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Abstract

We describe a family of embedding algo-
rithms that are based on nonparametric es-
timates of mutual information (MI). Using
Parzen window estimates of the distribu-
tion in the joint (input, embedding)-space,
we derive a MI-based objective function for
dimensionality reduction that can be opti-
mized directly with respect to a set of la-
tent data representatives. Various types of
supervision signal can be introduced within
the framework by replacing plain MI with
several forms of conditional MI. Examples
of the semi-(un)supervised algorithms that
we obtain this way are a new model for
manifold alignment, and a new type of em-
bedding method that performs ’conditional
dimensionality reduction’.

1. Introduction

When high-dimensional data is governed by only a
small number of degrees of freedom, dimensionality re-
duction can be used as a standard tool to identify the
’true’ sources of variability and to overcome the ’curse
of dimensionality’. By replacing the original dataset
with a set of much lower dimensionality, standard al-
gorithms, such as locally linear embedding (Roweis &
Saul, 2000), kernel PCA (Schoelkopf et al., 1998) and
others, construct a latent space that captures the un-
derlying degrees of freedom and allows for data repre-
sentations that can be processed more easily than the
original data.

While these methods show impressive results on some
difficult datasets, it is also becoming increasingly clear
that their unsupervised objectives – usually the preser-
vation of pair-wise point similarities – need to be sup-
plemented by some sort of supervision signal in order
to be useful in practice. The reason is that in prac-
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tice the problem of dimensionality reduction is task-
dependent rather than generic. If we consider embed-
ding as a pre-processing step for classification, for ex-
ample, we need a low-dimensional representation that
captures variability that is highly ’correlated’ with
class-membership. If on the other hand the task is, say,
the manipulation of lighting effects in images, we need
a latent space that is good at capturing exactly these
instead. However, since standard embedding methods
are unsupervised, they typically represent every fac-
tor of variability in all latent space dimensions at the
same time, and can therefore be sub-optimal for the
task at hand. In the classification example, capturing
lighting effects in the latent space will obviously dete-
riorate classification performance, while a tendency to
cluster latent space elements according class structure
would help. The exact opposite would be the case in
the image manipulation task.

Several semi-supervised embedding approaches exist
that partly resolve these issues. A classical method
that aims specifically at classification is linear discrim-
inant analysis (LDA). Recently, several modifications
to LDA have been suggested (see eg. (Goldberger
et al., 2005)), that consider local class membership
criteria as opposed to the global one used by LDA.
These modifications can at times greatly improve clas-
sification performance, even though they are usually
based on iterative optimization for learning. Common
to both LDA and its modifications is, that they are
inherently linear. Even though nonlinear extensions
are possible in principle, they require to exchange the
parametric projection model by a non-linear one, such
as a neural network. As a result the nonlinear exten-
sions become complicated, and parameter estimation
becomes difficult. For continuous valued settings, such
as in regression problems, other embedding methods
exist. Classical approaches are canonical correlation
analysis and partial least squares regression. A recent
nonlinear approach is described by (Ham et al., 2005).

Different kinds of supervision signal for use in embed-
ding are discussed by (Tenenbaum & Freeman, 2000)
and (Memisevic & Hinton, 2005), among others. These
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approaches use extra-knowledge about the training
data in order to factor out undesirable degrees of free-
dom and thereby to ’clean up’ the embeddings. The
idea is to use extra information to specify irrelevant
modes of variability in the data, and thereby to help
the embeddings capture the remaining, relevant statis-
tics. One advantage of this kind of approach is that
it can bring to use any information that is available
about the data – not just the supervision signal that
comes from the underlying supervised learning task
(such as class information in a classification problem).

In this paper we describe a rather general framework
for embedding that includes plain dimensionality re-
duction and semi-supervised extensions, such as the
ones discussed and their combinations, in a single
unifying framework. Our approach uses Parzen win-
dow estimates of mutual information and conditional
mutual information. While nonparametric estimates
of information theoretic quantities have been used in
many different contexts (see eg. (Principe et al., 1999)
for a general overview, or (Torkkola, 2003) and (Vi-
ola et al., 1996) for applications in embedding con-
texts), our method does in contrast to these not con-
sider parametric transformations between the latent
and the observable space. Instead, in the spirit of mod-
ern embedding methods such as locally linear embed-
ding or kernel PCA, we parameterize an embedding
objective directly in terms of the latent data represen-
tatives themselves. Advantages of this approach are
that (a) it is naturally nonlinear, (b) it only depends
on a single group of parameters (the latent represen-
tatives), and as a result does not require alternating
optimization schemes akin to the EM-algorithm, (c) it
allows us to include side-information and thereby to
supplement the embeddings with supervision signals.
Even though it lacks an explicit transformation, how-
ever, our approach does – in contrast to locally linear
embedding, kernel pca, stochastic neighbor embedding
(Hinton & Roweis, 2003), or the classic Sammon map-
ping (Sammon, 1969) – generalize learned embeddings
to previously unseen inputs, and also to unseen latent
space elements.

