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A Bicriteria-Optimization-Approach-Based
Dimensionality-Reduction Model for the
Color Display of Hyperspectral Images

Max Mignotte

Abstract—This paper proposes a new nonlinear dimensionality-
reduction model based on a bicriteria global optimization ap-
proach for the color display of hyperspectral images. The proposed
fusion model is derived from two well-known and contradictory
criteria of good visualization, which are useful in any multidimen-
sional imagery color display, namely, accuracy, with the preser-
vation of spectral distance criterion, and contrast, guaranteeing
that colors are well distinguished or concretely allowing the good
separability of each observed existing material in the final visual-
ized color image. An internal parameter allows our algorithm to
express the contribution or the importance of these two criteria
for a specific application. In this framework, which also can be
viewed as a classical Bayesian optimization strategy involving a
tradeoff between fidelity to the unreduced (raw) spectral data
and the expected highly contrasted resulting mapping, we will
show that a hybrid optimization strategy, combining a global
and deterministic optimization procedure and a local stochastic
search using the Metropolis criterion, can be exploited to effi-
ciently minimize the complex nonlinear objective cost function
related to our model. The experiments reported in this paper
demonstrate that the proposed model, taking into account these
two criteria of good visualization, makes easier and more reliable
the interpretation and quick overview of such multidimensional
hyperspectral images.

Index Terms—Bayesian model, color display model, complete
graph, dimensionality-reduction model, FastMap optimization,
local exploration search, low dimensional embedding, Metropo-
lis algorithm, multicriteria optimization, multidimensional hy-
perspectral imagery, nonstationary Markov random field model,
stress function.

I. INTRODUCTION

NOWADAYS, hyperspectral imaging sensors have revolu-
tionalized the field of remote sensing by combining the

science of spectroscopy with that of imaging. By its ability
to collect the same image scene on many bands of the light
spectrum, the resulting 3-D image or hyperspectral data cube
makes it possible to derive, for each pixel, a continuous and
unique reflectance spectrum which is of great importance, for
example, in geology and geophysics for identifying the Earth’s
surface materials such as particular mineral deposits or types
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of vegetation. In practical applications, it may be interesting if
this huge amount of high-dimensional spectral data information
is reduced to three dimensions. This allows us to quickly
display this data cube into an informative color image (with
red (R), green (G), and blue (B) channels) and to provide a
quick overview of existing materials and their distribution in
the image scene for further analysis. Obviously, such a three-
color channel display results in significant loss of information
of the spectral content, and consequently, this dimensionality-
reduction-based visualization step should be done according to
the most appropriate (possibly statistical) criterion.

To this end, dimensionality-reduction methods based on
linear-projection methods such as Independent Component
Analysis (ICA) [1], Principal Component Analysis (PCA) [2]
(with its numerous variants [3]–[5]), and Projection Pursuit
(PP) [6] have commonly been proposed in the literature to
obtain the first three principal R, G, and B image components
to be finally visualized. However, since ICA, PCA, and PP are
linear-projection methods, all three assume that the underlying
data manifold is linear, which is not necessarily true in the
case of hyperspectral images [7]. Moreover, it must be noted
that the use of ICA (or, more generally, the use of a mutual
information criterion [8]) is based on the assumption of mu-
tually independent sources, which is not really the case of hy-
perspectral data [9]. Another interesting linear-projection-based
color visualization approach is proposed in [10] and further
explored and discussed in [11]. In their approach, the three
displayed channels are simply estimated by linear integrations
of the original hyperspectral image weighted by three different
and fixed spectral weighting envelopes (corresponding to R,
G, and B channels), just like the human photopic (daylight)
vision works. However, since the spectral weighting envelopes
are fixed, there is no adaptation to specific image information.
It is also worth mentioning the linear-projection-based fusion
strategy proposed in [12], which tries to define the fused image
as a weighted sum of individual components, where the weight
reflects the locally dominating features of a pixel in a given
band. Multiresolution [13] and wavelet decompositions [14]
have also been reported. In these methods, selection and fusion
rules determine which spectral band is most relevant in a
neighborhood of a given pixel and how the features of this
selected band are then incorporated into the fused image. These
methods implicitly assume that there is only one dominant
band at each pixel which is not true in multispectral imagery
due to the existing large interband correlation. Let us finally
mention the low-complexity color display approach (suitable
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for hardware implementation) proposed in [15] which exploits
the 1-b transform of hyperspectral image bands for select-
ing three suitable bands for the RGB display, the multiscale
representation proposed in [16], the multivariate visualization
technique proposed in [17] (and recently further improved in
[18]) which uses double-color layers displaying simultaneously
on the first layer (referred to as the background layer) the
distribution of materials existing in the image scene and, in
the second layer (detail layer), their respective composition
(i.e., the so-called end-member materials) at the subpixel level,
or finally, the dimensionality-reduction method proposed in
[19] decorrelating and compressing the spatial and spectral
dimensions simultaneously.

