJ h -— hi.dden Iaxer
/ (binary units)
W«— connections

bias\
[O\@OOOJ X «— visible layer

(binary units)

Energy function: E(x,h) = ~h'"Wx—c'x—b'h
— —S:Sjo,khjack _chmk o ijhj
3k k J

Distribution: p(x,h) = exp(—FE(x,h))/Z
\ partition function

(intractable)



MARKOV NETWORKVIEW

Topics: Markov network (with vector nodes)

=
=

»~
L5

||

exp(—E(x,h))/Z
= exp(h' Wx+c'x+b'h)/Z
exp(h' Wx)exp(c'x)exp(b'h)/Z

@ fact-o rs

* [ he notation based on an energy function is simply an
alternative to the representation as the product of factors

28



MARKOV NETWORKVIEW

Topics: Markov network (with scalar nodes)

pair-wise factors

1 -— It —
p(x,h) = - [ L] eoW;hjan)
7 k
)
H exp(cyTy)
I } unary
factors
| [ exp(b;h;) J

J

* The scalar visualization 1s more informative of the structure
within the vectors

29



RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

[OOOOOJ h -— hi.dden Iaxer
/ (binary units)
W«— connections

bias\
[O\@OOOJ X «— visible layer

(binary units)

Energy function: E(x,h) = ~h'"Wx—c'x—b'h
— —S:Sjo,khjack _chmk o ijhj
3k k J

Distribution: p(x,h) = exp(—FE(x,h))/Z
\ partition function

(intractable)



INFERENCE

Topics: conditional distributions

OCOOOO0) h p(h|x) = Hp
p(h; = 1}x) = 1
i 1+ exp(—(b; + W
CO0T0) x Choe AR s
= sigm(b; + W,.x)
k _j " row of W
QOO0 h p(x|h) = Hp i |h)
1
— 11h) =
oo« T T T e+ hT W)

k™ column of W

= sigm(cg hTWJ

3
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p(h; = 1]x)

33



Topics: free energy
- What about p(x)?

RRXIRIRXRXK) h  p(x)

QOO0 x

FREE ENERGY

Y pxh) = 3 exp(—B(xh)/Z

he{0,1}# he{0,1}#

H
exp (CTX + Z log(1 + exp(b; + W,.x))

exp(—F(x))/Z

/

free energy

)/Z

34
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RESTRICTED BOLTZMANN MACHINE

Topics: free energy
H
RRXRXRXRX) h p(x) = exp (CTX 4= Zlog(l + exp(b; + Wj.x))) /Z

gi=l

OO0 = =  exp (CTX + Z softplus(b; + W .x )

= !

“feature” expected in X

bias of each feature

oo Softplus().. ........... ........... |

| bias the prob of each I;




MAXIMUM LIKELIHOOD TRAINING

Topics: training objective

* [0 train an RBM, wed like to minimize the average negative
log-likelihood (NLL)

—Zl MON ;Z—logp(x(t))

t
hard to

compute

* Wed like to proceed by stochastic gradient descent /

0 — log p(xM)) _E, OE(x(Y) h) X(t)_ £ S OFE(x,h)
00 i 00 ] g7 e )

v v

positive phase negative phase
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CONTRASTIVE DIVERGENCE (CD)

(HINTON, NEURAL COMPUTATION, 2002)

Topics: contrastive divergence, negative sample

* |dea:
|. replace the expectation by a point estimate at x
2. obtain the point x by Gibbs sampling
3. start sampling chain at x(t)

OCOOO00) gt OOO000)

NN

L OO00) (OO0 (QQ?QQ)

L) 4

XA P
\ negative sample



CONTRASTIVE DIVERGENCE (CD)

(HINTON, NEURAL COMPUTATION, 2002)

Topics: contrastive divergence, negative sample

OE(x") h)
00

B [ X(t)] ) OB (x® h®) 0F(x, h)] 0F (X, fl)
h ~ ~

00 Hxi { 00 90

| E(x,h)

K|
=

(x(1), H®) (.