Our method shares this ability with the methods de-
scribed in (Meinicke et al., 2005) and (Lawrence,
2004), both based on non-parametric regression. In
the special case where we do not make use of any kind
of side-information, our method can be interpreted
similarly as performing a kind of non-parametric re-
gression. A main difference of this work is that we
consider also the introduction of several kinds of su-
pervision signal to perform dimensionality reduction
in task-dependent ways.

2. Kernel Information Embedding

Dimensionality reduction can be defined as the task
of finding a set of low-dimensional representatives
{zi}i=1...N for a set {yi}i=1...N of high-dimensional,
input data-points. A standard way to solve this prob-
lem is to define an objective function that captures
the preservation of inter-point similarities and to op-
timize this objective wrt. the zi. Once an embedding
is found, depending on the application, it might be
necessary to generalize it to unseen elements. In (in-
ductive) classification tasks, for example, we need a
’backward’-mapping g(y) from the data-space to the
latent space in order to get the embeddings for test
points. In applications such as noise-reduction an ad-
ditional ’forward’- mapping f(z) is required, that can
map latent space elements back to the data-space.
Not all existing embedding methods naturally pro-
vide these mappings, but several heuristics have been
proposed for both (see eg. (Bengio et al., 2003) for
backward-, and (Kwok & Tsang, 2003) for forward-
mappings).

Let us assume that the data set is a sample from a
random variable Y and assume in addition that there
exits a (possibly nonlinearly) related variable Z, that
captures the main underlying degrees of freedom in Y .
Then an intuitively appealing criterion for embedding
is the mutual information I(Y ;Z) between the data
distribution and the distribution over low-dimensional
codes:

I(Y ;Z) =

∫

p(y, z) log
p(y, z)

p(y)p(z)
dy dz, (1)

with p(y), p(z) the data- and latent space-densities, re-
spectively. What makes MI appealing, is that it cap-
tures exactly what we want a low-dimensional data
representation to preserve when using it to replace the
data. Intuitively, MI answers the question: ”What, on
average, can the latent representation tell us about the
data and vice versa?” Recall, that we can express MI
also in terms of entropies (Cover & Thomas, 1990) as:

I(Y ;Z) = H(Y ) + H(Z) − H(Y,Z), (2)

where H(·) denotes (differential) Shannon entropy. In
practice, MI and other entropy based quantities are
not often used for embedding, because they are hard
to evaluate for all but simple distributions, such as the
Gaussian.

Instead of trying to evaluate the involved high-
dimensional integrals directly, we suggest using an es-
timate of the entropies, based on a kernel estimate of
the underlying densities: Using some spherical kernel
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functions k(x, x′) and k(y, y′), we can obtain an es-
timate of the joint density over the input and latent
space as:

p̂(Y = y, Z = z) =
∑

i

k(z, zi)k(y, yi) (3)

with marginals p̂(Z = z) =
∑

i k(z, zi) and p̂(Y =
y) =

∑

i k(y, yi). (Note that for convenience we in-
clude any normalization constants in the kernel func-
tions themselves.) Using these density estimates we
can obtain estimates of an entropy as follows:

H(Z) = −

∫

p(z) log p(z) dz (4)

≈ −
1

N

∑

i

log p(zi) (5)

≈ −
1

N

∑

i

log
∑

j

k(zi, zj) =: Ĥ(Z) (6)

We are making two approximations: First, we ap-
proximate the entropy by the negative log-likelihood
of a sample (Eq. 5), and secondly, we plug in our
kernel estimate p̂(z) for the true probability density
function p(z) (eq. 6). Analogously, we obtain esti-
mates Ĥ(Y ) and Ĥ(Y,Z) for the entropy of Y and the
joint entropy of the latent/observable space, respec-
tively. In particular, for the latter we have Ĥ(Y,Z) =
− 1

N

∑

i log
∑

j k(yi, yj)k(zi, zj).

