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A Multiresolution Markovian Fusion Model for the
Color Visualization of Hyperspectral Images

Max Mignotte

Abstract—In this paper, we present a nonstationary Markov
random field (MRF) fusion model for the color display of hyper-
spectral images. The proposed fusion or dimensionality reduction
model is derived from the preservation of spectral distance crite-
rion. This quantitative metric of good dimensionality reduction
and meaningful visualization allows us to derive an appealing
fusion model of high-dimensional spectral data, expressed as a
Gibbs distribution or a nonstationary MRF model defined on a
complete graph. In this framework, we propose a computationally
efficient coarse-to-fine conjugate-gradient optimization method to
minimize the cost function related to this energy-based fusion
model. The experiments reported in this paper demonstrate that
the proposed visualization method is efficient (in terms of preser-
vation of spectral distances and discriminality of pixels with differ-
ent spectral signatures) and performs well compared to the best
existing state-of-the-art multidimensional imagery color display
methods recently proposed in the literature.

Index Terms—Color display, complete graph, conjugate-
gradient method, multidimensional imagery, multiresolution opti-
mization, nonlocal Markov model, nonstationary Markov random
field (MRF), visualization of hyperspectral images.

I. INTRODUCTION

NOWADAYS, hyperspectral imaging sensors are able to
collect information from across the electromagnetic spec-

trum (from the ultraviolet to infrared) and to acquire several
image data, of the same scene, simultaneously in many narrow
and adjacent (progressively longer wavelength) spectral bands.
The resulting (high spectral resolution) 3-D image, also called
a hyperspectral data cube, makes it possible to derive, for each
pixel, a continuous and unique reflectance spectrum which is
of great importance in many applications. To name a few, this
spectral data information is exploited in geological applications
(for identifying Earth’s surface materials, such as particular
mineral deposits or type of vegetation), environmental applica-
tions (early-warning monitoring of water supplies), and military
intelligence applications (the detection/classification issue of
man-made objects and possibly hidden targets).

In practical applications, it may be interesting if this huge
amount of high-dimensional spectral data information is re-
duced to three dimensions. This allows us to quickly display
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this hyperspectral data cube into an informative color image
(with red, green, and blue (RGB) channels) with a standard
tristimulus device. The resulting (three-band) RGB color im-
age provides a quick overview of existing materials and their
distribution in the image scene and a rough determination of
regions of interest and important features or man-made objects
in the image (photointerpretation) for further analysis. Obvi-
ously, such a three-color channel display results in significant
loss of information. Consequently, the main objective of this
dimensionality-reduction-based visualization step consists in
preserving as much information as possible, while maximizing,
in a statistical criterion sense, the separability of each observed
existing material (or class) in the final visualized color image.
This allows us to display, for example, the different scene
elements as distinctively as possible, in order to first perform
a rough identification before exploiting any more powerful and
time-consuming processing strategies, such as a segmentation
or a classification method.

To this end, linear projection methods, such as indepen-
dent component analysis (ICA) [1] and principal component
(PC) analysis (PCA) [2], have commonly been proposed in
the literature to obtain the first three principal R, G, and B
image components to be finally visualized. However, since ICA
and PCA are linear projection methods, both assume that the
underlying data manifold is linear, which is not necessarily true
in the case of hyperspectral images. Moreover, ICA is based on
the assumption of mutually independent sources, which is not
really the case of hyperspectral data [3], and since the classical
PCA uses variance (from both image and noise, including
interference) as the ranking criterion, PCs may not be ranked in
terms of image content alone [4]. To overcome this limitation,
a noise-adjusted PCA (NAPCA) [5] and its variant, namely,
interference NAPCA algorithms [6], were proposed to more
informatively rank PCs in terms of signal-to-interference-plus-
noise ratio. In the same way, the maximum autocorrelation
factor (MAF) analysis [7] was proposed to also rank PCs
in terms of image content alone (without noise). The MAF
transformation is a linear multivariate transformation (based
on PCA) into new orthogonal variables that are ordered by
decreasing autocorrelation. In this way, noise channels (with
low autocorrelation) or noise components induced by electronic
or aircraft engine can be identified and eliminated [8]. A recent
and adaptive linear fusion technique, which solves this same
problem, is also proposed in [9]. The goal of this technique
is to maximize the mutual information between the original
hyperspectral bands and the fused R, G, and B channels.
Another interesting linear projection-based color visualization
approach is proposed in [10] and further explored and discussed
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in [11]. In their approach, inspired by the human visual system
(which converts broadband visible radiation into three signals
roughly corresponding to R, G, and B channels), the three
displayed channels are simply estimated by linear integrations
of the original hyperspectral image weighted by three different
and fixed spectral weighting envelopes, just like the human
photopic (daylight) vision works. However, since the spectral
weighting envelopes are fixed, there is no adaptation to specific
image information.