39



CONTRASTIVE DIVERGENCE (CD)

(HINTON, NEURAL COMPUTATION, 2002)

Topics: contrastive divergence, negative sample

OE(x™") h)
00

() ] 9 OE(x). fl(t))

B, [ OF(x, h)] _ OE(x, h)

00

o0 Exh { BY:

40



TRAINING

Topics: training objective

* [0 train an RBM, wed like to minimize the average negative
log-likelihood (NLL)

—Zl MON ,}Z—logp(x(t))

t
hard to

compute

* Wed like to proceed by stochastic gradient descent /

] S a ) )
0 — log p(xM)) _R OE(x) h) |X(t) gy 4 OF(x,h)
0 g g A
R S =L

v v

positive phase negative phase

41



DERIVATION OF THE LEARNING RULE

Topics: contrastive divergence

+ Derivation of 2E0R) 59 — Wk

00
OF(x,h) 0
& NV T E N
aW]k 5)ij ( %; ARy ;Ckﬂfk zj: J ])

0

— W.irh

aW]k %}; jkj Lk
— —hj$k

4l



DERIVATION OF THE LEARNING RULE

Topics: contrastive divergence

* Derivation of Ey 8Eg;’ i H for 6 = Wy
OF(x,h i
u [PEEBL] —ku [ ] = 5 il
oW
L J hjE{O,l}
= —zp(h; = 1]x)
def P(h1=1|x)>
h(x) = (p(hﬂéllx>

En [VwE(x,h) [x] = —h(x) x = sigm(b + Wx)



DERIVATION OF THE LEARNING RULE

Topics: contrastive divergence

» Given x(Y) and X the learning rule for § = W becomes

W «— W -—a (VW — log p(x")
— W —q« (Eh _VWE(X(t), h) x (") e Exh [VwE(X, h)])
— W-a (B |VwEX", h) x| - By [VwE(% h) [%])
— W+a (h(X(t)) x()" — h(%) ’N‘T)

44



CD-K: PSEUDOCODE

Topics: contrastive divergence

. For each training example x (1)

. generate a negative sample x using
k steps of Gibbs sampling, starting at x(t)

. update parameters
W — W +a (h(x(t)) x® ' _ h(x) SCT)
b «—b+a (h(x(t)) _ h(fc))
C <:c+oz(x(t)—>~<>

2. Go back to | until stopping criteria

45



CONTRASTIVE DIVERGENCE (CD)

(HINTON, NEURAL COMPUTATION, 2002)
Topics: contrastive divergence

» CD-k: contrastive divergence with k
iterations of Gibbs sampling

* In general, the bigger k Is, the less biased the
estimate of the gradient will be

* In practice, k=1 works well for pre-training

46



PERSISTENT CD (PCD)

(TIELEMAN, ICML 2008)

Topics: persistent contrastive divergence

» |dea: instead of initializing the chain to x| initialize
the chain to the negative sample of the last iteration

h(*) =1’ (OO00000) i OOO000)

NN

QOO00) OOOO OOOO

X@ comes from the )lcl )l(k — }2

previous Iteration

\ negative sample

47



EXAMPLE OF DATA SET: MNIST

318]6/9]6/4[x|39|46/3/%9|€
A[8]0]5[917]4])|0[3]0]k|2|]/9]4
113]b]810[n|7]0|8|3]|0|3]932]1
844 l|a]€|1][1]0|C|e[SION |1
2[7(3|\|4|0|510/€¢|76/899
41010 1|]|2|L|2|7 |44 |516/6)) |7
L176|7|#|0/9]1106|2|%|3|b/4 75
§6137696977609640
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FILTERS

(LAROCHELLE ET AL, JMLR2009)

r ) |

ol R e T [ B S L Z PR

49



RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

[OOOOOJ h -— hi.dden Iaxer
/ (binary units)
W«— connections

bias\
[O\@OOOJ X «— visible layer

(binary units)

Energy function: E(x,h) = ~h'"Wx—c'x—b'h
— —S:Sjo,khjack _chmk o ijhj
3k k J

Distribution: p(x,h) = exp(—FE(x,h))/Z
\ partition function

(intractable)



GAUSSIAN-BERNOULLI RBM

Topics: Gaussian-Bernoulli RBM

* Inputs X are unbounded reals

» add a quadratic term to the energy function
E(x,h)=-h'"Wx—c'x—b'h+ix'x

» only thing that changes is that p(x|h) is now a Gaussian distribution
with mean p = ¢ + W 'h and identity covariance matrix

