
Department of Computer Science 6 King’s College Rd, Toronto
University of Toronto M5S 3G4, Canada
http://learning.cs.toronto.edu fax: +1 416 978 1455

Copyright c©Roland Memisevic & Geoffrey Hinton 2006

December 31, 2006

UTML TR 2006–5

Unsupervised Learning of Image
Transformations

Roland Memisevic and Geoffrey Hinton
Department of Computer Science, University of Toronto

Unsupervised learning of image transformations∗

Roland Memisevic
University of Toronto

roland@cs.toronto.edu

Geoffrey Hinton
University of Toronto

hinton@cs.toronto.edu

December 31, 2006

Abstract

We describe a probabilistic model for learning rich, distributed representations
of image transformations. The basic model is a gated conditional random field
that is trained to predict transformations of its inputs using a factorial set of latent
variables. Inference in the model consists in extracting the transformation, given a
pair of images, and can be performed exactly and efficiently.

We show that, when trained on natural videos, the model develops domain
specific motion features, in the form of fields of locally transformed edge filters.
When trained on affine, or more general, transformations of still images, the model
develops codes for these transformations, and can subsequently perform recogni-
tion tasks that are invariant under these transformations. It can also fantasize new
transformations on previously unseen images. We describe several variations of
the basic model and provide experimental results that demonstrate its applicability
to a variety of tasks.

1 Introduction

Natural images are not random, but show a great deal of statistical regularity, both
at the level of single pixels and at the level of larger regions. Unsupervised learning
has been used to discover the statistical structure present in images from training data,
and many unsupervised algorithms (such as PCA, ICA, and many others) are now an
essential part of the standard toolbox for solving recognition, detection, denoising, and
other tasks.

There has been little work on the related, but also more difficult problem, of dis-
covering structure in the ways imageschange. Typical transformations of images in,
say videos, are highly regular and structured, and systems can profit from discovering,
and then exploiting this structure.

How images can be transformed is intricately related to how images themselves
are structured: Natural images, that are composed of edges and junctions, etc., will
∗This work was first presented at the Canadian Institute for Advanced Research Summer School on Vision

and Learning, Toronto, August 2006

1

typically show transformations that re-orient or slightly shift these constituents. This
suggests that the statistics of the set of unordered images should be kept in mind, when
trying to model image transformations, and that the task of learning about transforma-
tions should be tied in with that of learning image statistics.

In order to learn about image transformations from training data, we construct a
generative model that tries to predict the current (output) image in a stream of obser-
vations from the previous (input) one. The model contains a set of latent “mapping”
units, that can develop efficient codes for the observed transformations, analogous to
the hidden units in generative models of still images. In contrast to standard generative
models however, the filters that the model learns for the current image areconditioned
on the previous image in the stream. The model is thus trained to predict transformed
versions of input images, which forces it to develop efficient encodings for the encoun-
tered transformations. At test time, the transformation can be inferred from a given pair
of input-output images, as the conditional distribution over the latent mappings units.

To be able to capture all the potential dependencies between the transformation,
input, and output units, the three types of unit form three-way cliques in the graphical
model. As a result, the task of performing featureextractionis tied to the task of feature
mapping, and both are learned simultaneously.

Once a model for transformations has been trained, there are many potential uses
for it. A difficult ongoing problem in pattern recognition is dealing with invariances.
We show howlearningabout transformations can greatly improve the performance in
a recognition task in which the class labels are invariant under these transformations.

1.1 Related work

While there has not been much work on learning to encode transformations, the idea
of using mapping units to encode transformations is not new and dates back at least
to [1], which describes an architecture for modeling simple transformations of letters.
However, no learning is performed in the model. A line of research that was inspired
by this approach used mapping units to modulate feature extraction pathways (see [2]),
but without learning.

Another early, biologically inspired, architecture for modeling transformations of
images is described in [3]. The model was able to learn some simple synthetic trans-
formations, but no applications were reported.

[4] and [5] constructed systems to model domain-specific transformations (the first
for modeling motion, the latter for modeling geometric invariances). Both models
were hand-crafted to work in their specific domains, and not trained to perform feature
extraction, but they showed some interesting results on real-world tasks.

Our model is a type of higher-order Boltzmann machine [6] and can also be viewed
as a conditional version of a restricted Boltzmann machine (RBM). It therefore bears
some resemblances to [7], which used a kind of conditional RBM in a pixel labelling
task. In that model, however, the dependence on the inputs is simply in the form of
biases for the output units, whereas in our model, input, hidden and output units form
three-way cliques, so the effect of an input unit is to modulate theinteractionbetween
transformation units and output units. As result,filters on the outputs, and not just

2

the outputs themselves, depend on the inputs, which is crucial for the task of learning
image transformations.

2 Gated Boltzmann machines

The basic idea of our model is to predict the next observation in a stream of observa-
tions, and to usehidden variablesto capture the many possible ways in which the next
observation can depend on the previous one.

2.1 The model

To simplify the exposition we consider binary units for now, and show later how to deal
with more general distributions. To model the probability of an output-image (or patch)
y, given an input image (or patch)x, we consider an energy-function that combines
all components of input and output images. To explicitly capture the many possible
ways in which the outputs can depend on the input, we introduce an additional vector
of binary hidden variablesh.