Now, plugging the entropy estimates into equation 2,
we obtain an estimate of the mutual information itself:

Î(Y,Z) = Ĥ(Y ) + Ĥ(Z) − Ĥ(Y,Z) (7)

= Ω0 −
1

N

∑

i

log
∑

j

k(zi, zj) (8)

+
1

N

∑

i

log
∑

j

k(zi, zj)k(yi, yj)

where we absorb constants that do not depend on la-
tent space elements into Ω0.

The MI estimate (Eq. 7) is a function of the set
of latent data representatives. In order to perform
dimensionality reduction, we can therefore maximize
Î(Y,Z) with respect to the latent space elements them-
selves. Any gradient-based optimization method could
be used for this purpose. The gradient of Î(Y,Z) de-
couples into the sum of two terms which are readily
shown to be (we show the gradient wrt. to a single
element zl):

∂Ĥ(Z)

∂zl
= −

1

N

∑

j

(

κl
Z + κ

j
Z

) ∂k(zl, zj)

∂zl

where we abbreviate κi
Z = 1

∑

k
k(zi,zk)

; and

∂Ĥ(Y,Z)

∂zl
= −

1

N

∑

j

(

κl
Y Z + κ

j
Y Z

)

k(yl, yj)
∂k(zl, zj)

∂zl

where κi
Y Z = 1

∑

k
k(yi,yk)k(zi,zk)

. If we use RBF ker-

nels k(zl, zj) = exp(− 1
h
‖zl − zj‖2), we have further-

more: ∂k(zl,zj)
∂zl = − 2

h
k(zl, zj)(zl − zj).

Note that, since the latent space elements are free to
move, any change in the latent space kernel bandwidth
can be compensated by rescaling the elements. The
choice of the latent space bandwidth h is therefore ar-
bitrary, and we set h = 1.0 in the following. (Note,
however, that the data-space bandwidth is not arbi-
trary and has to be set by hand, cross-validation, or
some heuristics).

2.1. Regularization

A closer inspection of Eq. 7 shows that there is a
trivial way to maximize the objective, which is to
drive all latent representatives infinitely far apart from
one another. To obtain a maximum that is mean-
ingful, we therefore need to constrain the range of
the latent elements to a finite region of the latent
space, or to impose some kind of power constraint on
Z. A natural constraint is to require tr(CZ) <= R,
where CZ denotes the latent covariance matrix and R

is a maximally allowable power. In practice, setting
CZ = 1

N
ZT Z then simply amounts to an L2-penalty

on the matrix of latent representatives. In practice,
the effect of this penalty is that it controls the over-
all scale of the latent elements and thereby regular-
izes the model. Interestingly, such a restriction on the
allowable latent space power also parallels the power
restriction on the input variables in the context of op-
timizing a channel capacity (Cover & Thomas, 1990).
Instead of using an L2-penalty, however, depending on
how we assume the data is distributed along the man-
ifold, we can also restrict higher order moments, or
force the latent space elements in other ways to reside
within a confined region of the latent space. A simple
way to implement such a constraint in practice is by
adding λ

N
tr(CZ) (or similarly for other constraints) to

the objective function, where λ controls the amount of
regularization.

This way of controlling the model complexity can also
be used during optimization as a way to find a good
local optimum of the objective function: By setting λ

to a large value in the beginning and decreasing slowly
during optimization, we can perform to a kind of de-
terministic annealing to find and track a good opti-
mum of the objective function. We have used this
procedure in some of our experiments, and have found
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Figure 1. ’S-curve’ dataset (left). Embedding (right).

that it is a very effective way to overcome problems
of bad local maxima, avoiding the necessity, for ex-
ample, to perform multiple restarts or other tricks to
obtain good solutions. Annealing makes the experi-
ments more or less invariant to initial conditions (up to
a rotational invariance inherent in the objective func-
tion). For more details on the optimization, see also
the respective sections themselves.