Multiresolution methods based on pyramidal decompositions
[12] and wavelet transforms [13] have also been reported. In
these methods, selection and fusion rules determine which
spectral band is most relevant in a neighborhood of a given
pixel, and how the features of this selected band are then
incorporated into the fused image. These methods implicitly
assume that there is only one dominant band at each pixel,
which is not true in multispectral imagery due to the existing
large interband correlation.

In order to overcome the main limitation of these established
linear projection methods which mainly do not consider the
nonlinear characteristics of the hyperspectral data (whose mul-
tiple sources of nonlinearity have been pointed out in [14]), an
alternative idea consists of exploiting a nonlinear method for
dimensionality reduction into three bands, such as the locally
linear embedding method [15]. Nevertheless, this technique is
very time consuming compared to linear projection methods.

Let us also mention the low-complexity color display ap-
proach (suitable for hardware implementation) proposed in
[16], which uses the 1-b transform of hyperspectral image
bands for selecting three suitable bands for the RGB display, or
the multivariate visualization technique proposed in [17], which
uses a double color layers displaying simultaneously on the
first layer (referred to as the background layer) the distribution
of materials existing in the image scene and, in the second
layer (detail layer), their respective composition (i.e., the so-
called end-member materials) at the subpixel level. A recent
paper in which different color display techniques are reviewed,
compared, and evaluated is proposed in [18].

The visualization approach and the fusion model, presented
in this paper, are derived from the now well-known preservation
of spectral distance criterion which measures the agreement
between the distance of spectrums associated to each pair of
pixels and their perceptual color distance in the final fused im-
age to be displayed. This intuitive criterion was already used in
[19] for estimating an informative color mapping, allowing the
efficient visualization of hyperspectral images. Using this cri-
terion, the authors chose the strategy of transforming the initial
nonlinear optimization problem into a linear algebra problem
of matrix factorization or eigendecomposition. More precisely,
they chose to decompose this 3-D mapping problem in two
steps: a 2-D projection as a partial solution using classical PCA
and a linear programming method to solve for 1-D coordinate in
the third dimension. In their framework, their method remains
mainly linear. Moreover, this two-step dimensionality reduction
method closely depends on a preprocessing step which first uses
a classical PCA to a few bands (20 in their application) and an
initial segmentation using a nonoptimal median-cut algorithm.
Another strategy is the one proposed in this paper. We will

show that the resulting objective function to be optimized can
be viewed as a Gibbs energy, related to a nonstationary Markov
random field (MRF) model defined on a complete graph. In this
context, there are efficient multiresolution optimization strate-
gies which have been recently proposed and can be adapted to
quickly and simply minimize the underlying Markovian energy
function to this Markovian model and to directly estimate the
optimal color mapping associated to a hyperspectral cube.

It must be noted that multiresolution optimization ap-
proaches, as multigrid techniques (the latter being used in
[20] for the segmentation of hyperspectral images) belong to
the so-called coarse-to-fine algorithm class. The general idea
of coarse-to-fine methods is to construct approximate coarser
versions of the (e.g., optimization) problem and to use the
solution of the coarser (and, hence, computationally simpler)
version of this problem to obtain a good initial guess that guides
and accelerates the solution of finer versions. In multiresolution
procedures, coarser versions of the original problem is sim-
ply view at multiple resolution levels and, consequently, the
problems solved at coarser scales represent an approximation
to the original problem, whereas in multigrid methods, the
problems that are solved at coarser scales correspond exactly
to the original problems but with a constrained set of allowed
reconstruction [21], [22].

The remainder of this paper is organized as follows:
Section II describes the proposed Markovian dimensionality
reduction model. Section III describes the optimization strategy
used to minimize the Gibbs energy field related to this fusion
model. Finally, Sections IV and V present the quantitative
metrics used to validate our algorithm and a set of experimental
results and comparisons with existing multidimensional visual-
ization techniques, respectively.

II. PROPOSED FUSION MODEL

A. Distance-Preservation-Criterion-Based Fusion Model

Let us define our terms. We consider a hyperspectral image
as a cube or a 3-D array of observed pixels, made up of several
2-D arrays. We define an image by I or I(s, k), where s indi-
cates the spatial location and k indexes the particular spectral
band in which the pixel lies in the hyperspectral cube. We will
use the term image slice to denote a 2-D array for a given k, i.e.,
I(., k), where N is the number of pixels in each image slice. We
will use the term spectral vector to denote all pixels associated
with a site s, i.e., I(s, .) ∈ RK , where K is the number of
spectral bands.