A simple energy function that captures all possible correlations between the com-
ponents ofx,y andh is

E(y,h;x) = −
∑
ijk

Wijkxiyjhk, (1)

whereWijk are the components of a three-way parameter-“tensor”W , that learns from
training data to weight the importances of the possible correlations. The components
xi, yj of x andy can be either pixel intensities or higher-level descriptors such as the
outputs of non-linear filters. The negative energy−E(y,h;x) captures the compati-
bility between the input, output and hidden units.

Note that, in the way that the energy is defined, each hidden unithk can ’blend in’
a sliceW··k, ofW , which defines a linear mapping from inputs to outputs. Therefore,
when wefix all hidden units, we obtain simply a linear mapping as transformation if the
output units are linear. However, in practice we will derive a probability distribution
over the set of hidden and output units, and thenmarginalizeover all possible mappings
as we describe below, which gives rise to highly nonlinear and possibly (if we use more
than one hidden unit) compositional mappings.

Using this energy function, we can now define the joint1 distributionp(h,y|x) over
outputs and hidden variables by exponentiating and normalizing:

p(y,h|x) =
1

Z(x)
exp(−E(y,h;x)) (2)

where
Z(x) =

∑
y,h

exp(−E(y,h;x)) (3)

1We deliberately do not try to model the input, but rather condition on it – freeing us from many of the
independence assumptions that a corresponding generative model would need to make to be tractable.

3

is a normalizing constant, that depends on the input imagex. To obtain the distribution
over output images, given the input, we marginalize and get:

p(y|x) =
∑
h

p(y,h|x) (4)

Note that in practice we cannot actually computep(y|x) or Z(x) exactly, since
both contain sums over the exponentially large number of all possible hidden unit in-
stantiations (and output unit instantiations, forZ(x)). In practice however, we do not
actually need to compute any of these quantities to perform either inference or learning,
as we shall show.

Inference at test time consists of inferring the transformation, or equivalently its
encodingh, from agivenpair of observed imagesx andy. But from Eqs.1 and2 it
follows easily that

p(hk = 1|x,y) =
1

1 + exp(−
∑
ijWijkxiyj)

(5)

for every mapping unithk. This shows that the mapping units areindependentbinary
variables given the input-output image pair, and can be computed efficiently. Similarly,
for the distribution over outputs, when input and mapping units are given, we get:

p(yj = 1|x,h) =
1

1 + exp(−
∑
ikWijkxihk)

(6)

In practice, to be able to model affine and not just linear dependencies, it is useful
to add biases to the output and hidden units. In contrast to unconditional models, where
biases are simple additive components that can “shift” the activity level of a unit, in this
more general model we can use also gated biases, that shift an activityconditionally.
An energy function containing both gated biases, as well as standard biases, can take
the form2:

E(y,h;x) = −
∑
ijk

Wijkxiyjhk −
∑
jk

Wyh
jk yjhk −

∑
j

Wy
j yj −

∑
k

Wh
k hk (7)

2.2 Learning

To train the probabilistic model, we maximize the average conditional log likelihood
L = 1

N

∑
α log p(yα|xα) for a set ofN training pairs(xα,yα). In this paper we con-

sider gradient based optimization for this purpose. The gradient of the log-likelihood
for each training case is the difference of two expectations:

∂L

∂W
=
∑
α

〈
∂E(yα,h;xα)

∂W

〉
h

−
〈
∂E(y,h;xα)

∂W

〉
h,y

(8)

2Even more general forms of bias are possible: Any set of weights that affects either one or two groups of
units (inputs-to-hiddens, inputs-to-outputs, hiddens-to-outputs, just hiddens, or just outputs) can be consid-
ered a “generalized bias” in this model. In most of our experiments we have used all possible connections.
But the energy function defined in Eq.7 (containing only the single-node biases and the hidden-to-output
biases) is usually sufficient to get good results.

4

(a) (b)

hk

yjxi

x

h

y

yj

xi

hk

h

x y

Figure 1: Two views of the basic model. (a) Gated regression: Hidden units can add
slicesW··k into a blend of linear transformations. (b) Modulated filters: Input units
gate a set of basis functions that learn to reconstruct the output.

where we letW denote the set of all weights (including any biases, if present). The first
expectation is over the posterior distribution over mapping units and can be computed
efficiently using Eq.5. The second is an expectation over all possible output/mapping
instantiations and is intractable. Note however that, because of the conditional inde-
pendences ofh giveny, andy givenh (see previous section), we can easily sample
from the conditional distributionsp(h|x,y) andp(y|x,h).

Gibbs sampling therefore suggests itself as a way to approximate the intractable
term. Moreover, it can be shown that it is sufficient, and often advantageous, to per-
form only very few Gibbs iterations, if we start sampling at the training data-points
themselves. This scheme of optimizing an undirected graphical model is known as
contrastive divergence, and has been applied in several vision applications before (see
[8], [9], [10], for example).