Figure 1 shows a proof-of-concept example of KIE
applied to a two-dimensional ’S’-curve dataset em-
bedded in three dimensions. The dataset consists of
2000 points sampled uniformly from the ’S’-curve. We
trained a two-dimensional embedding (shown on the
right, using a color-coding scheme that reveals the un-
derlying mapping), with an L4-penalty on the latent
space, that encourages alignment with the coordinate
axes1. We used an RBF kernel with h = 10.0. To train
the model, we have initialized the zi to small random
values, and we have used the annealing procedure de-
scribed above, with λ set to 0.1 initially and multiplied
by 0.8 for 20 steps. In each step we optimized Eq. 7
using simple unconstrained optimization. We have re-
peated the experiment ten times with different random
initializations and with no noticeable difference in the
result (except that in some cases the embedding is ro-
tated by 90 degrees in the latent space).

We have also experimented with a wide range of kernel
bandwidths, also without significant differences in the
performance. Note that, regardless of the bandwidth,
the kernel density estimate necessarily underestimates
the true density in this dataset (which is infinite within
a two-dimensional ’sheet’ of the 3-dimensional space).
Even though the estimate is bad, however, KIE per-
forms well and finds the underlying structure. The rea-
son for this robustness wrt. the choice of bandwidth,
and the ability to cope with this dataset in general, is
that the embedding does not care for an accurate den-
sity estimate itself, as much as it cares for similarities
in data-space. For the same reason, KIE is relatively
immune against problems with density estimation in

1We would like to point out, that this would be rather
hard to achieve using, for example, a spectral method.

high-dimensional spaces, as we show in Sections 3 and
4. As long as the kernel is able to reflect the similarity
structure in the data, arranging the latent elements
accordingly will improve the objective – which is all
we need for this task.

2.2. Generalization

It is straightforward to generalize the embeddings to
previously unseen data and to new latent space el-
ements. To derive the backward-mapping g, first
note that our entropy-estimate (Eq. 6) is simply the
sample-average of the information content based on a
kernel estimate of the underlying density. Likewise,
the embedding of the training data is computed by
maximizing the average ’mutual information’-content
(Eq. 7) between the training sample and its corre-
sponding set of latent space elements. Therefore, to
find the optimal embedding for an unseen training
point ytest, we can search for that latent space el-
ement, whose estimated mutual information-content
wrt. ytest is maximal. That is, we can define

g(ytest) = arg max
z

Î(ytest, z) (9)

where

Î(ytest, z) := log
∑

j

k(z, zj)k(ytest, yj)−log
∑

j

k(z, zj).

Analogously, to generalize the forward mapping to a
new latent space element ztest, we can set:

f(ztest) = arg max
y

Î(y, ztest). (10)

Both the backward- and the forward-mappings require
the solution of a nonlinear, but rather mild (in partic-
ular low-dimensional), optimization problem. At test
time, the same restrictions on the latent space power
apply as before, and they can be transfered without
change from the corresponding training problem.

2.3. Related Methods

It is interesting to note that we can view Eqs. 9 and 10
as maximizing conditional log-likelihoods, which shows
that we can interpret KIE as a kind of non-parametric
regression method. The objective itself (Eq. 7) can
then be viewed as an estimate of log p(Y |Z), and de-
fines a kind of regression on latent variables.

Using non-parametric regression for embedding has
been suggested originally by (Meinicke et al., 2005)
and (Lawrence, 2004). A difference to the former
method is that KIE maximizes likelihood instead of a
reconstruction error, and therefore does not postulate
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an explicit noise model in the data space. A difference
to the latter method is that the KIE objective function
(Eq. 7) scales only quadratically (instead of cubically)
with the number of data-points and can therefore be
applied to much larger datasets. An obvious advan-
tage over both these methods, however, is that KIE’s
information theoretic view suggests several ways of in-
troducing supervision signals into the embeddings, as
we discuss in more detail in the following sections.

3. Conditional Embeddings

A well-known problem with standard embedding
methods is that they typically compute representa-
tions that capture generic similarity structure in the
data, but do not necessarily reflect the kind of vari-
ability that is important for a specific task. In this
case, supervision signals can help adjust the methods
so that they actually capture the kind of variability
we are interested in (see eg. (Tenenbaum & Freeman,
2000)). One way we can apply extra information is by
using it to factor out the kind of variability we are not
interested in, and thereby to focus the embedding on
the kind of variability that is important to the actual
task at hand.