In order to overcome the main limitation of these linear-
projection methods which mainly do not consider the nonlinear
characteristics of the hyperspectral data [7], an alternative idea
consists of exploiting a nonlinear dimensionality-reduction
method (into three bands) such as the locally linear embedding
(LLE) method [20]. Nevertheless, this technique is very
time consuming compared with linear-projection methods.
In contrast to these aforementioned linear or nonlinear
dimensionality-reduction methods, also called feature-
extraction techniques [21], which search to find the transfor-
mation from a higher dimension to a lower dimensional feature
space with most of the desired information content preserved,
dimensionality-reduction schemes, based on a feature-selection
strategy, have also been proposed in hyperspectral imagery [21]
in order to clearly identify the variables that do not contribute
to class separability and which should be neglected. Finally,
a recent paper in which different color display techniques are
reviewed, compared, and evaluated is proposed in [22].

As we have noted earlier, this dimensionality-reduction-
based visualization (or fusion) step should be done according
to the most appropriate criterion. In hyperspectral imagery,
the most appropriate goal of any good visualization should be
mainly based on the now well-known preservation of spectral
distance criterion [10], [23], [24] which measures the agree-
ment between the distance of spectrums associated to each pair
of pixels and their perceptual color distance in the final fused
image to be displayed. This criterion allows us to provide a
meaningful color visualization map which is faithful to the
unreduced (raw) spectral data. Another important criterion of
good visualization is the contrast or the separability of features
[23] (i.e., the separability of each observed existing material
or class) in the final visualized color image. This allows us
to display, for example, the different scene elements as dis-
tinctively as possible (eventually for further analysis). In fact,
the preservation of spectral distance criterion alone does not
guarantee that colors can be well distinguished; the resulting
(color) image may be of low contrast (i.e., flat and too dark
or too bright) and can result, for an observer, in substantial
loss of visual information even if the main preservation of
spectral distance criterion indicates that there is very little loss
of information in the dimensionality-reduction method which is
used. Nevertheless, these two aforementioned criteria of good
visualization are somewhat contradictory (as pointed out in
[23]) since a high contrast in the final image can be obtained
at the cost of numerous saturated pixel values (e.g., with a

nonlinear stretching such as a classical histogram equalization)
which can no longer satisfy the first and foremost preservation
of spectral distance criterion.

These two contradictory criteria have been used in [23] for
estimating an informative color mapping, allowing the efficient
visualization of hyperspectral images. In the model proposed by
the authors, these two criteria are exploited by explicitly setting
the preservation of spectral distance as a 3-D mapping prob-
lem decomposed into two steps: a 2-D projection as a partial
solution using classical PCA and a linear programming method
to solve for the 1-D coordinate in the third dimension with the
separability of features (or contrast) criterion as a set of con-
straints. In their framework, their method remains mainly linear.
Furthermore, this two-step dimensionality-reduction method
closely depends on a preprocessing step which first uses a
classical PCA to a few bands (20 in their application) and an
initial segmentation using a nonoptimal median-cut algorithm.

Another strategy, proposed in this paper, is to directly cast
this visualization problem as a nonlinear bicriteria optimization
problem including an internal parameter expressing the tradeoff
or the balance between these two contradictory criteria. In this
nonlinear dimension reduction framework, our bicriteria opti-
mization problem can also be viewed as a classical Bayesian
optimization strategy formalizing a tradeoff between fidelity to
the unreduced (raw) spectral data (via the preservation of spec-
tral distance-based likelihood energy term) and the expected
highly contrasted solution (via the separability of features prior
energy term). In this context, we will show that a hybrid opti-
mization in several steps, combining a global and deterministic
optimization procedure and a local stochastic search using the
Metropolis criterion, can be exploited to efficiently minimize
this complex nonlinear objective cost function related to this
model.

The remainder of this paper is organized as follows.
Section II describes the quantitative metrics of good visu-
alization and the proposed dimensionality-reduction model.
Section III describes the optimization strategy used to mini-
mize the objective cost function related to our model. Finally,
Section IV presents the quantitative metrics used to validate our
algorithm and a set of experimental results and comparisons
with existing multidimensional visualization techniques.

II. PROPOSED DIMENSIONALITY-REDUCTION MODEL

A. Quantitative Metrics Of Good Visualization

To evaluate the preservation of distances criterion of a color
display algorithm, we will use in the following the correlation-
based metric ρ proposed in [10], [23] which is simply the corre-
lation of the Euclidean distance between each pairwise spectral
vectors in the hyperspectral image (let X be this vector) and
their corresponding (pairwise) Euclidean distances (color dif-
ference) in the perceptual LAB color space (let Y be this vector)

ρ =
XtY/|X| − X̄Ȳ

std(X) · std(Y )
(1)

where Xt, |X|, X̄ , and std(X) denote the transpose, cardinal,
mean, and standard deviation of X , respectively. In practice, we
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consider a subsampling of pairs of pixels in the image (i.e., all
pairs with horizontal or vertical (possible) displacements of 2p

pixels for p ≤ 9). In the absence of perceptual error and, thus,
with no loss of information in this dimensionality-reduction
problem, the ideal correlation metric is 1. In order to also
measure the separability of features or contrast criterion, we
use, as in [23], the average distance between each pair of pixels
in perceptual color space (it should be as large as possible):
δ = |Y |1/|Y | where |Y |1 and |Y | denote the L1 norm and the
cardinal of vector Y , respectively.