2.3 Two views

Since the model defines a conditional distribution over outputs, it can be thought of
as an autoregressive model. In particular, Eq.4 shows that it is a kind of mixture of
experts, with a very large number of mixture components (exponential in the number
of mapping units). Unlike a normal mixture model, the exponentially many mixture
components share parameters which is what prevents it from overfitting. The number
of parameters scales only linearly, not exponentially, with the number of mapping units.

Each binary mapping unithk that is active effectively ’blends’ in a sliceW··k of

5

the weight tensorW into the mixture (see Eq.1). The model can thereforecomposea
given transformation from a set of simpler transformations, which is crucial for mod-
eling many real-world transformations, in which different parts of an image may trans-
form in different ways. Likewise at test time, the hidden unitsde-composean observed
transformation into its basic components by measuring correlations between input- and
output-components. The importance that hidden unithk attributes to the correlatedness
(or anti-correlatedness) of a particular pairxi, yj is determined byWijk, as can be seen
also from Eq.5: If Wijk is positive then a positive correlation betweenxi andyj will
tend to excite unithk, and a negative correlation tend to inhibit it. Importantly, the
task ofdefiningthe set of basis transformations that is needed for some specific task at
hand, is considered to be a domain-specific problem, and is therefore left to be solved
by learning.

An alternative view of the model is shown in figure1 (b): Each given, fixed input
imagex defines a bi-partite network (known as restricted Boltzmann machine, see [11],
for example), in which input-dependent filterŝWjk =

∑
iWijkxi are used to capture

spatial correlations in the image. The filters are input-weighted sums of slicesWi·· of
the weight tensorW . Folding the inputs into the weights this way lets us rewrite the
energy in the form of a (case-dependent) RBM as:

E(y,h;x) = −
∑
jk

Ŵjkyjhk −
∑
j

Wy
j yj −

∑
k

Wh
k hk (9)

(Note that, as before, we can also add generalized biases to the input-modulated weights,
by defining the weights alternatively as:̂Wjk =

∑
iWijkxi +Why

jk)
In other words, the model defines a bipartite conditional random field over out-

put images and mappings. Instead of specifying spatial correlations ahead of time, as
would be done for example with a Markov random field, here the possible correla-
tions are learned from training data and can be domain-specific, input-dependent, and
possibly long-range.

The fact that the model defines an RBM once the input has been fixed, is very con-
venient for inference and learning, since it allows us to make use of all the available ma-
chinery that has been developed for similar tasks in RBMs. Furthermore, approaches
for extending RBMs also carry over easily to GBMs (see Section2.5, for example).

2.4 Example: Transformations of binary images

As a proof of concept, we trained a model with20 mapping units on synthetic videos
showing random binary images of size10 × 10 pixels that are shifted by one pixel in
a random direction in each frame (see figure2, leftmost two columns). To generate
the data, we first generated a set of initial images by turning on each pixel in an image
randomly with probability0.1. Then, repeatedly we chose for each image a direction
randomly from the set{up, down, left, right, up-left, up-right, down-left, down-right,
no shift}, and shifted the images, filling in newly appearing edges randomly, and inde-
pendently as before with probability0.1 We trained the model on batches containing
100 image pairs each. Since the image pairs were generated on the fly, training was

6

online, with a gradient update after each presentation of a batch3. We trained the model
on several thousand batches, which takes a few minutes on a Pentium 4 with 3.4 GHz.

After training, the model can infer ’optical flow’ from a pair of test-images by
computing the hidden unit activations using Eq.5. The model represents the flow that
it observes implicitly in these mapping unit activations. But it is possible to visualize an
approximation of the models ’percept’, by drawing for each input-pixel an arrow to the
output-pixel to which the input-pixel connects the most according to the (marginalized)
weight-tensorW .

Figure2 shows seven example image pairs and the inferred ’max-flow’-fields. The
model is able to consisently infer the correct motion over the whole patch (except at
edges that move into the image, where pixels are random and cannot be predicted).

Given a set of hidden unit activationsh, we can apply the encoded transformation
to a new, previously unseen imagexnew by computingp(y|h,xnew). The right-most
column in the figure depicts these transfered transformations using gray values to rep-
resent the probability of turning a pixel ’on’.

In this example, a mixture of experts,ie.a model that contains a single, multinomial
mapping unit, would in principle be sufficient, because the set of possible transforma-
tions has a small size (9 in this case). Figure3 shows a variation of the experiment,
where the transformations arefactorial instead. The image pairs are generated by trans-
forming the top and bottom halves of the input images independently of each other. We
used5 possible transformations for this experiment (shift left, right, up, down and no
shift), and10 mapping units as before. While10 mixture components in an ordinary
mixture model would not be sufficient to model the resulting5 × 5 = 25 transforma-
tions, the GBM finds a factorial code that can model the transformations, as can be seen
from the figure. While in these toy-examples there are no correlations between the pix-
els in a single image, in natural images we would expect such correlations to provide
further cues about the transformations. We revisit this kind of experiment using natural
images in Section4.1.

3Since training data can be generated on the fly, the amount of available training data is essentially
unlimited. We would like to point out that training with this data set would be rather difficult with non-
parametric methods, such as kernel methods.

7

Figure 2: Columns (left to right): Input images; output images; inferred flowfields;
random target images; inferred transformation applied to target images. For the trans-
formations (last column) gray values represent the probability that a pixel is ’on’ ac-
cording to the model, ranging from black for0 to white for1.