To cast this idea in information theoretic terms, let
us introduce a random variable X that captures any
available extra information about the data. Then the
task of computing an embedding that reflects all vari-
ability in the data except for the variability in X has a
natural solution: We need to maximize the conditional
mutual information between Y and a latent variable
Z, given X. Conditional MI is defined as (Cover &
Thomas, 1990):

I(Y ;Z|X) = H(Y |X) − H(Y |Z,X) (11)

= H(X,Z) − H(X,Y, Z) + Ω1,

where Ω1 contains terms that do not depend on Z.
Conditional MI also comes with an appealing intuition;
it answers the question: ”What, on average, can the
random variable Z tell us about Y , and vice versa,
given that we know X.” By minimizing 11, we obtain
factors that reflect the kind of variability in the data
that is not represented by, or correlated with, X.

Practically, we can reserve one or more latent space
dimensions as the conditioning (the ’X’)-space and de-
liberately position the latent elements xi in this space
according to the kind of variability that we want to en-
code. To encode, for example, grouping structure, we
can cluster the elements xi accordingly, or use an or-
thogonal (’one-hot’-) encoding; to express knowledge
about a natural ordering in the data we can arrange
the elements according to this ordering; etc. After
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Figure 2. Uninformed embeddings (top) vs. informed em-
beddings (bottom).

placing the conditioning latent elements and defin-
ing a kernel for this space, maximizing the estimate
Î(Y ;Z|X) yields the elements zi that capture the re-
maining degrees of freedom. Since, similar to MI, con-
ditional MI decomposes into entropy terms (Eq. 11),
we obtain an estimate Î(Y ;Z|X) in complete analogy
as before, with a gradient that decouples in the same
way, too. (Note, that the same restrictions regarding
latent space power etc. apply). Similarly as before,
the model is trained by simple gradient based opti-
mization.

Figure 2 illustrates the advantage of an ’informed’ la-
tent space as opposed to an ’uninformed’ one, using
images from the COIL-database (Nene et al., 1996).
The data consists of images of objects with varying ori-
entations. (See figure 3 for some examples.) The top
row of figure 2 shows a three-dimensional embedding
obtained by applying kernel PCA (Schoelkopf et al.,
1998), using an RBF kernel with h = 5·107, on a subset
of images depicting toy-cars. The three different types
of car are shown by using different symbols. The plot
shows that the embedding captures the presence of
three individual one-dimensional degrees of freedom.
However, variability across classes is represented si-
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multaneously in the same latent space as variability
that is due to rotation. As a result, both degrees of
freedom are intermixed, and in particular the fact that
all three objects vary simply by rotation is not obvi-
ous. The bottom row of the figure shows the embed-
ding of the same objects, where class-membership has
been factored out prior to computation of the latent
representation. The ’X’-space (the vertical axis in the
figure) was obtained by simply placing representatives
for the objects in three different clusters (located at
1.0, 2.0 and 3.0). For training we initialized to small
random values, fixed λ = 0.6 and used the same h as
for kernel PCA. (Annealing was not used in this ex-
periment.) As before, we used simple gradient based
optimization to maximize the objective. The resulting
conditional embedding, given by the remaining two
axes, captures the rotational degree of freedom that
remains after class-membership has been factored out.

In a similar experiment, we trained the model on a sub-
set of 30 images for each of the first 5 objects from the
same database (ref. figure 3 for the objects). In one
setting we used plain dimensionality reduction, in the
other we informed the model about grouping structure
by using an orthogonal (’one-hot’-)encoding for class-
membership and a Gaussian kernel with bandwidth
1.0 to obtain a latent ’class’-space. We then picked for
each object from the first class (the ’duck’-images) the
nearest neighbors in each of the remaining four classes
in the ’Z’-space. The four chosen neighbors are shown
below each duck-image in figure 3. Since class mem-
bership has been factored out, the embedding-space
captures the remaining, rotational, degree of freedom
very cleanly. We repeated the same neighborhood-
picking procedure in the original data-space and in
an uninformed latent space, that we obtained running
plain KIE with the same settings as before. For one of
the classes (’wood block’-images) data-space similarity
also captures the rotational degree of freedom. How-
ever, when the degree of freedom is too subtle (as in
the other three object classes), it is not reflected in the
data-space anymore. While it is not surprising that
data-space similarity fails in this context, note that
any uninformed latent space does, too, (see figure 3,
bottom). The reason is that without class-membership
factored out, any generic embedding algorithm tries
to capture all factors underlying the overall similar-
ity structure in the data. In this setting, for example,
it tends to cluster the data according to class mem-
bership, while at the same time trying to capture the
rotational degree of freedom in the same latent space.
Ironically, neighborhood in the plain latent space con-
sequently fails entirely to capture any of the structure
present in the data. Neighborhood in the the informed

latent space on the other hand is meaningful, after
some of the ’nuisance’ structure has been factored out.

