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An Energy Based Model For The Image Edge
Histogram Specification Problem

Max Mignotte

Abstract—In this correspondence, we present an original
energy-based model that achieves the edge histogram specifi-
cation of a real input image and that thus extends the exact
specification method of the image luminance (or grey level) dis-
tribution recently proposed by Coltuc et al. Our edge histogram
specification approach is stated as an optimization problemin
which each edge of a real input image will tend iteratively towards
some specified gradient magnitude values given by a target edge
distribution (or a normalized edge histogram possibly estimated
from a target image). To this end, a hybrid optimization scheme
combining a global and deterministic conjugate gradient-based
procedure and a local stochastic search using the Metropolis
criterion is herein proposed to find a reliable solution to our
energy-based model. Experimental results are presented and
several applications follow from this procedure.

Index Terms—Conjugate gradient, edge histogram specifica-
tion, energy based model, gradient magnitude, local stochastic
search, Metropolis algorithm.

I. I NTRODUCTION

I mage histogram, by its ability to represent the intensity
levels distribution of the image pixels, remains a useful

and popular statistical tool that enables information about
the visual appearance of an image to be quickly and easily
obtained and/or histogram-based features (such as the mode,
mean, variance, entropy, energy, kurtosis, etc.) widely used in
region-based image segmentation, indexing or local enhance-
ment techniques to be computed. Amongst the classical al-
gorithms exploiting this intensity level distribution, histogram
specification (also called histogram matching) refers to a class
of image transforms which changes the histogram of a given
image to another desired one. It is an important and well-
known technique that can be used, for example, to watermark
an image [1], enhance the contrast in only some specific
regions (of interest) of the image (by modifying the dynamic
range of the pixel values) [2]–[4] or to normalize two images
(e.g., for fusion, mosaicing, registration, etc.).

Although the histogram specification algorithm has exact
solution for continuous image (thus yielding to a perfect match
between the input and the desired intensity level distribution),
it is generally an ill-posed problem that does not admit an exact
solution in the discrete case. For example, in the case where
the output distribution is uniform, the resulted histogramafter
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specification (or so-calledequalization) is flattened but may be
far from being uniform. This comes from the fact that since
the number of pixels is usually much larger that the number of
intensity levels, there are many pixels with the same intensity
level and these latter cannot be separated (they can only be
merged together) in order to approximate the different binsof
a uniform histogram [2]. It has been finally realized that a key
to achieve a discrete exact histogram specification method was
to find a strict ordering relation separating each pixel of the
original image with the same intensity into several subsets
(in order to approximate the different bins of the desired
output distribution). Practically speaking, letI be a discrete
image withL grey-levels andN ×M pixels I(xi, yj) with
coordinates(xi, yj) representing the discrete pixel locations.
Let alsoH = {h0, h1, ...hL−1} be the non-normalized target
histogram (i.e., the desired output intensity level distribution)
and let≺ be a strict ordering relation on the set of pixels
of I, defined asI(x1, y1) ≺ I(x2, y2) if the grey-level (or
intensity value) of pixelI(x1, y1) is lower or equal than the
grey-level of pixelI(x2, y2) with respect to the lexicographic
order. Then the exact specification simply proceeds as follows
[5] [Algorithm A]:

• Order pixels:I(x1, y1) ≺ I(x2, y2) ≺ . . . ≺ I(xNM, yNM)
• Split this pixel ordering relation from left to right inL

groups, such as groupj hashj pixels.
• For all the pixels in a groupj, assign gray-levelj.

In this context, the structure of the image is thus distortedby
enforcing the target histogram and it yields exact results if a
strict ordering relation is found. In practice, several ordering
relation strategies can be used. The simplest one consist of
pre-processing the original image by adding a small amount
of uniform noise to each pixel intensity value [6], [7] or
separating randomly each pixel of the original image with
the same intensity level [8]–[10]. Another solution, avoiding
noise, consists of separating pixels of the same-intensitygroup
either according to their local mean on the four horizontal
and vertical neighbors [11] or to the average intensity (of
the surrounding pixels) at their location [5] or finally by
taking into account not only the local mean intensity but
also local edge information [12]via a wavelet transform
(which preserves edge information and produces sharper image
enhancement results compared to the classical local mean
model [5], [11]).