8

Figure 3: Factorial transformations. Display as in figure2.

9

2.5 Generalization to non-binary units

The model defined so far defines a binary distribution over output and mapping units.
However, binary values are not always the best choice, and it is often desirable to be
able to use more general distributions, for either output or mapping units. Especially
continuous values for the outputs can be useful in image modelling tasks, but also
other choices (for either outputs or hidden units) are imaginable, such as multinomial,
Poisson, or others.

Modifying the model in order to deal with continuous outputs, while keeping the
hidden units binary, for example, can be achieved straightforwardly, following the same
approach that is used for continuous standard RBMs [11]: We re-define the energy as
(similarly when using the other kinds of generalized bias):

E(y,h;x) =
1

2ν2

∑
j

(yj −Wy
j)2 − 1

ν

∑
ijk

Wijkxiyjhk −
∑
k

Wh
k hk, (10)

and then define the joint distribution as before (Eq.2). Now, while the conditional
distribution over hidden unitsp(h|x,y) remains the same (because the additional term
cancels out after exponentiating and conditioning), it is straightforward to show that
the distribution over outputs turns into a Gaussian (see [11] for details):

p(yj |x,h) = N

(
yj ; ν

∑
ik

xihkWijk +Wy
j , ν

2

)
(11)

We use a spherical Gaussian for the outputs here, but we could also use a different
varianceνj for each output-component.

Since the conditional distribution is a Gaussian, that is independent across compo-
nentsyj , Gibbs sampling is still straightforward in the model. Note, that the marginal
distribution isnotGaussian, but a mixture of exponentially many Gaussians. As before,
it is intractable to evaluate the marginal, so it is fortunate that it does not need to be
evaluated for either learning or inference. Note also, that the inputsx are always con-
ditioned on in the model. They therefore do not need to be treated differently than for
the binary case. Any scaling properties of the inputs can be absorbed into the weights,
and are therefore taken care of automatically during training though learning is faster
and more stable if the scales are sensible.

Using Gaussian outputs allows us to performregressiontasks, in which the outputs
are high-dimensional and structured. It therefore constitutes an interesting extension
to recent work on classification with structured outputs (see [12]). In contrast to the
recent kernel based attempts in this direction (eg. [13]) our model can be trained on
much larger datasets, and is capable of online learning.

While extending the model to deal with Gaussian outputs is useful for many prob-
lems, we do not need to stop there. In fact, it is easy to extend the model such that it
uses any member of the exponential family as the conditionalsp(y|h,x) or p(h|y,x).
[9] describe a framework for constructing RBMs with arbitrary exponential family dis-
tributions as the conditionals, and their approach can be applied similarly to GBMs,
because once we condition on an input the model simply takes the form of an RBM
(’View 2’ in Section2.3).

10

Until now we have represented each state of a unit using a single binary value. The
reason is that the sufficient statistics of binary variables are their binary states them-
selves. The sufficient statistics of more general random variables can be more compli-
cated and can contain more than just one value. (Consider a Gaussian, for example,
whose sufficient statistics are given by its mean and variance.)

We therefore introduce indicesa andb and represent the variablesyj andhk using
their sufficient statisticsfja(yj) andgkb(hk), respectively. The joint distribution under
this representation can then be re-defined as:

p(y,h;x) ∝ exp

−∑
jakb

Ŵ kb
ja fja(yj)gkb(hk)−

∑
ja

Wy
jafja(yj)−

∑
kb

Wh
kbgkb(hk)

 ,

(12)
whereŴ kb

ja are the modulated weights that we obtain similarly as before, by ’folding’

the inputs into case-independent weights:Ŵ kh
ja =

∑
iWijakbxi.

Eq. 12is again simply a standard (but case-dependent) RBM. As before, and as in a
standard RBM, the conditional distributions under this joint distribution decouple into
products of independent distributions, that now are exponential family distributions
themselves, and whose parameters are just ’shifted’ versions of the biases:

p(yj |h;x) ∝ exp

(∑
a

[∑
kb

Ŵ kb
ja gkb(hk) +Wy

ja

]
fja(yj)

)
(13)

p(hk|y;x) ∝ exp

∑
b

∑
ja

Ŵ kb
ja fja(yj) +Wh

kb

 gkb(hk)

 (14)

Note that we let the inputs modulate the couplings as before, instead of modulating
the sufficient statistics. Fixing the sufficient statistics has the advantage that it keeps
learning and inference simple. Since the conditionals decouple as previously for the
binary case, Gibbs sampling is still straightforward. In the practical implementation,
basically all that changes for training the model is the routines for sampling from the
conditionals.

3 Extensions

3.1 Fields of Gated Experts

Until now we have considered a single global model, that connects each input pixel (or
feature) with each output component and we have usedpatchesto train the model on
real-world data.

For images that are much larger, connecting all components is not going to be
tractable. The most simple solution for natural video data is to restrict the connections
to be local, since the transformations on these data-sets are typically not very long-
range. In many real-world tasks (albeit not in all) it is reasonable to assume that the
kind of transformations that occur in one part of the image could occur in principle also

11

in any other. Besides restricting connections to be local, it can therefore makes sense
to also use some kind of weight-sharing, so that we apply essentially the samemodel
all over the image, though not necessarily the same particular transformation all over
the image.