Figure 3. Nearest neighbors in {informed latent space
(top), data-space (middle), plain latent space (bottom)}.

4. Joint Embeddings and Feature

Extraction

A different kind of semi-supervised embedding prob-
lem is the following: We are given pairs of points from
two different manifolds in correspondence (possibly in
two different spaces), and our goal is to find a single
embedding for these, ie. we are looking for one latent
representative for each pair of input points. (Ham
et al., 2005) discuss this kind of problem in the con-
text of spectral methods; the setting is also related to
canonical correlation analysis and many existing non-
linear extensions.

We can phrase this problem in information theoretic
terms as follows: Given two observed random variables
X and Y , that are known to share some (unknown)
common structure, we are looking for a latent variable
Z that minimizes the conditional mutual information
I(X;Y |Z). This type of conditional MI answers the
question: ”What can the (observed) variable X tell
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us on average about the (observed) variable Y , and
vice versa, given that we know Z?” Minimizing it
with respect to Z yields latent factors that capture
the remaining information, ie. the kind of information
that is shared between X and Y . We have (Cover &
Thomas, 1990):

I(X;Y |Z) = H(X|Z) − H(X|Y,Z) (12)

= H(X,Z) + H(Y,Z) − H(Z) − H(X,Y, Z).

Again, we can get an estimate Î(X;Y |Z) by plugging
in the corresponding entropy estimates, making use
of the decomposition of conditional MI. The gradient
again decouples, too, and we can use gradient based
optimization, with same power-constraint as before2.

Note that, by
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Figure 4. A joint embedding.

minimizing this
objective, we obtain
latent factors Z that
make X − Z − Y

become approxi-
mately a ’Markov
chain’. Cast in
terms of feature
extraction, we are
looking for features,
such that given
these, the data is

not needed to predict the output, and vice versa. In
contrast to other information theoretic approaches to
feature extraction, such as the information bottleneck
method (Tishby et al., 1999), or continuous valued
extensions, we obtain arbitrary continuous nonlinear
and non-Gaussian features.

As an example of a manifold alignment, we show a
three dimensional representation of a joint embedding
of the first two object classes from the previous ex-
periment in figure 4. As before, training is performed
simply with gradient based optimization, with λ being
annealed, in this case starting with 1.0 and by multi-
plying with 0.8 for ten steps. We used RBF kernels
with h = 3 · 107. The single, one-dimensional but
’curly’, degree of freedom underlying the variability in
the data becomes visible. Note that here each latent
space element is the representative of two data-points
in correspondence.

One potential application of this kind of joint embed-
ding is feature extraction in supervised learning. We
consider a simple regression task in figure 6. The fig-
ure shows the training data, consisting of 4 (input,
output)-pairs. In general, this training set is obviously

2Note in particular, that without any restrictions on Z,
we can minimize I(X; Y |Z) by making Z equal to X or Y .

Figure 6. Training set for regression task.

ridiculously low for the task of learning any reason-
ably mapping between the two high-dimensional image
spaces. However, since the data is very strongly struc-
tured, we can make progress, if we can make use of
the unlabeled data in some way. In this experiment we
have used a transductive setting: We have embedded
both the testing- and training-data in a joint three-
dimensional latent space, where we have simply added
the objectives Eq. 7 and (the estimate of) Eq. 12 in
order to achieve an alignment for the training-set and
an embedding (in the same space) for the test set. For
training we initialized to small random values, and an-
nealed λ by multiplying by 0.9 for 10 steps, starting
with λ = 1.0 and performing simple gradient based
optimization in each step. We used the same kernel
bandwidth as in the previous experiment. Given the
joint embedding, we can now define a function by first
mapping from the input- to the embedding space and
then from the embedding to the output-space. We
have used a simple non-parametric regression function
for this purpose, with the result shown in figure 5. The
top row depicts the input-, the row below the output-
data. Note that the model has confused two elements
(5th from the left, and rightmost) by essentially assum-
ing an object of the opposite orientation at the corre-
sponding position. While this solution is not quite cor-
rect it does help reduce squared error. The bottom row
of the figure shows the application of a nonparametric
regression function directly on the high-dimensional
input-output data for comparison. The performance
is necessarily bad, since without the availability of un-
labeled examples, the best any regression model can
do here is trying to interpolate the (output-) training
cases. We obtain a reduction in average reconstruction
error from approximately 2936 to 2630 with the joint
embedding.