Edges are also important features of an image because they
contain significant information; indeed, edges may correspond
to object boundaries or to changes in surface orientation,
discontinuities in depth or material properties to name a
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few. Edges also help to extract useful information and char-
acteristics of an image. For example, edge-based features
of shape and texture are important for image retrieval and
indexing. Consequently edge histogram may be important
to obtain information either about the visual appearance of
an image (coarse or highly detailed image, structure in the
image spatial configuration, spatial resolution, spatial detail
statistics and fractal dimension of an image2) or its content
(naturally uneven or perfectly geometrically shaped) or man-
made objects. In the light of the discussion above, it is
fair to think that edge histogram specification of an image
may be of interest for several computer vision and image
processing applications. If the statistical distributionof the
intensity value of any real images varies, the statistical dis-
tribution of edges or the gradient magnitude of an image
follows a (well-known in the denoising community [14]) long-
tail distribution mathematically expressed by a two-parameter
density function of the formH(z) ∝ exp (−|z/c|p). This is
due to the intrinsic stationary property of real-world images,
containing smooth areas interspersed with occasional sharp
transitions, i.e., edges. The smooth regions produce small
amplitude gradient magnitudes and the transitions produce
sparse large-amplitude gradient magnitudes [14]. Due to this
intrinsic stationary property of any real-world images, the edge
histogram will be associated with a decreasing function with
a unique mode (the value that occurs the most frequently)
at (amplitude gradient magnitude)0, corresponding to the
numerous smooth regions existing in any real-world images.
Except for this property, different informative distributions (for
different parameter positive values ofp and c) can be found
or specified for a given input image.

In this correspondence, an approach for edge histogram
specification of a real image is proposed. This approach
combines the ordering relation described above but applied
to the set of the gradient magnitude values of an input image
(and related to each pair of pixels separated from a given
distance). It allows us first to obtain the set of increasing
gradient magnitudes of an input image and then to assign
to each of them a specified gradient magnitude value given
by a target edge distribution (or a normalized edge histogram
possibly estimated from a target image). A hybrid optimiza-
tion scheme combining a global and deterministic conjugate
gradient-based procedure and a local stochastic search allow
each pair of pixel values to tend (iteratively) towards these
specified gradient magnitude levels. The remainder of this
correspondence is organized as follows: Sections II and III
describe respectively the proposed model and the optimization
strategy. Finally, Section IV presents the set of experimental
results and applications of this edge histogram specification
method.

II. PROPOSEDMODEL

Let us first consider the case of an edge histogram spec-
ification procedure in the first order sense, i.e., using the
absolute value of the gradient magnitude with the first order

1The fractal dimension of an image surface corresponds to thehuman
perception of image roughness [13].

derivative. To this end, letI be an input discrete image with
N ×M pixels Is located at discrete locationss = (xs, ys).
Our edge histogram specification procedure aims at finding
a new luminance mappinĝI in which, each|Îs − Ît| in this
input image with pair of sites(s, t) separated by a distance
d = max{|xs − xt|, |ys − yt|} = 1 pixel (i.e., with the site
t located in the first nearest8 neighbors ofs) is considered
as a independent random variable whose distribution follows a
target distribution or a normalized histogramH with a desired
shape (possibly estimated from a target image). If this mapping
Î is estimated in the minimal mean square sense, thenÎ is the
solution image that should minimize the following objective
function E(I):

Î = arg min
I

NM∑

s=1

∑

t∈N 1
s

(

β2
[1] s,t − (Is − It)

2
)2

︸ ︷︷ ︸

E(I)

(1)

whereN 1
s represents the8 nearest neighbors ofs and conse-

quently the summation is over all the pair of sites (i.e., forall
sitess and for all the pair of sites includings with t belonging
to the 8 nearest neighbors ofs). In this case,β[1] s,t are the
values given by an edge histogram specification method (of
the first order magnitude gradient) with the non-normalized
target distributionH = {h0, h1, ...hZ−1} (possibly a priori
imposed or estimated from a target image) withZ its number
of bins. Practically speaking, letW = 8 ·N ·M be the number
of absolute values of the first order difference|Is − It| in the
original image and let≺ be a strict ordering relation, defined
among the|Is − It|, (as |Is − It| ≺ |Iu − Iv| if the first
order difference|Is− It| is lower or equal than the first order
difference|Iu − Iv| with respect to the lexicographic order),
our edge histogram specification histogram method is thus a
two-step procedure which proceeds as follows [Algorithm B]3