In order to provide perceptually meaningful visualization, the
main goal of our color visualization strategy is to preserve, as
much as possible, and as in [19], the distance between the spec-
tral vectors of each pair of pixels and their final perceptual col-
or distance in the final displayed color image. As perceptual
color space, we use the classical CIE 1976 L∗, a∗, b∗ (LAB)
color space which is approximately perceptually uniform
(i.e., a color space in which the same amount in a color value
produces a change of about the same visual importance).
To evaluate the reliability of our algorithm in this distance
preservation criterion, we will also use, in the following, the
correlation-based metric proposed in [10] (see Section IV).
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In addition, herein, and contrary to [19], the aforementioned
“Distance Preservation” criterion will be ensured for each of
the three (predefined) subsets covering the overall available
wavelengths of the original hyperspectral image. Each subset is
associated to the three L, A, and B channels in this perceptual
color space. The visualization technique we propose then seeks
to find the three (LAB) bands that minimize (according to
the “preservation of distances”) the following set of objective
functions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L̂ = arg minL

∑
s,ts �=t

(
β
[1: 13 K]
s,t − (Ls − Lt)2

)2

Â = arg minA

∑
s,ts �=t

(
β

] 13 K: 23 K]
s,t − (As − At)2

)2

B̂ = arg minB

∑
s,ts �=t

(
β

] 23 K:K]
s,t − (Bs − Bt)2

)2

(1)

where β
[k0−k1]
s,t denotes the squared Euclidean distance

associated between two spectral vectors, associated with the
pair of sites or spatial locations (s, t), and between the spectral
bands k0 and k1. Ls, As, and Bs denote the L, B, and A
components at site (or pixel) s, respectively. The summation∑

s,ts �=t
is over all the pair of sites (i.e., for all sites s and for

all the pair of sites including s) existing in the L, A, and B
color bands of the final image to be displayed, respectively. In
our model, the three predefined subsets designed to map the
overall available wavelengths of the hyperspectral cube can be
viewed as three nonoverlapping (equally spaced) rectangular
spectral weighting windows [10].

It is worth noting that, in the proposed dimensionality re-
duction model [see (1)], the luminance, which is somewhat the
most important piece of information in a visual context and/or
the most important aspect of color choice, corresponds to the
nonlinear reduction of the (most) visible reflectance spectra
acquired by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) hyperspectral imaging sensor (band number ∈
[1 : (1/3)K] ⇔ wavelength ∈ [400 nm : 1100 nm]). A com-
ponent then corresponds to the next most visible spec-
tra and infrared red (band number ∈](1/3)K : (2/3)K] ⇔
wavelength ∈]1100 nm : 1800 nm]) and, finally, B component
to the least (nonvisible) informative spectra (middle infrared).
Experimentally speaking, this also (empirically) corresponds to
the optimal division of the hyperspectral data cube, i.e., the
optimal subsets that also ensure the best distance preservation
score.

B. Nonstationary Gibbs Energy Field

Each one of the three objective functions to be minimized
[see (1)] can be viewed as a Gibbs energy field related to a
nonstationary (and nonlocal) MRF model defined on a com-
plete graph1 with long-range pairwise interactions, i.e., binary
cliques 〈s, t〉 (or pairwise of pixels). Each binary clique of this
MRF model is associated to a nonstationary potential since this
model is spatially variant and depends on the distance between
the spectral vectors associated to each pair of pixels (s, t).

1Each node of this graph or pixel s is connected to all other pixels of the
image.

In this Markovian framework, efficient optimization strategies
have been recently studied and can be adapted to efficiently and
quickly minimize this underlying Markovian energy function
whose global minima is one band (L̂, Â, or B̂) of the image in
the perceptual color space.

To this end, we can use a global optimization procedure
such as a simulated annealing (SA) algorithm [23] or another
stochastic optimizer [24] whose advantages are twofold: First,
it has the capability of avoiding local minima, and second,
it does not require a good initial guess in order to estimate
the solution. An alternative approach to these stochastic (and
computationally expensive) procedures is to use a classical
gradient descent algorithm or a deterministic variant of the SA
procedure, i.e., the iterative conditional modes introduced by
Besag [25]. This method, which is simply a gradient descent
alternating the directions, i.e., which selects a variable while
keeping all other variables fixed, is deterministic and simple
(it does not require an analytical expression of the derivative
of the energy function to be optimized). Nevertheless, it suffers
from the same disadvantage as the classical gradient: It requires
a proper initialization of the image to be recovered (close to
the optimal solution). Otherwise, it will converge toward a bad
local minima. In order to solve this problem, we could take as
initialization, i.e., for the first iteration of the gradient descent
procedure (related, for example, to the search of the optimal
L-band), the image candidate L̂ ensuring, among the bands
between the interval [k0−k1], the minimal energy of the Gibbs
energy function of our fusion model [see (1)].