B. Bicriteria-Optimization-Approach-Based Model

Let us define the notations used throughout this paper. We
consider a hyperspectral image as a cube or a 3-D array of
observed pixels made up of several 2-D arrays. We define an
image by I or I(s, k), where s indicates the spatial location
and k indexes the particular spectral band in which the pixel
lies in the hyperspectral cube. We will use the term image slice
to denote a 2-D array for a given k, i.e., I(·, k) where N is
the number of pixels in each image slice. We will use the term
spectral vector to denote all pixels associated with a site s, i.e.,
I(s, ·) ∈ RK , where K is the number of spectral bands.

In order to provide perceptually meaningful visualizations,
the main goal of our color visualization strategy is to preserve,
as first and foremost criterion (and as much as possible), the
distance between the spectral vector of each pair of pixels and
their final perceptual color distance in the final displayed color
image. As perceptual color space, we use the classical CIE 1976
L∗, a∗, b∗ (LAB) color space which is approximately perceptu-
ally uniform (i.e., the same amount in a color value produces
a change of about the same visual importance). The second
criterion is related to the contrast notion or the separability of
features and is, by definition, expressed by the average distance
between each pair of pixels in LAB space.

To this end, let u be the 3-D vector (u = (L A B)t)
corresponding to the three L, A, B color bands of the final
image to be displayed. The Euclidean distance has been chosen
between the spectral vector of each pair of pixels and their final
perceptual color distance (first criterion) along with the average
(mean) distance between each pair of pixels in LAB space
(second criterion). In this setting, the visualization technique
then seeks to find û = (L̂ Â B̂)t that minimizes the following
bicriteria objective function:

û = argminu
∑
s,ts �=t

{
(βs,t − ‖φ(us)− φ(ut)‖2)

2

− γ ‖φ(us)− φ(ut)‖22
}

(2)

where the summation
∑

s,ts �=t
is over all the pairs of sites

(i.e., for all sites s and for all the pairs of sites including s)
existing in the final image to be displayed. βs,t denotes the
Euclidean distance associated between two spectral vectors,
associated with the pair of sites or spatial locations s, t. In
this model, the set of βs,t, ({βs,t}) represents the observed
data. The first term is related to the preservation of spectral
distance criterion, and the second corresponds to the contrast or
separability of features criterion. γ is the value controlling the

contribution of these two criteria. φ(ûs = (L̂s Âs B̂s)
t) is the

function that takes into account the possible saturation effect,
for each pixel, in the finally displayed RGB color space. More
precisely, this function ensures the three following operations.
First, it converts the LAB color values into RGB color values.
Second, it ensures that all converted pixels are inside the RGB
color space by setting negative pixel values to 0 and those that
are greater than 255 to 255. Third, it converts back the RGB
color values into the LAB color space. This function enables
the contradiction existing between these two criteria to be
understood. A high contrast (second criterion) in the perceptual
LAB color space can be obtained at the cost of numerous
saturated pixels which can no longer satisfy the accuracy of
the resulting color mapping (first criterion). There are three
points worth mentioning concerning the constrained nonlinear
reduction model expressed by (2).

1) As already mentioned in Section I, this bicriteria op-
timization problem can also be viewed as a Bayesian
optimization strategy formalizing a tradeoff between
goodness-of-fit and some a priori expected properties of
the solution. More precisely, the first term of (2) measures
the fidelity to the unreduced (raw) spectral data (via
a so-called likelihood energy term expressing the first
criterion) and the second one encodes fidelity to some
a priori properties about the desired solution, namely, a
highly contrasted final color image (via a prior energy
term favoring the second criterion).1

2) For γ = 0 and φ(u) = u [see (2)], the function to be
minimized is also the so-called stress function used as
criterion in the nonlinear dimensionality-reduction model
based on multidimensional scaling (MDS) [25], [26].
MDS attempts to find an embedding from the initial fea-
ture vectors in the high-dimensional space such that pair-
wise distances are preserved in a low dimensional space.

3) Finally, it is also worth mentioning than the objective
functions to be minimized can be viewed as a Gibbs en-
ergy field related to a nonstationary Markov random field
(MRF) model defined on a complete graph with long-
range pairwise interactions, i.e., binary cliques 〈s, t〉 (or
pairwise of pixels). Each binary clique of this MRF model
is associated to a nonstationary potential since this model
is spatially variant and depends on several factors such
as the distance between the spectral vectors associated to
each pair of pixels s, t and also the value of φ.

In this context, our dimensionality-reduction model is cast
as a global optimization problem of a complex (nonconvex)
cost function with several local extrema over the LAB color
value space. In order to find a particular configuration of û,
which efficiently minimizes this complex energy function, we
use the optimization strategy in several stages described in the
next section.