• 1. Ordering relation

– NormalizeH in order that W =
∑k=Z−1

k=0 hk

– Order theW = 8 · N ·M pairwise pixel absolute
differences:|Is − It| ≺ |Iu − Iv| ≺ . . . ≺ |Ix − Iy|

– Split this pixel absolute difference ordering relation
from left to right in Z groups, such as groupj has
hj elements, i.e.,hj couples of pixels.

– For all pairs of pixels or pair of sites(s, t) whose the
absolute difference is in a groupj, assignβ[1] s,t = j.

• 2. Optimization : Optimize (1) (see Sect. III)

This model can easily be generalized in order to ensure an
edge specification histogram in then = 2 (for example)

2Algorithm B corresponds to the cases where the input and target images
have integer luminance values ranging from[0 : 255] and we also consider
Z = 256 bins for the luminance histogram and for the target histogram of
the absolute value of the first-order difference (first-order gradient magnitude).
Consequently, if the target image has the same size of the input image,hj

is necessarily a natural number (ranging from[0 : 8NM ]). Nevertheless, if
the target image has not the same size of the input image, eachvalue hj of
the distributionH, after the first step of Algorithm B (i.e., the step ensuring
that this histogram integrates to8×N ×M ) must be rounded to the nearest
integer and this then ensures thathj remains a natural number. Let us also
note that after rounding up to the nearest integer, the newhj don’t add up
W but this is not a problem in practice.
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order sense (i.e., with a gradient magnitude using the sec-
ond order derivative). To this end, the summation of (1)
should be all the pair of sites(s, t) with t ∈ N 2

s andN 2
s

designating the16-pixel-neighborhood ofs separated by a
distanced = 2 pixels (d = max{|xs − xt|, |ys − yt|}) and
W =16 ·N ·M pairs of pixels orβ[2] s,t values. In the same
way, this model can easily be generalized in order to ensure
simultaneously an edge specification histogram followingnt

different distributions for respectively the set ofnt gradient
magnitudes in thent order senses. To this end, letH[nt] be the
vector associated to thent non-normalized target distributions
H[l] = {h[l],0, h[l],1, ...h[l],Z−1} with l ∈ [0 . . . nt[ (possibly
a priori imposed or estimated from a target image), letN l

s

represents theW[l] neighbors ofs separated by a distanced = l
pixels, the procedure will commence as follows [Algorithm C]:

• 1. Specification with ordering relation
– For l = 1 to nt

∗ W[l] = 8 · l ·N ·M

∗ NormalizeH[l] such that W[l] =
∑k=Z−1

k=0 h[l],k

∗ Order theW[l] pairwise pixel absolute differences:
|Is − It| ≺ |Iu − Iv| ≺ . . . ≺ |Ix − Iy |

∗ Split this pixel absolute difference ordering rela-
tion from left to right inZ groups, such as group
j hash[l],j elements, i.e.,h[l],j couples of pixels.

∗ For all pairs of pixels or sites(s, t) whose absolute
difference is in a groupj, assignβ[l] s,t = j.

• 2. Optimization : Optimize (1) fort ∈ N 1
s ∪N

2
s ∪. . .∪N l

s

(see Sect. III)
Finally, this model can easily be generalized in order to ensure
simultaneouslynt edge histogram specifications (followingnt

given different distributions) and an exact histogram spec-
ification of the luminance (or intensity) level. The method
[Algorithm D] simply consists in alternating Algorithm C
and Algorithm A until a stability criterion is reached (i.e.,
the output image does not change too much between two
iterations). We would like to add that extending our approach
to color images is straightforward:
• In the case where the input image is specified directly

from a target distribution law, it consists first of representing
the input image (originally expressed in the RGB color space)
in a color space where one coordinate is intensity or luminance
value, such as the perceptual LAB color space and processing
only on the Luminance value. After treatment, letL̂ be the
output (edge-specified) luminance map, it then continues by
converting back thêLAB into the classical RGB color space.
• In the case where the input image is specified from a

target image for which we want to keep its color palette, there
are two different ways:

1) either the histogram of the componentsL, A and B
of the input image is specified (Algorithm A) from the
componentsL, A andB of the target image

2) or as proposed in [5], one has to define a strict ordering
relation among color image pixels and a possible solu-
tion is to use the luminance or the gray value for that.
In this case, the color histogram specification procedure
proceeds as follows:

• Order color pixels of the input image (I) from their

luminance or grey value:
I(x1, y1) ≺ I(x2, y2) ≺ . . . ≺ I(xNM , yNM)

• Order color pixels of the target image (T ) from their
luminance or grey value:
T (u1, v1) ≺ T (u2, v2) ≺ . . . ≺ T (uNM, vNM)
Note that if the size of the target image is different
from the size of the input image, an up-sampling or
a sub-sampling procedure should be used.

• Assign toI(xs, ys) the color valueT (us, vs) for all
s < NM .

Since two luminance values can be identical for different
color values, the first strategy thus seems to be more appro-
priate if we want to preserve the different hues of an image
to be specified in the color histogram sense. Nevertheless, the
second strategy seems also well suited if the target image has
a dominant hue as is the case in a texture transfer procedure
such as that presented in Section IV-C.

III. O PTIMIZATION STRATEGY

The objective function to be minimizedE may be more or
less complex according both to the shape of the target edge
distribution and the edge structure of the input image (i.e., the
edge distribution shape of the input image). This cost function
may be sometimes nearly convex if the two edge histograms
are close or very complex with several localextrema, if the
shape of the two edge histograms are different or if one of
these two edge histograms exhibits some discontinuities or
an unusual shape (i.e., a shape far away from the classical
density function of the formH(z) ∝ exp (−|z/c|p) put
forward by Simoncelliet al. in [14]). In order to ensure a
good minimization and thus an accurate edge specification
process in all cases, we have proposed the following hybrid
and adaptive optimization strategy:
• Since an analytical expression of the derivative of this

function E to be optimized is easily available we first use a
conjugate gradient procedure initialized with the input original
image. For the conjugate gradient, the step size is fixed toγ
and adaptively decreased by a factor of two if the energy to
be minimized increases between two iterations. We stop the
optimization procedure if a fixed number of iterations (LD

max)
or the convergence is reached.
• In order to refine the estimation given by the above-

mentioned deterministic optimization method, we use the
previous optimization result as the initialization of a stochastic
local search. To this end we use a local exploration around the
current solution using the Metropolis criteria [15] and a small
radius of exploration (see Algorithm 1).

After this hybrid optimization procedure, it is possible that
a local minimum of the energy functionE is reached (in
this case, at convergence,E > 0 and practically speaking,
the histogram to be specified is yet far from being the
target histogram; the value ofE being proportional to this
distance). In order to avoid being trapped in a local minimum
and to be closer to the global minimum, a strategy (that
was empirically tested and relatively efficient) consists of
alternating the specification procedure (ordering relation) and
this hybrid optimization method until a given criterion is
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reached such as when the value of the energy cost function
E and/or the similarity between the target and output edge
histograms (e.g., estimated by a Bhattacharya distance) isnot
too high. Let us note that a global minimum is not ensured by
this strategy. For certain images, the image structure and its
properties do not allow a perfect match between the input and
the desired distribution (i.e., thus inducing an errorE 6= 0)
to be arrived at every time. Consequently, our strategy that
consists of alternating the ordering relation and the proposed
hybrid optimization method has to be stopped when a maximal
number of iterations is reached.