We therefore define a single patch-model, as before, but define the distribution over
the whole output-images as theproductof distributions over patches centered at each
output-pixel. Each patch (centered at some output-pixelyj) contains its own set of
hidden unitshjk. Formally, we simply re-define the energy to be (we drop the biases
here for simplicity)

E(y,h;x) = −
∑
s

∑
ijk

Wijkx
s
iy
s
jh
s
k, (15)

wheres ranges over all sites, andxsi denotes the (ith) component ofx in sites (anal-
ogously fory andh). Inferring the hidden unit probabilities at some sites, given the
data, can be performed exactly the same way as before independently of the other sites,
using Eq. 5. When inferring the data distribution at some sites, given the hiddens,
some care needs to be taken because of overlapping output patches. Learning can be
performed the same way as before using contrastive divergence.

This approach is the direct conditional analogue to modeling a whole image using
patch-wise RBMs as used in [10], [14] for the non-conditional case. A similar approach
for simple conditional models has also been used by [7].

3.2 Neural network premappings

The fact that the model defines a conditional (and not joint) distribution over outputs
makes it easy to develop extensions, where the model learns to pre-process the in-
puts prior to transforming them. We can define feature functionsφi(x), and re-define
the energy (Eq.1) to E(y,h;x) = −

∑
ijkWijkφi(x)yjhk (similarly when using

biases). Training the whole model then consists in adapting both the mapping param-
etersW , and the parameters of the feature functions simultaneously. If we use differ-
entiable functions as features, we can use back-propagation to compute the gradients
([15],[16]).

Pre-processing the input in this way can have several advantages. One practical
advantage is that we can use dimensionality reduction to alleviate the quadratic compu-
tational complexity of the model. Another is that good feature extraction can improve
generalization accuracy. In contrast to using the responses of fixed basis functions, such
as PCA features, training the whole architecture at once allows us to extract ’mappable
features’ that are optimized for the subsequent transformation with the GBM.

4 Experiments

4.1 The transformation-fields of natural videos

Recall (Eq.5 for binary units, Eq.14 for more general units) that mapping unit proba-
bilities are inferred by measuring correlations between input- and output-components.

12

Figure 4:20 basis flowfields learned from synthetic image transformations. The flow-
fields show, for each input pixel, the strengths of its positive outgoing connections,
using lines whose thicknesses are proportional to the strengths.

The mapping units act like Reichhardt detectors [17]. In contrast to simple standard
Reichhardt detectors the mapping units make use ofspatial pooling: Each detector
(mapping unit) connects a set of input units with a set of output units, and can therefore
generalize over larger image regions and deal with the presence of noise. The particular
correlation patterns between input pixels and output pixels that are prevalent in a cer-
tain domain are encoded in the weight tensorW . Most importantly, these patterns, and
thereby also the distribution of responsibilities across mapping units, are not assumed
to be known, but arelearnedfrom training data.

To see which forms these ’Reichhardt pools’ take on when trained on real world
data, we used a database of digitized television broadcasts[18]. The original database
contains monochrome videos with a frame-size of128×128 pixels, and a frame rate of
25 frames per second. We reduced the frame-rate by a factor of2 in our experiments,
ie. we used only every other frame. Further details about the database can be found in
[18].

Learning synthetic transformations: First, to see whether the model is able to
discover very simple transformations, we trained it on synthetically generated trans-
formations of the images. We took random-patches from the video-database described

13

above (without considering temporal information) and generated sequences by trans-
forming the images with shifts and rotations. We used20 mapping units and trained on
images of size8 × 8 pixels. We used the pixel intensities themselves (no feature ex-
traction) for training, but smoothed the images with a Gaussian filter prior to learning.

Figure4 displays resulting ’excitatory basis-flow-fields’ for several mapping units,
by showing for each mapping unithk the strength of thepositiveconnectionsWijk,
between pixeli and pixelj, using a line whose thickness is proportional to the con-
nection strength. We obtained a similar plot (but poled in the opposite direction) for
negative connections, which means that the model learns to locally shift edges. (See
below for further results on this.)

Furthermore, the figure shows that the model infers locality,ie. input pixels are
connected mostly to nearby pixels. The model decomposes the observed transforma-
tion across several mapping units. (Note that this display loses information, and is used
mainly to illustrate the resulting flow-fields.)

Broadcast videos: To train the model on the actual videos we cut out pairs of
patches of size20 × 20 pixels at the same random positions from adjacent frames.
We then trained the model to predict the second patch in each pair from the first, as
described previously. To speed up training, we used100 PCA-coefficients instead of
the original pixel-intensities as the patch-representationsx andy, reducing the input-
dimensionality from400 to 100. We used no other forms of preprocessing in these
experiments. (It is possible to obtain similar results with the original, pixel-wise, image
representations instead of PCA-coefficients, in which case Gaussian smoothing and/or
whitening can help the learning.)