» recommended to normalize the training set by
- subtracting the mean of each input
- dividing each input Zg by the training set standard deviation

» should use a smaller learning rate than in the regular RBM

o)



FILTERS

(LAROCHELLE ET AL, JMLR2009)

r b
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Spike-and-Slab RBM

Basic Idea = Each hidden unit i possesses:

|. A binary-valued latent spike 4; € [0,1],

2. A real-valued latent slab s; e’ R.

53



Spike-and-Slab RBM

 ssRBM energy function:

N N N N N
1 1
E(v,s,h) = — E v! Wisihi + §UTA1) + 5 E s — E o i Sihy E o pih_ g bih;
— — — — —

 ssRBM joint probability density:

p(v,s,h) = %exp{—E(v, s,h)}

54



ssSRBM Conditional p(v|h)

Conditional of visible variables v given h:

P 11) = iy [ e =B s} ds =N (cmzwim , m)

1=1

Non-diagonal @

© Models both mean and covariance of the conditional p(v | h).

@  Cannot perform efficient block Gibbs sampling: [ v)
v~ p(v ‘h)#HpUJ’h < }

55



Conditionals Il: p(v1s,h) & p(s|v,h)

Conditional dist. of the visibles v given s and /:

p(v]|s,h)= p(sl N % exp{—FE(v,s,h)} = N((A + Z@Zh,L) ZVVZSJLZ : (A + Z@@) )
1

Diagonal Covariance @

* While p(v|h) #1ap(va| h) givens: p(v|sh) = 11ap(vals,h).

Conditional dist. of the slabs s given visibles v and spikes /:
N N

p(s|v,h) = Hp(si | v, h) = H./\/‘((ai_lvTWi—l—ui) h; | ozz-_l )

1=1 1=1

Sampling from both p(vIs,h) and p(slv,h) is simple and efficient.

56



Conditionals lll: p(hlv)

Conditional of the spike variables /4 given v: P(h|v) = [1; P(hi|v)

1 1
P(h; =1 | v) = sigmoid (2 (0t W;)? T<I>Zv + vl Wi + b, )

NS

quadratic in v linear in v

* Activation of each spike is controlled by both mean and covariance info.

* Compare this to the analogous mcRBM conditionals:

c . . 1 c\ 2 c
- Covariance units: FP(hi=1]v) = sigmoid <—§ (v'WF)" - bi) :

- Mean units: PR =1|v) = sigmoid (v" W] +b7")

57



ssSRBM Interence and Learning

Gibbs Samphng / \
(v |s,h)

p(s | v, h)

\/

* By sampling s, we define a 3-phase block Gibbs sampler

N

1
1. P(hlv):Hsigmoid(2 Yol wy)? —%’UT(I)’U—I—?}TW/L —|—b>
i=1
N
2. p(s\v,h):H./\/'((oz,;lvTWi—i—ui) hiy a;b).
i=1
N -1 N N —1
i=1 i=1 i=1

 Learning via stochastic maximum likelihood.
58



Sampling from the Convolutional ssRBM

Used the convolutional setup of Krizhevsky (2010)

» Combines both (9x9) convolutional and (32x32) global weight vectors




Sampling from the Convolutional ssRBM

Samples from the Spike-and-slab RBM:

A 5.5 /|- o ) G
SN : | ol I e ‘.
' | LIBTE
. - ' L
E p‘\* : ~ 7’*
" 3 . i ¥
e P
& | :
A,.: ’ } "
- '. - : -
W e
# £,
5 - 3 :
. “ - . | ) F =
- & " T




OTHER TYPES OF OBSERVATIONS

Topics: extensions to other observations

* Extensions support other types:

» real-valued: Gaussian-Bernoulll RBM

» Binomial observations:

- Rate-coded Restricted Boltzmann Machines for Face Recognition.
Yee Whye Teh and Geoffrey Hinton, 2001

» Multinomial observations:

- Replicated Softmax: an Undirected Topic Model.
Ruslan Salakhutdinov and Geoffrey Hinton, 2009

- Training Restricted Boltzmann Machines on Word Observations.
George Dahl, Ryan Adam and Hugo Larochelle, 2012

» and more (see course website)

6l