Algorithm 1
Local exploration with Metropolis

E Energy function to be minimized
Tl Temperature at Iteration stepl
a Cooling schedule parameter

r Radius of exploration, real∈]0, 1]
T0 Initial Temperature
Tf Final Temperature
LS

max Maximal number of iterations

1. Initialization
a←

(Tf

T0

) 1

LS
max

2. Local Exploration

while l < LS
max do

for each pixel with valuexs at sites do

• Compute∆Energy= E(ys)− E(xs) with
ys ∈ [xs − r : xs + r] and ys (pixel value)
∈ [0.0 : 1.0]

• If (∆Energy< 0) Replacexs by ys

• Else Replacexs by ys with

probability⊲ exp
(

−
∆Energy

Tl

)

l← l + 1 andTl←T0 al

IV. EXPERIMENTAL RESULTS

A. Set Up

In all the experiments, the input image is assumed to be
toroidal (i.e., wrapping around at the borders; [this property
only simplifies the implementation, but we can also replicate
the border pixels or use a different strategy]) with colors or
luminance values or magnitude gradient ranging from[0.0 :
1.0]. We have used256 bins for the histogram of the luminance
values and for the histogram of the magnitude gradient.

For the conjugate gradient, the step is set toγ = 0.5. The
maximal number of iterations is set toLD

max = 20. For the local
exploration search, using the Metropolis criteria, the initial
temperature and the final temperature are respectively set to
T0 = 3 · 10−5 andTf = 5 · 10−10. The radius of exploration
is r = 0.04 and the maximal number of iterations is set to
LS

max = 1003. Finally, in order to obtain a final edge specified
image which will be close enough to a reliable solution, we
have respectively setEmin = 0.1, DBmax = 0.1 andLH

max = 6.

4Due to the small radius of exploration, the computational complexity
of this optimization step (in fact a simple local search around the gradient
estimation) is considerably reduced and this explains why alow number of
iterations is herein performed.

B. Edge Histogram Specification

Our initial experiment with Algorithm B was with a target
distribution (for the edge histogram using the first order deriva-
tive) with a desired shape. For this experiment, it is worth
recalling that the set of possible shapes for the edge histogram
of an image (see Sect. I) are the set of decreasing functions
with a mode at (amplitude gradient magnitude)0 (due to the
numerous smooth regions which necessarily exist in any real-
world images and that induce, statistically and more generally,
an original edge histogram with a density function of the
form H(z) ∝ exp (−|z/c|p) [14]). We have thus considered
the following three uni-modal (at0) decreasing (envelope)
distributions (H denoting the Heaviside step function).

1) First, the semi-Gaussian function:
HTarget(z) = 1

Zh
exp(−20z)2 H(z)

2) Second, the semi-triangle function:
HTarget(z) = 1

Zh
(1 − 3z) H(1− 3z) H(z)

3) Third, the (non unimodal at0) shifted Gaussian function:
HTarget(z) = N (256 ∗ z; mean= 0.1, var= 0.0001)

4) Fourth, a decreasing exponential function:
HTarget(z) = 1

Zh

exp(−8 z)H(z)

with Zh, a normalizing factor ensuring that these functions
integrate to one (these above-mentioned target distributions
are graphically shown at bottom right of Fig. 1). The vali-
dation and the efficiency of our algorithm is then achieved
qualitatively by visually comparing the output and the desired
edge histogram shapes and quantitatively by estimating the
Bhattacharya distance (ranging from0 to 1):

DB[HTarget(z), H(z)] =

(

1−
Z−1∑

z=0

√

HTarget(z)H(z)

)1/2

(2)

between the two (normalized) edge histograms before and
after the specification process. Fig. 1 (and Fig. 3) shows
the obtained results. We can notice that our edge histogram
specification procedure is notexactsince the output histogram
shape is not a perfect match with the target histogram shape.
This may derive from the fact that the edge image structure
could not be geometrically more distorted in order to better
match the desired target edge histogram (or equivalently, the
gradient descent procedure has reached the global minimum
of the energy functionE and E 6= 0 in this case). Another
possibility is that the gradient procedure is stuck in a local
minimum. Nevertheless, in all tested cases, the estimationof
the Bhattacharya distance shows us that the similarity be-
tween these two histogram shapes noticeably increases (or the
Bhattacharya distance decreases) after our edge specification
process except for the non-uni-modal at0 shifted Gaussian
distribution for which the output histogram remains far away
from the target distribution and the Bhattacharya distance
remains high (DB = 0.544). We can notice that the resulting
output images are, in these three cases, visually different
with different edge statistic properties (and this will also be
confirmed in the following experiments).
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Fig. 1. Algorithm B.Edge histogram specification procedure with a target distribution model. From left to right, the original input image, the four edge
histogram specification results and at bottom right, the four output edge histograms (with the target and original histogram superimposed on the output edge
histogram). The Bhattacharya distanceDB is respectively for these four experiments0.312, 0.257, 0.783 and 0.264 before the edge specification process
and0.091, 0.061, 0.544 and0.190 after the edge specification process.