A way of visualizing the learned basis flowfields is shown in figure 5. The figure
shows that the model has developed sets of local, conditional edge-filters. That is, input
pixels only have significant weights to output pixels that are nearby and the weights
form an oriented edge filter. The fact that the model decides to latch onto edges to
infer information about the observed transformation is not surprising, given that image
gradient information is essential for inferring information about optical flow. Note
however, that this information is learned from the database and not handcoded. No
sparsity constraints were required to obtain these results. The database – being based
on broadcast television – shows many small motions and camera-shifts, and contains
motion as a predominant mode of variability.

More interesting than the learned motion edge-features is the fact that adjacent
input-pixels tend to be mapped similarly by given mapping units, which shows that the
model has learned to represent mostly global motion within the20 × 20-patch, and to
use spatial pooling to infer information about the observed transformation.

Given the learned model, it is straightforward to generate dense flow-fields as in
Section2.4. The plots in the top row of figure6 show a pair of two adjacent example
time-frames cropped randomly from the video-database, and showing a more or less
even right-shift over the whole patch. To generate the flow-field, as before, at each
input-pixel position in the center region of the image (we left out a frame of4 pixels
width, where the field cannot be inferred precisely) an arrow is drawn that shows to
which output-pixel it connects the most4 (bottom row of the figure). The resulting flow-

4Note that the restriction to integer flow here is not a restriction of the model per se – in particular, since

14

Figure 5: A visualization of parts of the learned basis flowfieldsWijk for four different
hidden units,hk. For each hidden unit, the input pixels in a small patch are laid out in
a coarse grid. At each grid location, there is an intensity image that depicts the weights
from that input pixel to all of the output pixels. The intensities range from black for
strong negative weights to white for strong positive ones. We invert the PCA encoding
before showing the results.

15

Figure 6: Typical image patch pair from the video database, and the inferred flow field.
Spatial pooling facilitates generalization and noise suppression.

field shows that the model infers that there was a more or less global motion within the
patch, even though corresponding pixel intensities vary considerably between frames,
and there are large homogeneous regions. The reason that the model infers a global
motion is that it considers it to be the most probable, given the observed evidence,
and that such motions are typical in the dataset, whose log-probability is what is being
optimized during training.

Note that we do not necessarily advocate using this method to infer dense flow-
fields such as the one shown. Rather, the flow-information is represented implicitly
here in the form of hidden unit probabilities, and condensing it to the max-flow field
would usually mean that potentially useful information gets lost. Also, the kinds of
transformations that the model learns are not restricted to motion (as we show below),
and are therefore not necessarily local as in the example. To make use of the implicitly
encoded information one can uselearningon the hidden units instead (As done in [4],
for example).

the described model was trained on basis-transformed patches. The flow-field is used mainly for illustration
purposes as described in the main text. The full flow representation is given by the mapping unit activations
themselves.

16

4.2 Learning an invariant metric

Once a model has been trained to recognize and encode image transformations, it is
possible to perform recognition tasks that areinvariant under those transformations,
by defining a corresponding invariant metricw.r.t. the model. Since the GBM model is
trained entirely from data, there is no need to provide any knowledge about the possible
transformations to define a metric, (in contrast to many previous approaches, such as
[19]).

Figure 7: The five nearest neighbors of a digit using two different metrics. The left-
most digits in each row of six are query-cases. The other five digits in that row are the
five nearest neighbors according to the learned model. Below these are the five nearest
neighbors according to Euclidean distance in pixel space.

An obvious way of computing the distance between two images, given a trained
GBM model, is by measuring how well the model can transform one image into the

17

other. If it does a good job at modelling the transformations that occur in the distribu-
tion of image pairs that the data was drawn from, then we expect the resulting metric
to be a good one.

A very simple, but as it turns out, very effective, way of measuring how well the
model can transform an input imagex into another imagey, is by first inferring the
transformation, then applying it, and finally using Euclidean distance to determine how
well the model did. Formally this amounts to using the following three-step algorithm:

1. Setĥ = arg maxh p(h|x,y)

2. Setŷ = arg maxy p(y|x, ĥ)

3. Defined(x,y) = ‖y − ŷ‖,

whered(·, ·) is the resulting distance measure, which is strictly speaking not a distance
since it is not symmetric. (It could easily be turned into a proper distance by adding
the two opposite non-symmetric versions, but in many applications symmetry is not
actually needed.) Note that both operations can be performed efficiently because of the
independence of the conditional distributions.

It is interesting to note that we can interpret the procedure also as measuring how
well the model can reconstruct an outputy under the conditional distribution defined
by the clamped inputx, using a one-step reconstruction similar to the one used during
contrastive divergence learning. Points that lie in low-density (and correspondingly
high-energy) regions tend to get ’pulled’ towards higher density regions more strongly
than points that already reside in high density regions, and therefore experience a larger
shift in terms of Euclidean distance.