1Let us note that our energy-based model could not be formulated in reverse,
i.e., with a contrast term as the main focus (likelihood energy term) which
would be optimized under the preservation of distance criterion acting as a
regularization constraint (regularization energy term) since our contrast term
does not depend on the observed data ({βs,t}). In our case, the contrast term
is a prior or an a priori term in the Bayesian sense and is used to model some
a priori properties about the solution image (more or less contrasted).
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III. OPTIMIZATION STRATEGY

A. First Step

To this end, let E0 be a simplified version of our energy
function [expressed by (2)] obtained with γ = 0 and φ(u) = u
(i.e., with φ being the identity function I). In this context, E0

is equivalent to the loss function also used in MDS methods
to estimate a low-dimensional mapping of high-dimensional
data, and two possible strategies, specifically well suited for
large-scale applications (i.e., for large sample size and/or high-
dimensional data), exist. The first one is to use the multires-
olution dimensionality-reduction model proposed in [24], and
the second one is to use the so-called FastMap algorithm [27]
(or its variants [28]). It was reported in [28] and [29] that the
FastMap algorithm is as efficient as the best existing scalable
MDS, the so-called “Landmark MDS,” in terms of accuracy and
speed comparisons, for very low embedding dimensions and
linear Euclidean distance (which is the case in our model). For
this initialization step, two MDS-based optimization strategies
remain possible. The most natural strategy consists in the use of
the MDS algorithm directly for estimating a three-dimensional
(3-D) embedding, i.e., for the 3-D mapping u = (LAB)t with

û = argminu
∑
s,ts �=t

(
βs,t − ‖us − ut‖2

)2
. (3)

The second strategy consists in the use of the MDS algorithm
for the separate estimation of L and A and B and each (1-D)
mapping being defined, in our case, for the three equal-sized
subsets covering the overall available wavelengths of the origi-
nal hyperspectral image, i.e.,



L = argmin
∑

s,ts �=t

(
β
[1: 13K]
s,t − (Ls − Lt)

)2

A = argmin
∑

s,ts �=t

(
β
] 13K: 23K]
s,t − (As −At)

)2

B = argmin
∑

s,ts �=t

(
β
] 23K:K]
s,t − (Bs −Bt)

)2

(4)

where β
[k0:k1]
s,t denotes the Euclidean distance between the

spectral bands k0 and k1 and Ls, As, and Bs are the L, B,
and A components, respectively, at site (or pixel) s.

Table I summarizes the measures of good visualization of the
final color mapping based on ρ and δ (see Section II-A), on the
simplified version of our energy function [see (3) and (4)], for
the M4ICD[24] and the FastMap [27] methods, respectively, for
the 3-D mapping u = (LAB)t (dimension of the embedding:
dim = 3) and for the separate estimation of L and A and
B (dim = 3× 1). Experiments show that the FastMap [27]
is less accurate than the M4ICD[24] and that the separate
estimation of L and A and B leads to the best results for the
FastMap method. In accordance with our opinion, this may be
due to the fact that the FastMap is all the more efficient that
the embedding is achieved at very low dimensions [28]. This
greatly simplifies the FastMap procedures and, thus, its reliabil-
ity. Although somewhat less accurate than the dimensionality-
reduction model presented in [24], the FastMap method has the
advantage of being about ten times faster compared with the

TABLE I
COMPARISON OF CORRELATION ρ AND AVERAGE DISTANCE δ FOR THE

FASTMAP AND THE MULTIRESOLUTION M4ICD MODEL FOR THE

SIMPLIFIED VERSION OF OUR ENERGY FUNCTION

Fig. 1. CIE Lab color space. L is always positive and represents brightness.
a > 0 represents the red component, a < 0 represents the green compo-
nent, b > 0 represents the yellow component, and b < 0 represents the blue
component.

multiresolution method described in [24]. For this reason and
also due to the fact that, at this stage, we only need a good
initialization (related to a simplified version of our bicriteria
energy function which will be refined later to find a solution
related to our complete energy-based model), we decided to
use the FastMap algorithm (for the separate estimation of L
and A and B mappings) as an interesting compromise between
accuracy and speed.

It is important to mention that, at this stage, we are not
assured that the LAB color values of the 3-D mapping u are
not saturated in the RGB space. In order to fix this problem,
we use a simple linear stretching of the L, A, and B color
values such as L ∈ [0 : 100] and such that A, B have a maximal
amplitude of 100 with a zero mean in order to ensure that a
very small minority of pixels are outside the RGB color space
(see Fig. 1). Mathematically, this helps ensure that φ(us) = us

for all sites s and, concretely, that there are no saturated pixels
which could alter the preservation of spectral distance criterion.
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At this stage, this linear stretching allows us to find the color
mapping that minimizes the following objective function:

û = argmin
u

∑
s,ts �=t

(
βscaled

s,t − ‖φ(us)− φ(ut)‖2
)2

(5)

where φ(us) ≈ us due to our suitable range of LAB color
values and βscaled

s,t = ρβs,t with ρ as a scaling factor ensuring
that, after the linear stretching, the pairwise distances of the 3-D
mapping u and the distance of the pairwise spectral vectors are
still preserved. This scaling factor is defined by

ρ =

∑
s,t d

stretch
s,t∑

s,t ds,t
(6)

where ds,t and dstretch
s,t are the sets of pairwise Euclidean dis-

tances of the image before and after the linear stretching pro-
cess, respectively. In order to decrease the computational load,
in our application, the summation integrates to a subsampled
(with a factor of ten pixels in length and in width) set of pixel
pairs in the two images.