5. Discussion

MI is a useful concept for embedding, because it cap-
tures exactly the intuition of what we want to pre-
serve when performing dimensionality reduction. Con-
ditional mutual information has to the best of our
knowledge not been applied in this way before, but it
can be useful, since it provides elegant ways to include
side-information. Although conditional MI poses the
same estimation problems as MI for general distribu-
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Figure 5. Semi-supervised regression example.

tions, the completely nonparametric kernel estimation
framework that we suggest provides a simple way to
overcome this problem. Further ways of making use
of conditioning information, and also of combining the
ones we have described here are possible. The modu-
lar structure, owed to the decomposition into entropy
terms, can be useful for exploring these, since it makes
it easy to combine the involved information theoretic
quantities.

Acknowledgments

We thank Geoff Hinton, Jenn Listgarten, Ted Meeds
and Nati Srebro for helpful discussions. This work was
supported in part by a Government of Canada Award.

References

Bengio, Y., Paiement, J., Vincent, P., Delalleau, O.,
Roux, N. L., & Ouimet, M. (2003). Out-of-sample
extensions for lle, isomap, mds, eigenmaps, and
spectral clustering. Adv. in Neural Information Pro-
cessing Systems 16.

Cover, T., & Thomas, J. (1990). Elements of informa-
tion theory. John Wiley and Sons.

Goldberger, J., Roweis, S., Hinton, G., & Salakhutdi-
nov, R. (2005). Neighbourhood components analy-
sis. Adv. in Neural Information Processing Systems
17.

Ham, J., Lee, D., & Saul, L. (2005). Semisupervised
alignment of manifolds. Proceedings of the Tenth In-
ternational Workshop on Artificial Intelligence and
Statistics.

Hinton, G., & Roweis, S. (2003). Stochastic neighbor
embedding. Adv. in Neural Information Processing
Systems 15.

Kwok, J. T., & Tsang, I. W. (2003). The pre-image
problem in kernel methods. Proc. of the Twentieth
Intern. Conf. on Machine Learning.

Lawrence, N. D. (2004). Gaussian process latent vari-
able models for visualisation of high dimensional

data. Adv. in Neural Information Processing Sys-
tems 16.

Meinicke, P., Klanke, S., Memisevic, R., & Ritter, H.
(2005). Principal surfaces from unsupervised kernel
regression. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27, 1379–1391.

Memisevic, R., & Hinton, G. (2005). Multiple rela-
tional embedding. Adv. in Neural Information Pro-
cessing Systems 17.

Nene, S. A., Nayar, S. K., & Murase, H. (1996).
Columbia object image library (coil-20) (Technical
Report).

Principe, J., Xu, D., & Fisher, J. (1999). Information
theoretic learning. Unsupervised Adaptive Filtering
(pp. 265–319). John Wiley & Sons.

Roweis, S., & Saul, L. K. (2000). Nonlinear
dimensionality reduction by locally linear embed-
ding. Science, 290, 2323–2326.

Sammon, J. W. (1969). A nonlinear mapping for data
structure analysis. IEEE Transactions on Comput-
ers, 18, 401–409.

Schoelkopf, B., Smola, A., & Mueller, K.-R. (1998).
Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10, 1299–1319.

Tenenbaum, J. B., & Freeman, W. T. (2000). Separat-
ing style and content with bilinear models. Neural
Computation, 12, 1247–1283.

Tishby, N., Pereira, F., & Bialek, W. (1999). The
information bottleneck method. Proceedings of the
37-th Annual Allerton Conference on Communica-
tion, Control and Computing.

Torkkola, K. (2003). Feature extraction by non-
parametric mutual information maximization. Jour-
nal of Machine Learning Research, 3, 1415–1438.

Viola, P., Schraudolph, N. N., & Sejnowski, T. J.
(1996). Empirical entropy manipulation for real-
world problems. Adv. in Neural Information Pro-
cessing Systems 8.