Figure7 shows the nearest neighbors for a few test-cases from a digit dataset (see
next section for a detailed description of the dataset) among three hundred randomly
chosen training cases according to a GBM trained to predict affine transformations
of the digits. We used a model with30 mapping units and with a linear one-layer
neural network premapping (see Section3.2) to reduce the input dimensionality to
30 in order to speed up training. Both the model parameters and parameters of the
pre-mapping were trained simultaneously. The premapping was trained by backpropa-
gating the derivatives produced by contrastive divergence. The derivatives that are used
to learn the bias of a unit can always be used to learn how this bias should depend on
some other, given input. After training, we picked query-casesy from a test-set (that
was not seen during training) and determined the five nearest neighbors among300
randomaly chosen training cases using (i) the metric induced by the model and using
(ii) Euclidean distance. The figure shows that, in contrast to Euclidean distance, the
distance induced by the model cares little about pixel overlap and considers digits to
be similar, if they can be transformed into each other.

4.2.1 Application to digit classification

In the task of digit classification, viewpoint invariance is usually not a central con-
cern because typical datasets are composed of normalized images. This allows nearest
neighbor classification in pixel space to obtain reasonably good results.

18

Figure 8: A transformation field learned from affine digits. Connection strengths are
represented as in figure 5.

Here we modify the digit classification task by taking5000 randomly chosen exam-
ples from the USPS-dataset (500 from each class) and generating15000 extra examples
using random affine transformations (3 for each case).

Predicting transformed digits from their originals requires quite different transfor-
mation fields than those required for predicting video images. Figure8 shows a typical
transformation field after training a GBM with 50 mapping units on the raw pixel im-
ages. One obvious feature is that the model is indifferent with regard to the edges of
the image (where it encounters much less variability than in the middle).

We now consider the problem of predicting10000 of the transformed digits from
the5000 original training points (for which we have labels available). The remaining
5000 transformations are (i) left aside to learn transformations in one set of experi-
ments, (ii) included in the training-set for classification in another set of experiments.
The first problem is one of transfer learning: We are given labels for the unmodified
training cases, but the actual task is to classify cases from a different, butrelated, test
set. The relation between the sets is provided only implicitly, in the form of correspon-
dences between digits and their transformed versions.

We trained a GBM with50 mapping units on100 PCA-features on the transfor-
mations, by predicting the transformed versions of digits from the originals and vice
versa. Figure9 compares the nearest neighbor error rates on the10000 test cases, ob-
tained using either the Euclidean distance or the distance computed using the model
of transformations. To compute nearest neighbors using the non-symmetric distance
measure, we let the training cases be the inputsx in the three-step algorithm (previous
section). In other words, we measure how well the model can transform prototypes
(training cases) into the query cases.

19

Figure 9: Error rates using k-nearest neighbors. The model induced distance is com-
pared with the Euclidean distance for two different training sets. Adding affine trans-
formed digits to the training set helps the Euclidean distance a lot, but it is of very little
help to the learned distance because the model can learn about transformations from
the basic training set.

In task (i) (’eucl’ vs. ’td’ in the plot) Euclidean distance5 fails miserably, when
transformed digits have to be predicted from the original dataset, while the transfor-
mation metric does quite well. In task (ii) (’eucl p+t’ vs. ’td p+t’ in the plot) where
transformed versions are included in the training set, Euclidean distance improves sig-
nificantly, but still does considerably worse than the transformation metric. The trans-
formation metric itself gains only little from including the transformations. The reason
is, that most of the available information resides in the way that the digits can be trans-
formed, and has therefore already been captured by the model. Including transformed
digits in the training set does not, therefore, provide a significant advantage and leaving
them out does not entail a significant disadvantage.

5For the Euclidean distance results, we also compared with Euclidean distance in the 100-dimensional
PCA-coefficient space and to normalized data, but Euclidean distance in the original data-space gives con-
sistently the best results.

20

4.3 Image transformations

Once we have a way of encoding transformations, we can also apply the these trans-
formation to previously unseen images. If we obtain the transformation from some
’source’ image pair and apply it to a target image, we are basically performing an
analogy. [20] discuss a model that performs these general kinds of ’image analogies’
using a regression-type architecture. An interesting question is, whether it is possible
to perform similar kinds of transformations using a general purpose generative model
of transformations.

We used a source image-pair as shown in the top row in figure12, generated by
taking a publicly available image from the database described in [21], and applying an
“artistic” filter that produces a canvas-like effect on the image. The image sizes are
512×512 pixels. We trained a field of gated experts model with10 hidden units on the
raw images. The target image is another image from the same database and is shown
in the row below, along with the transformation, which we obtained by performing a
few hundred Gibbs iterations on the output (the one-step reconstruction works, too,
but more iterations improve the results a little). The blow-up shows that the model
has learned to apply a somewhat regular, canvas-like structure to the output-image, as
observed in the source image.

5 Conclusions

There has been surprisingly little work on the problem of learning explicit encodings
of data transformations, and one aim of this paper is to draw attention to this approach
which, we believe, has many potential applications. There is some resemblance be-
tween our approach and the bilinear model of “style” and “content” proposed in [22],
but the learning methods are quite different and our approach allows the transforma-
tions to be highly non-linear functions of the data.

There are several interesting directions for future work. One is to learn mappings of
multiple different types of feature simultaneously. Doing this at multiple scales could
be interesting, especially for motion-analysis. Potential applications (other than deal-
ing with invariances for discrimination) are video compression and denoising using the
temporal structure. Another interesting problem is the construction of layered archi-
tectures in which mapping units are shared between two adjacent layers. This allows
transformations that are inferred from pixel intensities to be used to guide feature-
extraction, because features of an image that are easy to predict from features of the
previous image will be preferred. While we have considered image transformations in
this paper, the model can easily be trained on more general data types than images, and
we are currently working on applications in other areas.