Remember also that each of the objective function of our
fusion model is of the form

∑
s,ts �=t

Vs,t(.) with a summation

over potential functions Vs,t(.) involving long-range pairwise
pixel interactions and not only adjacent pixels, as it is the case
in a classical first-order MRF. Moreover, the potential functions
Vs,t(.), involved in our optimization problem, are not metric or
semimetric (since, in our case, Ls = Lt � Vs,t(Ls, Lt) = 0).
Consequently, (1) does not belong to the class of energy func-
tions that can be minimized via graph cut techniques, such as
the expansion–move and swap–move algorithms (see [26, Sec.
1]). This is particularly true because Vs,t(.) clearly also does not
satisfy the (necessary) condition of regularity (see [27, Sec. 4]),
which is more relaxed applicability conditions required to get
a graph representability for the energy minimization by graph
cuts. Optimization algorithms, such as loopy belief propagation
(LBP) [28], [29] or its variant, which is the so-called tree-
reweighted message-passing algorithm [30], are more general
and can be applied to any type of potential functions Vs,t(.).
However, in our case, these optimization techniques would
be very slow and expensive in terms of memory requirement.
In these optimization strategies, each node sends a (different)
message (in fact, an integer) to each of its neighbors and
receives a message from each neighbor (at each iteration). For
our MRF model defined on a complete graph, there would be
O(N2) messages (to compute and store) per iteration (with
N as the number of pixels of each mapping). Moreover, as
the standard way of computing the messages is to explicitly
minimize over Ls for each choice of Lt [29], it would take
O(k2) time to compute each message with k = 256, i.e., the
number of existing discrete (LAB) color channel values. The



MIGNOTTE: MARKOVIAN FUSION MODEL FOR THE COLOR VISUALIZATION 4239

Fig. 1. Interpolation and “coarse-to-fine” minimization strategy.

standard implementation of these message-passing algorithms,
on our (complete) graph, would thus require a prohibitive
computational complexity of order O(N2k2T ) with T ≈ N1/2

(the number of iterations of the LBP needs to grow like N1/2

[29] to allow for information from one part of the image to
propagate everywhere else). In addition to this, LBP is not
guaranteed to find a global minimum, only a strong local mini-
mum [31]. Moreover, LBP is not also guaranteed to converge
since it may go into an infinite loop switching between two
labelings [31]. Note also that we cannot consider a dynamic
programming approach [32] since this optimization method is
restricted essentially to energy functions in 1-D settings.

Another robust optimization method of such a Gibbs energy
field consists of a multiresolution approach combined with a
gradient-descent-based optimization procedure. In this strat-
egy, rather than considering the minimization problem on the
full and original configuration space, the original optimiza-
tion problem is decomposed in a sequence of approximated
optimization problems of reduced complexity. This drastically
reduces computational effort and provides an accelerated con-
vergence toward improved estimate (experimentally, estimation
results are nearly comparable to those obtained by stochastic
optimization procedures as noticed, for example, in [33]–[35])
and in the following experimental results of this paper.

III. COARSE-TO-FINE OPTIMIZATION STRATEGY

A. Multiresolution Minimization Strategy

To this end, we consider a multiresolution pyramid of image
solutions at different resolution levels l (resulting from the
downsampling of L̂[0] ≡ L̂ by 2� in each direction) and a set of
similar fusion models for each resolution level of this pyramidal
data structure. For the search of the optimal L-band, at the upper
level of the pyramidal structure (lower resolution level), the
gradient descent optimization procedure is initialized with the
image candidate L̂[l] which ensures (among the bands between
the interval [k0 − k1]) the minimal energy of the Gibbs energy
function of our fusion model [see (1.a)]. Since an analytical
expression of the derivative of this energy function is easily
available and in order to further speed up the optimization
procedure at each level of the pyramidal structure, we use a
conjugate-gradient procedure. After convergence of this proce-
dure, the result obtained at this resolution level is interpolated
and then used as initialization for the next finer level and so on,
until the full resolution level (see Fig. 1).

For the interpolation at the next finer level, we have used an
interpolation method which first takes efficiently into account

Fig. 2. Multiresolution optimization strategy on LUNAR-LAKE01. (From
top to bottom and left to right) Initial three-band color image selected at
the upper level (i.e., at the fourth resolution level) and the result obtained
after convergence of the conjugate gradient. The duplication and result of the
gradient conjugate at the finest level of the pyramid, i.e., at full resolution and
after the final linear stretching of the three color bands.

the inherent spatial dependencies between neighboring spectral
vectors (i.e., modeling the fact that if a given spectral vector
belongs to a particular color level class, its surrounding pixels
likely belong to the same color class) and, second, the weighted
average formula of the nonlocal-means-filtering strategy used
in [36], which is very robust to noise. More precisely, in our
duplication method, each color level to be interpolated, at site
s and at the resolution level [l − 1] of L̂, is computed as a
weighted average of all the color values in the neighborhood
of s at level resolution [l] by the following average formula:

L[l−1](s) =
∑
t∈Ns

w(s, t)L[l](s) (2)

where Ns designates a square fixed-size (NI) neighborhood
centered around the pixel s. In this interpolation formula,
the weights {w(s, t)}t depend on the similarity (according to
the Euclidean distance) between the spectral vectors of the
data cube respectively belonging to pixels s and t. Moreover,
one must satisfy the usual conditions 0 ≤ w(s, t) ≤ 1 and∑

t w(s, t) = 1 with

w(s, t) =
1

Z(s)
exp

{
−‖I(s, .) − I(t, .)‖2

2

h

}
(3)

where I is the spectral data cube associated to this L-band and
Z(s) is the normalizing constant ensuring

∑
t w(s, t) = 1. The

parameter h acts as a degree of filtering; it controls the decay
of the weights as a function of the Euclidean distance. In our
application, we use h = 10 and NI = 5.

B. Algorithm

In order to decrease the computational load of our multi-
resolution optimization procedure, we only use two levels of
resolution in our pyramidal structure (see Fig. 2): the full
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Fig. 3. Algorithm 1: Multiresolution minimization.

resolution and an image 16 times smaller, i.e., corresponding
to the fourth upper level of a classical data pyramidal struc-
ture (each image is assumed to be toroidal, i.e., periodically
repeated). At this lower resolution level, we consider that each
node (or pixel) is connected with all other pixels located within
a square neighborhood window of fixed-size Ns = 30 pixels
centered around the pixel. This allows us to consider nearly a
complete graph for an image of size 512 × 614, such as an
AVIRIS hyperspectral image (once downsampled by a factor
16). At the finest resolution level (l = 0), we consider the same
square neighborhood window but with 10% of connections reg-
ularly spaced between the pixels located within the neighbor-
hood window. We initialize the lower (or r = 4th upper) level
of the pyramid (using the strategy mentioned in Section III-A)
with the downsampled image candidate L̂[l] which ensures
(among the bands between the interval [k0 − k1]) the minimal
energy of the Gibbs energy function of our fusion model. We
use a fixed number of iterations for the conjugate gradient at
each level of resolution or a stop criterion if the stability of the
solution is met. We provide details of our optimization strategy
in Algorithm 1 (Fig. 3).

IV. QUANTITATIVE METRICS OF VISUALIZATION FIDELITY

To evaluate the reliability of our algorithm, we will use in
the following the correlation-based metric proposed in [10] and
[19] and the separability-of-features metric proposed in [19].

A. Preservation of Distances

This correlation metric is simply the correlation of the
Euclidean distance between each pairwise spectral vectors in
the hyperspectral image (let X be this vector) and their corre-
sponding (pairwise) Euclidean distances (color difference) in
the perceptual LAB color space (let Y be this vector). The
correlation ρ can then be estimated by

ρ =
XtY/|X| − X̄Ȳ

std(X) · std(Y )
(4)

where Xt, |X|, X̄ , and std(X) denote the transpose, cardinal-
ity, mean, and standard deviation of X , respectively. In practice,
we consider a subsampling of pairs of pixels in the image (i.e.,
all pairs with horizontal or vertical (possible) displacements
of 2p pixels for p ≤ 9). In the absence of perceptual error
and, thus, with no loss of information in this dimensionality
reduction problem, the ideal correlation metric is one.

It is worth noting that, in the absence of noise (or loss
of information due to the dimensionality reduction model), a
maximum of this correlation criterion corresponds to the global
minima of our energy function [see (1)] (since, if all pairs of
pixels preserve their perceptual distance, our energy function
equals zero and the correlation metric or ρ function is one).
Moreover, the local optimization of these two functions (ρ and
energy function E) minimizes, in fact, the same criterion, since
a small decrease of the correlation factor implies that a certain
number of pairwise spectral vectors no longer correspond to
their Euclidean distance which necessarily implies an increase
in our energy function [(1)]. Let us finally note that our energy
function [see (1)] appears more easy to optimize. In addition,
a simple analytical expression of the derivative (used in the
gradient-based minimization procedure) can be easily found in
this case (see Algorithm 2, shown in Fig. 4).

B. Separability of Features

In order to also measure if there is enough contrast in the
final color image, a metric proposed by Cui et al. [19] is able
to measure how well the pixels are mapped to distinguishable
colors. This criterion has been defined as being simply the
average distance between each pair of pixels in perceptual
color space (it should be as large as possible): δ = |Y |1/|Y |,
where |Y |1 and |Y | denote the L1 norm and the cardinality of
vector Y , respectively.