B. Second Step

At this stage, an increase in the contrast of the image (via
the minimization of the second energy term) related to our
second criterion of our bicriteria optimization problem may be
obtained by multiplying the LAB color values by a spatially
variant positive scaling factor (and at a price that some pixels
will become saturated in the RGB space and will no longer
satisfy the preservation of spectral distance criterion). It is
worth mentioning that this scaling factor is necessarily spatially
varying because it is closely related to the LAB color values
which spatially vary in the image. However, at this stage,
we can approach the solution and give a rough estimation to
our optimization problem by estimating the spatially invariant
scaling factor k for which

k̂ = argmink
∑
s,ts �=t

{(
kβscaled

s,t − ‖φ(kus)− φ(kut)‖2
)2

− γ ‖φ(kus)− φ(kut)‖22
}
. (7)

In order to do this estimation, we use a simple local discrete
grid search routine, for the parameter k in a suitable range (k ∈
[1.0− 3.0] with a fixed step size set to 0.2). In order to decrease
the computation time, we do not consider a complete graph but
each node (or pixel) is connected with its four nearest neighbors
and four equally spaced other pixels located within a square
neighborhood window of fixed size Ns = 61 pixels centered
around the pixel (for an input image assumed to be toroidal,
i.e., wrapping around at the edges).

Since the aforementioned process can saturate some pixels in
the RGB space (particularly for large values of γ) and that may
alter the optimal value of kβscaled

s,t , we refine the estimation of
this parameter with a least square estimation. More precisely,
kβscaled

s,t is corrected by the factor [28]

ρ =

∑
s,t β̂

2
s,t/β

2
s,t∑

s,t β̂s,t/βs,t

(8)

where βs,t is the true (unembedded) distance, using the set of
pairwise spectral vectors of the hyperspectral image, and β̂s,t is
the estimated (in the embedded space) distance, using the set of
pixel pairs in the stretched u mapping. In order to decrease the
computation time, we use a subsampling of ten pixels in length
and width.

C. Third Step

At this stage, we are very close to the solution of our
optimization problem, and this optimization problem could be
reduced to only optimize the value of the set of saturated pixels
in order to satisfy, as much as possible, the preservation of
spectral distance criterion. We decided to refine the estimation
given by the aforementioned deterministic optimization
method, and to this end, we use the previous optimization result
as the initialization of a stochastic local search for our complete
energy function. Practically speaking, we use a local explo-
ration around the current solution using the Metropolis criterion
[30] and a low radius of exploration (see Algorithm 1). In order
to decrease the computational load, we consider, for this step,
the same simplified graph, mentioned in Section III-B, in which
each node is connected with its four nearest neighbors and four
(Nc = 4) other sites equally spaced and located within a square
neighborhood window of size Ns = 61 centered around the
pixel. Fig. 2 shows the spatial neighborhood used in our model.

Two internal parameters are sensitive and crucial for this last
procedure, namely, the radius of exploration r and, in a least
measure, the starting temperature T0 of the local stochastic
search. The first parameter was set in order to locally explore
a solution whose color values are close to the initial solution
given by the preceding deterministic minimization procedure
(a value r = 0.04 ensures that the final solution will exhibit
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Fig. 2. Spatial neighborhood used in our model. Each pixel is connected with
its four nearest neighbors and Nc = 4 equally spaced other pixels located
within a square neighborhood window of fixed size Ns = 61 pixels, i.e., the
first pixel of this square, the 1240th ((N2

s /3)th) pixel (20th row and 20th
column), the 2480th ((2N2

s /3)th pixel (41th row and 40th column), and the
last pixel or the (61 × 61)th pixel.

output channel values, centered around the gradient estimation
±0.04 ∗ 100 = ±4 channel values for a final LAB image whose
channel values are comprised in [0 : 100]). T0 is set in order
to ensure that, at the beginning of the stochastic search, ap-
proximately one-third of sites change their luminance values
between two complete image sweeps. Tf , which is the final
temperature, can be easily found in our case, since a good
final temperature for a simulated annealing-like minimization
procedure has to ensure that, at the end of the stochastic search,
very few sites change their channel color values between two
complete image sweeps. In our algorithm, this parameter has
been easily found after a few trials. We have found that T0 =
1 and Tf = 10−3 were appropriate for all the experiments
presented in this paper.2 Due to the small radius of exploration,
the computational complexity of this optimization step (in fact,
a simple local search around the scaled MDS estimation) is
considerably reduced, and this explains why a low number of
iterations LS

max = 50 is herein performed. Fig. 3 shows us the
evolution of the energy function for this stochastic local search
using the Metropolis criterion.