RBMs are closely related to autoencoder networks [11], and can be used to dis-
cover the low-dimensional manifolds along which real world data is often distributed.
GBMs in turn learnconditionalembeddings, by appropriately modulating the weights
of an RBM with input data. (Note that, while we have restricted our attention to the
probabilistic RBMs, we could similarly directly gate the weights of an autoencoder
instead.) These ’morphable manifolds’ provide a convenient way of including prior

21

Figure 10: Image analogy (source image pair). Source image (top) and its transforma-
tion showing a canvas-like effect (bottom).

22

Figure 11: Image analogy (target image pair). Target image (top) and the learned
transformation applied to the target image.

23

Figure 12: Image analogy blow-ups. Top row: Small patch from the source image and
its transformation. Bottom row: Small patch from the target image and its transforma-
tion.

24

knowledge in embedding tasks, and can be useful in data analysis and visualization
tasks. In contrast to previous, non-parametric approaches in this direction, such as
[23] and [24], GBMs can be trained on much larger datasets and easily generalize the
learned embeddings beyond the training data-points, which is what makes them so
useful for discrimination tasks.

References
[1] Geoffrey Hinton. A parallel computation that assigns canonical object-based frames of

reference. InProc. of the 7th IJCAI, Vancouver, BC, Canada, 1981.

[2] Bruno Olshausen.Neural Routing Circuits for Forming Invariant Representations of Visual
Objects. PhD thesis, Computation and Neural Systems, California Institute of Technology,
1994.

[3] Rajesh P.N. Rao and Dana H. Ballard. Efficient encoding of natural time varying images
produces oriented space-time receptive fields. Technical report, Rochester, NY, USA, 1997.

[4] David J. Fleet, Michael J. Black, Yaser Yacoob, and Allan D. Jepson. Design and use of
linear models for image motion analysis.Int. J. Comput. Vision, 36(3):171–193, 2000.

[5] Serge J. Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recognition
using shape contexts. Technical report, Berkeley, CA, USA, 2002.

[6] T.J. Sejnowski. Higher-order boltzmann machines. In J. Denker, editor,Neural Networks
for Computing, pages 398–403. American Institute of Physics, 1986.

[7] Xuming He, Richard S. Zemel, and Miguel A. Carreira-Perpinan. Multiscale conditional
random fields for image labeling. InCVPR 2004, pages 695–702, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

[8] Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800, 2002.

[9] Max Welling, Michal Rosen-Zvi, and Geoffrey Hinton. Exponential family harmoniums
with an application to information retrieval. InAdvances in Neural Information Processing
Systems 17, pages 1481–1488. MIT Press, Cambridge, MA, 2005.

[10] Stefan Roth and Michael J. Black. Fields of experts: A framework for learning image
priors. In CVPR 2005, pages 860–867, Washington, DC, USA, 2005. IEEE Computer
Society.

[11] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks.Science, 313(5786):504–507, July 2006.

[12] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. InICML 2001, pages 282–289.
Morgan Kaufmann, San Francisco, CA, 2001.

[13] Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. InPro-
ceedings of the International Workshop on Artificial Intelligence and Statistics, volume 10,
2005.

[14] Stefan Roth and Michael J. Black. On the spatial statistics of optical flow. InICCV ’05,
pages 42–49, Washington, DC, USA, 2005. IEEE Computer Society.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition.Proc. IEEE, 86(11):2278–2324, November 1998.

25

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors.Nature, 323(9):533–536, October 1986.

[17] Werner Reichardt. Movement perception in insects. In Werner Reichardt, editor,Process-
ing of optical data by organisms and by machines. Academic Press, New York, 1969.

[18] L. van Hateren and J. Ruderman. Independent component analysis of natural image se-
quences yields spatio-temporal filters similar to simple cells in primary visual cortex.Pro-
ceedings: Biological Sciences, 265(1412):2315–2320, 1998.

[19] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrimina-
tively, with application to face verification. InCVPR ’05, pages 539–546, Washington,
DC, USA, 2005. IEEE Computer Society.

[20] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin.
Image analogies. InSIGGRAPH ’01, pages 327–340, New York, NY, USA, 2001. ACM
Press.

[21] C. Grigorescu, N. Petkov, and M. A. Westenberg. Contour detection based on nonclassical
receptive field inhibition.IEEE Transactions on Image Processing, 12(7):729–739, 2003.

[22] J.B. Tenenbaum and W.T. Freeman. Separating Style and Content with Bilinear Models.
Neural Computation, 12(6):1247–1283, 2000.

[23] Roland Memisevic and Geoffrey Hinton. Multiple relational embedding. InAdvances in
Neural Information Processing Systems 17, pages 913–920. MIT Press, Cambridge, MA,
2005.

[24] Roland Memisevic. Kernel information embeddings. InICML 2006, pages 633–640, New
York, NY, USA, 2006. ACM Press.

26