V. EXPERIMENTAL RESULTS

A. Setup

In all the experiments, we have thus considered the following
setup. For the preprocessing model, we exclude the spectral
bands containing mainly noise. To this end, we compute a
rough estimation of the signal-to-noise ratio (SNR) of each
band by considering roughly the additive noise as the difference
between the original image and this image three times filtered
by a 3 × 3 classical Gaussian filter. We remove bands for which
SNR < SNRmin = 10. If this procedure removes more than
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Fig. 4. Algorithm 2: Conjugate gradient.

a third of K initial bands, SNRmin is divided by 1.5. For
the classical AVIRIS LUNAR-LAKE01 image, this preprocessing
step removes between six (LUNAR-LAKE02) and eight bands
LUNAR−LAKE01).2

For the fusion model, the squared Euclidean distance (di-
vided by the number of considered spectral bands) has been
chosen for the computation of β [i.e., for the distance between
two spectral vectors; see (1)]. For the algorithm, as we have
noted, we use two levels of pyramid: the full and the fourth
level of resolution with a square neighborhood window of fixed
size Ns = 30 pixels, totally connected on the upper level and
with 5% of connections at full resolution level. We have used 40
iterations for the conjugate gradient or less if the stability crite-
rion of the solution is met (see Algorithm 2). For the conjugate
gradient, the step size is fixed to 10−4 and adaptively decreased
by a factor of two if the energy to be minimized increases.
For the interpolation method summarized in Section III-A, we
use h = 12 and NI = 5. For the final visualization, we use a
final linear stretching (also called “linear fusion of images”

2Let us note that a similar automatic bad band removal strategy but based on
the inter-correlation measure (using the fact that the noisy hyperspectral bands
lack structure) has also been proposed in [16] and [17]. Let us note that such a
strategy can be also done manually (by visual inspection) or can be determined
[10] by the publicly available signal-to-noise curve (due to the measurement
equipment) from the 1997 AVIRIS calibration given in [37, Fig. 19]. In our
case, our automatic band removal strategy result is very close to that from
manual selection and the selection proposed in [10] since the selected bands to
be removed by our method [for LUNAR−LAKE01, bands 162–168 (1893–1948
nm) and 222 (2486 nm) and, for LUNAR−LAKE02, bands 161–165 and 222]
correspond also to the lowest signal-to-noise bands.

Fig. 5. Algorithm 3: Final LAB → RGB conversion.

in [11]) of the LAB color values, such as L ∈ [0 : 100], and
A,B ∈ [−60 : 80] in order to ensure that a very weak minority
of pixels are outside the RGB color space. Pixels that are
outside the RGB color space, i.e., negative pixels are set to 0
and those that are greater than 255 are set to 255. The final
RGB bands are then stretched between [0:255] (see Algorithm
3 and [38]). Since the image has been (slightly) changed due to
this (eventual) saturation, the correlation metric (preservation of
distances) is estimated from the LAB conversion of this latter
(stretched) RGB image.

B. Hyperspectral Image Used

The hyperspectral data chosen for the experimental results of
our visualization technique are from the National Aeronautics
and Space Administration Jet Propulsion Laboratory AVIRIS
system [37], which captures 224 spectral bands, ranging from
400 to 2500 nm with a 1995 AVIRIS. The image size is
usually around 512 × 614 pixels. We have used the reflectance
data, which are atmospherically corrected to compensate for
absorption and the spectrum of the sun. The AVIRIS data are
generously available for download online.3 We compare results
for several images and scenes from the 1997 flight lines of
LUNAR LAKE, NV; CUPRITE, NV; JASPER RIDGE, CA; and
MOFFET FIELD, CA.

C. Quantitative Comparison

We have replicated the scenario of tests and comparisons
used in the evaluation of the state-of-the-art multidimensional

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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TABLE I
COMPARISON OF CORRELATIONS ρ

TABLE II
COMPARISON OF AVERAGE DISTANCES δ

TABLE III
RESULTS FOR SOME AVIRIS HYPERSPECTRAL IMAGES

imagery color display methods described in [19]. In this sce-
nario, we have to test and evaluate our algorithm (called M4ICD
for multiresolution Markov model for multidimensional im-
agery color display) by measuring the quality of the final color
mapping based on the two metrics measuring the preservation
of distances (ρ) and the separability of features (δ) with exist-
ing techniques. These techniques are the ones proposed in [19],
the color matching function (CMF) [10], the classical PCA
method with final linear scaling, the PCA with outlier reduction
(PCA2%) (which scales the final bands with 2% of the pixels at
the ends of each channel being saturated in order to enhance
the contrast), and, finally, the PCA with histogram equalization
(PCAh) [19]. Results are shown in Tables I and II. Results on
other hyperspectral images are given in Table III for possible
eventual comparisons with future multidimensional imagery
color display algorithms. Display results with comparisons to
other techniques are shown in Figs. 6 and 7. Comparison with
existing ground-truth classification is shown in Fig. 8.