IV. EXPERIMENTAL RESULTS

A. Setup and Hyperspectral Image Used

In all the experiments, we have thus considered the following
setup. For the preprocessing model, we exclude the spectral
bands containing mainly noise, and to this end, we use the
preprocessing strategy described in [24].

2Let us note that if T0 = Tf = 0, this optimization step becomes a simple
deterministic optimization procedure such as a classical gradient descent with a
sampling strategy. Let us also add that, in practice, it is easy to find a procedure
that automatically (and adaptively for each hyperspectral image) estimates T0,
ensuring a 30% ratio of site changes between two complete image sweeps. It
simply consists in starting from an upper bound for this initial temperature,
namely, T0 = 10, and in iteratively decreasing this initial temperature (e.g.,
by 10%) and performing one iteration of the local stochastic search, until the
ratio of site changes (between two complete image sweeps) is below 30%.
Given this initial estimate for T̂0, we can then start the initialization step of our
local exploration search along with our classical geometric temperature cooling
schedule (cf. Algorithm 1).

Fig. 3. Evolution of the energy function for the third step (stochastic local
search using the Metropolis criterion) of our multistage optimization scheme
(AVIRIS image LUNARLAKE1.RFL with γ = 0.1).

The hyperspectral cubes chosen for our experimental results
are from the National Aeronautics and Space Administration
Jet Propulsion Laboratory Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) system [32], which captures 224 spec-
tral bands, ranging from 400 to 2500 nm with a 1995 AVIRIS.
The image size is usually around 512 × 614 pixels. We have
used the reflectance data which are atmospherically corrected
to compensate for absorption and the spectrum of the sun.
The AVIRIS data are generously available for download on-
line at HTTP address http://aviris.jpl.nasa.gov/html/aviris.free
data.html.

B. Quantitative Comparison and Discussion

First, we have tested and evaluated our algorithm (called
BCOCDM for bicriteria optimization for color display model)
with γ = 0, i.e., with the best possible accuracy (i.e., without
the second energy term related to the contrast criterion which
possibly alters the first and foremost criterion), and we have
computed our two metrics of good visualization for different
existing color display techniques. These techniques are the
M4ICD [24], the one proposed in [23], the color matching
function (CMF) [10], the classical PCA method with a final
linear scaling, the PCA with outlier reduction (PCA2%) (which
scales the final bands with 2% of the pixels at the ends of each
channel being saturated in order to enhance the contrast), and
finally, the PCA with histogram equalization (PCAh). Results
are shown in Table II. Display results with comparisons with
other techniques are shown in Figs. 4 and 5.

The comparison of results shows that PCA2% and PCAh have
a good score for the separability of features (δ), i.e., a good
contrast in the final displayed image. Nevertheless, this color
contrast enhancement is made to the detriment of the overall
correlation score which indicates that the color values of each
channel of the final color image are strongly biased and the
resulting image (i.e., its color values) is far less informative
than those of the other visualization techniques. Our method
gives a very well performing average score of preservation of
distance between all the existing visualization techniques with
a contrast value comparable with that of the classical PCA
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TABLE II
COMPARISON OF CORRELATION ρ AND CONTRAST δ FOR OUR BCOCDM ALGORITHM (WITH γ = 0)

AND THE OTHER EXISTING COLOR DISPLAY MODELS

Fig. 4. Comparison of color display results on the AVIRIS image LUNARLAKE01 obtained (in lexicographical order) by our BCOCMD model [0.98[13.1] (γ =

0.0)] and four existing state-of-the-art visualization models, namely, the M4ICD [24] (0.98[12.4]), the CMF [10] (0.82[6]), the one proposed in [23] (0.95[51]),
and a false-color composite (CIR) image [31] in which the near-infrared band (spectral band number 53; 0.858 mm) is displayed in red, the red band (spectral
band number 29; 0.646 mm) is displayed in green, and the green band (spectral band number 19; 0.547 mm) is displayed in blue (0.92[6.9]).
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Fig. 5. Comparison of color display results on the AVIRIS images CUPRITE02 obtained (in lexicographical order) by our BCOCMD model [0.98[16.8] (γ =

0.0)] and four existing state-of-the-art visualization models, namely, the M4ICD [24] (0.98[18.3]), the CMF [10] (0.88[8]), the one proposed in [23] (0.91[73]),
and a false-color composite (CIR) image [31] in which the near-infrared band (spectral band number 53; 0.858 mm) is displayed in red, the red band (spectral
band number 29; 0.646 mm) is displayed in green, and the green band (spectral band number 19; 0.547 mm) is displayed in blue (0.85[8.8]).

technique. Another important characteristic of our method is
that it provides a stable value of preservation of distance and
contrast scores for a wide variety of images. Each image given
by our method exploits the overall dynamic range of the color
values with a good natural-looking color association and no
colors “pop out” strongly. The different regions can be easily
identified, and very fine details are visible without artifacts such
as noise or blurring artifacts due to the reduction/compression
model or spectral ringing artifacts, glints, and anomalous flu-
orescence hot spots (see also Fig. 6). It is worth mentioning
that our algorithm allows us to automatically find the optimal
γ, ensuring the best contrast metric without sensibly decreasing
the maximum “preservation of distance” score. This optimal
γ can be automatically found in our case since our bicriteria

visualization model can give, for each final displayed image
with an increasing contrast (i.e., for each increasing discretized
value of γ starting from γ = 0), the value of the two metrics of
good visualization (as it was done for Table III or Fig. 7) and
stop when the preservation of distance score starts to decrease
sensibly (see Fig. 6 and the preservation of distance scores in-
dicated in bold in Table III and corresponding to the maximum
value of the contrast δ for which the distance score ρ is not
below 0.5% of the maximum distance score). Second, we have
tested and evaluated our algorithm with increasing values of γ,
thus favoring more and more the contrast enhancement or sep-
arability of features to the detriment of the overall correlation
score. Results are shown in Table III. This contrast enhance-
ment is achieved, of course, to the detriment of the accuracy
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Fig. 6. Different color display results obtained by our BCOCDM algorithm with γ being the highest value ensuring the best contrast metric without sensibly
decreasing the maximum “preservation of distance” score (indicated in bold in Table III). From top to bottom and left to right, respectively, are the AVIRIS scenes
LUNARLAKE02 (γ = 0.0), CUPRITE01 (γ = 0.1), CUPRITE03 (γ = 0.1), and MOFFETT02 (γ = 0.2). More color display results are publicly available at
the following HTTP address: www.iro.umontreal.ca/~mignotte/ResearchMaterial/bcocdm.html.

criterion3 but not necessarily to the computational time, since
our procedure allows us, at the end of the gradient procedure,
to successively increase γ and save the resulting color visual-
ization (see Fig. 8). This generation of the set of color displays
with increasing contrast enhancement allows us to gradually
distinguish the different existing materials in this scene, partic-
ularly between those that have very similar spectral signatures,
thus making easier and more reliable the interpretation and
quick overview of such multidimensional hyperspectral images.
Indeed, we can see, in Fig. 8, that the different regions can be
easily identified and very fine details are visible; for example,
we can easily distinguish the small and rectangular shapes
of the buildings with their concrete or shiny metal roofing
(each building appears as a square of less than four or six
pixels in width in these two images) with a very good edge
preservation and resolution. Man-made structures and objects
are clearly identifiable in these two images. Nevertheless, it is

3We recall (cf. Section II-B) that, due to the fact that the RGB color space is a
subset of the perceptual CIELab color space, a high contrast (second criterion)
in this perceptual color space can only be obtained at the cost of numerous
saturated pixels (i.e., by setting negative RGB pixel values to 0 and those
greater than 255 to 255) which may no longer satisfy the first accuracy criterion.
Consequently, this correction (creating some saturated pixels) is necessarily
done as soon as the best possible “preservation of distance” score begins to
decrease (and that the second criterion is favored via a high value of the
regularization parameter γ). Moreover, this correction is done all the more often
(quantitatively) than the “distance” score is far from its best value.

worth recalling that the resulting high contrast enhancement
shown on the three right images of Fig. 8 is achieved to the
detriment of the preservation of distance or correlation score
(first criterion of accuracy). For example, for the top-middle
image (namely, Moffet01 with γ=0.4), the contrast enhance-
ment is achieved, relatively to the top-left image (γ=0.2), to
the detriment of 2.2% (i.e., 0.893−0.871=0.022, see Table III)
of pairs of pixels which can no longer satisfy the agreement
between the distance of spectrums (associated to each pair of
pixels) and their perceptual color distance in the final fused
image to be displayed. In other words (and relatively to the top-
left image), there are 2.2% more of pairs of pixels for which the
color difference (distance) is no more faithful to the distance
computed from the unreduced (raw) spectral data (or 2.2% loss
of accuracy, for a contrast improvement of 63% for this top-
middle image).

It is also worth noting that if the contrast metric is very im-
portant for a specific application (e.g., target separation and/or
localization, etc.), our model will also allow us to easily find the
optimal regularization parameter γ ensuring the best contrast
metric for a minimum a priori fixed value for the preservation
of distance score; it simply consists in running the algorithm
with increasing values of γ (as was done for the Table III or
Fig. 7) and in accepting, as output mapping, the solution image
related to both the maximum contrast score and that whose
preservation of distance score is maintained above a minimum
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TABLE III
METRICS ρ AND δ FOR INCREASING VALUES OF γ FOR OUR BCOCDM ALGORITHM. THE RESULTS IN BOLD ARE THE

(ρ, δ) PARAMETER VECTORS FOR WHICH THE CONTRAST δ IS THE MAXIMUM WHEN THE CORRESPONDING

DISTANCE SCORE ρ IS NOT BELOW 0.5% OF THE MAXIMUM DISTANCE SCORE

Fig. 7. Correlation metric ρ (preservation of distance criteria) and contrast metric δ for increasing values of the regularization parameter γ for our BCOCDM
algorithm (see also Table III).

value. This strategy can then be used if the contrast metric is the
main focus (while the distance or accuracy term has to be kept
above a given minimum score).