The comparison of results shows that PCA2% and PCAh have
a good score for the separability of features (δ), i.e., a good
contrast in the final displayed image. Nevertheless, this color
contrast enhancement is made to the detriment of the overall
correlation score, which indicates that the color values of each
channel of the final color image are strongly biased and the
resulting image (i.e., its color values) is far less informative than
the other visualization techniques.

Our method gives the better score of preservation of distance
between all the existing visualization techniques with a con-
trast value that is comparable to the classical PCA technique.
Another important characteristic of our method is that it gives a
stable value of preservation of distance and contrast scores for
a wide variety of images.

The method proposed by Cui et al. [19] gives a good
compromise between the preservation of distance criterion and
the contrast value. Nevertheless, the preservation of distance
score is lower than our method. This lower score is, in our
opinion, due both to the linearity of their method and to their
preprocessing step, which first uses a classical PCA to a few
bands (20 in their application) and an initial segmentation step
using a nonoptimal median-cut algorithm that can result in
substantial loss of information. Finally, the computational time
of our algorithm is about two times lower than the one proposed
in [19].

The experimental results (see Table III) show that the
AVIRIS image called CUPRITE04 (see Fig. 8) obtains the worst
“preservation of distance” score (ρ = 0.936) obtained by our
method. This score is nevertheless comparable with the average
score obtained by the classical PCA and by the algorithm
proposed in [19] and better than the score obtained by the
other tested algorithms. Nevertheless, our method has also the
ability to slightly improve this score by simply increasing its
computational cost, more precisely, by increasing the number of
iterations used in our multiresolution optimization procedure.
Fig. 9 shows how this score is slightly improved by increasing
its number of iterations.

D. Discussion

Our color display model allows one to obtain well-contrasted
and highly detailed images without artifacts (such as noise or
blurring artifacts due to the reduction/compression model or
spectral ringing artifacts, glints, and anomalous fluorescence
hot spots or blocking artifacts that are sometimes inherent to
multiresolution procedures). Each image efficiently exploits
the overall dynamic range of the color values with a good
natural-looking color association and no colors that “pop out”
strongly. The different regions can be easily identified, and
very fine details are visible; for example, in the last hyper-
spectral image shown in Fig. 6 (see also the two magnified
corresponding regions in Fig. 10), we can easily distinguish
the small and rectangular shapes of the buildings with their
concrete or shiny metal roofing (each building appears as a
square of less than four or six pixel size wide in these two
images) with very good edge preservation and resolution. Man-
made structures and objects are clearly identifiable in these
two images. Other color display results given by our algorithm
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Fig. 6. Different color display results obtained by our M4ICD model. (From top to bottom and left to right) Scenes LUNAR LAKE02, CUPRITE01, CUPRITE03,
and MOFFETT02. More results are publicly available at the following http address: www.iro.umontreal.ca/~mignotte/ResearchMaterial/m4icd.html.

Fig. 7. Comparison of color display results obtained by our M4ICD model and two existing state-of-the-art visualization models: The CMF [10] model and the
one proposed in [19] on AVIRIS images LUNAR LAKE01 and CUPRITE02.

are publicly available at the following http address: www.
iro.umontreal.ca/~mignotte/ResearchMaterial/m4icd.html.

Let us finally add that we have also experimented a
Gauss–Seidel-like approach for the numerical optimization of
each equation of the system [see (1); each pixel value is locally
updated at each iteration of the Gauss–Seidel-like algorithm
by solving a second-degree equation] instead of the conjugate-
gradient method described in Algorithm 2. It turns out that the

conjugate-gradient method used herein is much more efficient
than the Gauss–Seidel approach (certainly due to the nonlinear
equations involved at each iteration of this procedure).

E. Sensitivity to Internal Parameters

We have also tested the influence of variation of the four
internal parameters of our algorithm on the preservation of
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Fig. 8. Comparison of our M4ICD RGB composite display with existing
classification ground truths on CUPRITE04 AVIRIS image.

Fig. 9. Evolution of the correlation ρ score as a function of the number of
iterations on the CUPRITE04 AVIRIS image.

Fig. 10. Magnified regions (100 × 100 pixels) extracted from the last hyper-
spectral image shown in Fig. 6.

distance and separability-of-feature scores. These parameters
are respectively the size of the neighborhood window Ns,
the step size of the conjugate-gradient procedure γ, the size
of the neighborhood window of the interpolation method
NI , and, finally, the control of the decay of the weights in
the nonlocal-means-filtering-based interpolation procedure h.
Fig. 11 shows the evolution of the preservation of distance score
(and separability-of-feature score) for several discrete values of
these parameters for the AVIRIS CUPRITE01 and CUPRITE02

scenes. Experiments show that our color display model is not
too sensitive to parameters Ns, NI , and γ if Ns ≥ 30, NI ≥ 5,
and γ ≥ 10−4, respectively (our conjugate-gradient-based op-
timization procedure remains relatively insensitive to too much
high values of the step size γ because of our adaptive decreasing
schedule which adaptively adjusts and reduces this value if this
one is set too high). It also appears that the values of Ns > 30
and NI > 5 do not allow one to improve the score results
but, on the other hand, increase significantly the computational
(and memory) requirements. It also appears that h must be in
a suitable range, i.e., h ∈ [5 − 30], in order to get a reliable
interpolation procedure ensuring a good initial guess image
(i.e., not too smooth for large values of h and not too noisy
for low values of h).

We have also tested the impact on performances and com-
putational requirement of only one (i.e., without coarser level,
Nr = 1, and, thus, a simple full resolution approach) and more
than two resolution levels in our multiresolution pyramidal
structure (see Table IV). It also appears that more than Nr = 2
resolution levels do not allow one to improve the score results
but, on the other hand, increase significantly the computational
(and memory) burden. This last experiment means that our
multiresolution strategy, including only two levels of resolution
(with the coarser level corresponding to the fourth upper level
of our pyramid structure), is sufficient to ensure a good initial
guess image and allows one to efficiently guide and accelerate
the gradient procedure at full resolution toward a good local
minima (i.e., very close to the global minima). Without this
second coarser level, i.e., with a simple gradient procedure
at full resolution (Nr = 1), the obtained score remains good,
although this score is about 5% to 10% less impressive.

F. Algorithm

The color mapping procedure takes, on average, between
4 and 5 min (for a 512 × 614 × 224 hyperspectral AVIRIS
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Fig. 11. Sensitivity to internal parameters. Evolution of the preservation of distance score ρ (and separability-of-features score indicated in []) for CUPRITE01

and CUPRITE02 images along (a) Ns (with Nr = 2 resolution levels, γ = 10−3, NI = 5, and h = 10); (b) γ (with Nr = 2 resolution levels, Ns = 30,
NI = 5, and h = 10); (c) Nr = 2 resolution levels and NI (with Ns = 30, γ = 10−3, and h = 10); and (d) h (with Nr = 2 resolution levels, γ = 10−3,
Ns = 30, and NI = 5).

TABLE IV
IMPACT ON PERFORMANCES (I.E., PRESERVATION OF DISTANCES AND SEPARABILITY-OF-FEATURES SCORES) AND COMPUTATIONAL REQUIREMENT OF

ONLY ONE (I.E., WITHOUT COARSER LEVEL) AND MORE THAN TWO RESOLUTION LEVELS IN THE MULTIRESOLUTION PYRAMIDAL STRUCTURE

image) for an AMD Athlon 64 Processor 3500+, 2.2 GHz,
4435.67 bogomips, and nonoptimized code running on Linux.
Running times in seconds for our methods and for different
images are summarized in Table V.

More generally, concerning speed and convergence, our mul-
tiresolution optimization scheme gives results close to a sto-
chastic method with a gain of almost two orders of magnitude
in terms of speed (which is also confirmed in [21], [35], and

[39]). It must be noted that our Markovian energy minimization
can be efficiently implemented by using the parallel abilities of
a graphic processor unit [(GPU); embedded on most graphics
hardware currently available in the market] and can be greatly
accelerated (by a factor of 4 to 200) with a standard NVIDIA
GPU (2004), as indicated in [40].

The source code (in C++ language) of our algorithm,
called M4ICD (for multiresolution Markov model for
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TABLE V
RUNNING TIME IN SECONDS FOR OUR ALGORITHM

multidimensional imagery color display), with the set of
resulting three-band color images for each hyperspectral
data cube are publicly available at the following http
address in order to make possible eventual comparisons
with future multidimensional imagery color display algorithms
and/or different performance measures: www.iro.umontreal.
ca/~mignotte/ResearchMaterial/m4icd.html.

VI. CONCLUSION

In this paper, we have presented a nonstationary and nonlo-
cal MRF fusion model for the color display of hyperspectral
images. This dimensionality reduction model is based on the
preservation of spectral distance criterion which ensures a
good dimensionality reduction of the spectral data along with
meaningful and informative color visualization. In this frame-
work, we have particularly proposed, for the underlying Gibbs
energy function related to this Markovian model, an efficient
and simple multiresolution optimization strategy based on a
conjugate gradient. While being simple to implement, and rel-
atively fast, the proposed procedure allows the nonlinearity of
the hyperspectral data to be considered without preprocessing
data step and performs competitively among the state-of-the-
art multidimensional imagery color display methods recently
proposed in the literature.
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