Third, our method also has the appealing ability to slightly
improve the preservation of distance score by simply increasing
the number of connections of our graph (and, thus, also the
computational cost of our algorithm). Presently, we recall that
each node (or pixel) is connected with its four nearest neighbors
and Nc = 4 equally spaced other pixels located within a square
neighborhood window of fixed size Ns = 61 pixels centered
around the pixel. Table IV shows how this score is slightly
improved by increasing this number of connections on the
AVIRIS images MOFFET01.

We have also tested the influence of variations of the size Ns

of the neighborhood window on the “preservation of distance”
and contrast scores for increasing values of γ. Table V shows
the obtained results for the LUNLAKE01 AVIRIS scene and

for some values of Ns varying around the value given in our
application (i.e., Ns = 61). Experiments show that our model
is not too sensitive to this parameter if Ns is large enough,
for example, the value of Ns given in our application. It also
appears that values of Ns greater than 61 do not greatly improve
the final results.

C. Algorithm

The color mapping procedure takes, on average, 1 min (for
a 512 × 614 × 224 hyperspectral AVIRIS image) for an
Intel i7 CPU with 3.33 GHz, 6675.25 bogomips, and nonop-
timized code running on Linux. Running times in seconds
for our methods and for different images are summarized in
Table VI. It must be noted than our Metropolis optimization
scheme can be efficiently implemented by using the parallel
abilities of a graphic processor unit (GPU) (embedded on most
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Fig. 8. Comparison of color display results obtained by our BCOCDM model with increasing values of γ = 0.2, 0.4, 0, 6 on magnified regions (256 × 256
pixels) extracted from the AVIRIS images MOFFET01−02−03.

TABLE IV
CORRELATION ρ AND CONTRAST δ FOR OUR BCOCDM ALGORITHM

WITH γ = 0 AND DIFFERENT VALUES OF Nc CORRESPONDING TO THE

NUMBER OF CONNECTIONS OF OUR GRAPH (IN ADDITION TO THE

FOUR NEAREST NEIGHBORS) ON THE AVIRIS IMAGES MOFFET01

graphics hardware currently available on the market) and can
be greatly accelerated (by a factor of 4–200) with a standard
NVIDIA GPU (2004), as indicated in [33]. The source code
(in C++ language) of our algorithm BCOCDM with the set
of resulting three-band color images for each hyperspectral
data cube is publicly available at the following HTTP address
www.iro.umontreal.ca/~mignotte/ResearchMaterial/bcocdm in
order to make possible eventual comparisons with future multi-
dimensional imagery color display algorithms and/or different
performance measures.

V. CONCLUSION

In this paper, we have presented a new nonlinear
dimensionality-reduction model for the color display of hy-
perspectral images. This dimensionality-reduction model is
based on two complementary but contradictory criteria of good
visualization, namely, accuracy and contrast with an internal
parameter, allowing us to encode, for the user or for a specific
application, the balance or the importance between these two
criteria. This dimensionality-reduction problem was originally
cast as a global nonlinear optimization problem for which an
efficient optimization in several steps has also been proposed.
While being simple to implement, and relatively fast, the pro-
posed procedure allows the nonlinearity of the hyperspectral
data to be considered without a preprocessing data step and
performs competitively among the state-of-the-art multidimen-
sional imagery color display methods recently proposed in the
literature. Furthermore, as already noted, our method allows us,
at convergence, to successively increase γ and save the resulting
color visualizations. This generation of set of color displays
with increasing contrast enhancement allows us to gradu-
ally distinguish the different existing materials in this scene,
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TABLE V
METRICS ρ AND δ FOR INCREASING VALUES OF γ AND DIFFERENT SIZES OF Ns FOR THE LUNLAKE01

AVIRIS SCENE (Ns = 61 IS THE VALUE USED IN OUR APPLICATION)

TABLE VI
RUNNING TIME (IN SECONDS) FOR OUR ALGORITHM AND AVERAGE

RUNNING TIME FOR THE OTHER COLOR DISPLAY MODELS

particularly between those that have very similar spectral sig-
natures, thus making easier and more reliable the interpretation
and quick overview of such multidimensional hyperspectral
images. Nevertheless, let us recall that, in our model, the
regularization parameter γ has to be manually determined after
an exhaustive search consisting in running our algorithm with
a gradual increase of the parameter γ and in accepting, as
output mapping, the solution image for which an interesting
compromise between the obtained score values of accuracy
and contrast is finally found. An automatic estimation of this
parameter, in a single run of the algorithm, to get a maximum
contrast and an accuracy value that is maintained above a
minimum value, or inversely, would require further research.
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