Fig. 2. Algorithm B. Detail enhancement and detail exaggeration procedureon the input image shown at top and bottom left. From top to bottom.
Cathedral (Notre Dame, Lyon, France) and Statue images (Berkeley database) and results for two different decreasing values of the Bhattacharya distance
(respectively0.85 × DBinit and 0.78 × DBinit , as stopping criterion of Algorithm B withHTarget being the uniform distribution), namely; Cathedral image
DBinit = 0.57 (original image),DB = 0.48 andDB = 0.44. Statue imageDBinit = 0.54 (original image),DB = 0.44 andDB = 0.41.

Our edge specification process may also be efficiently used
for detail enhancement of an input image or even as an

original detail exaggeration procedure that goes much further
than the results usually obtained with classical high-boost
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Fig. 3. Algorithm B.Edge histogram specification procedure with a target
distribution model . From left to right, magnified regions from Fig. 1 and 2.

filters for which artifacts due to the noise amplification of
the high pass filter (in the case of high value of the boosting
parameter) quickly appear and may degrade the image quality.
In our case, this detail exaggeration procedure simply consists
of the use of Algorithm B in order to realize an edge
histogram equalization technique (i.e., by considering a target
distribution HTarget simply equal to the uniform distribution).
Our iterative minimization-based edge histogram specification
procedure then will aim at flattening, as much as possible,
the gradient magnitude distribution of the input image. In this
latter procedure, the desired level of detail in the output image
can also be easily controlled, for example, by estimating, at
each iteration, the Bhattacharya distance between the output
and the desired uniform distribution and simply by stopping
our iterative procedure when this parameter reaches a given
similarity value: in this supervised procedure, the desired level
of detail in the output image will increase as the user increases
the value for this, namely the Bhattacharya distance based
similarity measure between the output edge histogram and
the uniform edge distribution. Fig. 2 and Fig. 3.[f-g] show
the obtained results for two different increasing values ofthis
above-mentioned Bhattacharya (similarity) value as stopping
criterion.

Our procedure of edge histogram specification may also
be used in order to render an input image with different
detail levels or more generally into a specified number of
separate levels of detail depths. This rendering is possible if
one specifies the output edge histogram with a multimodal
(edge) distribution. This allows us to render an image with
different classes of edge magnitude values or to enhance a
specified class of detail. Fig. 4 shows the obtained image
results for respectively one, two and three different classes
of detail accuracy levels (thus by specifying the output edge
histogram to be respectively uni-modal, bimodal and three
modal).

C. Specification of Multiple Edge Histograms

Our edge histogram specification model can also be used
to somewhat eliminate an effect of unequal resolution (i.e.,
loss of accuracy, contrast or details) possibly created by a
blurring degradation (such as a motion or focal blur) between

 0

 0.1

 0.2

 0  0.1  0.2  0.3

O
cc

ur
en

ce
 P

ro
ba

bi
lit

y

Gradient Magnitude Level

Histogram

Output histogram
Target histogram

Original histogram

 0

 0.05

 0  0.1  0.2  0.3

O
cc

ur
en

ce
 P

ro
ba

bi
lit

y

Gradient Magnitude Level

Histogram

Output histogram
Target histogram

Original histogram

 0

 0.02

 0.04

 0.06

 0.08

 0  0.1  0.2  0.3

O
cc

ur
en

ce
 P

ro
ba

bi
lit

y

Gradient Magnitude Level

Histogram

Output histogram
Target histogram

Original histogram

 0

 0.1

 0.2

 0  0.1  0.2  0.3

O
cc

ur
en

ce
 P

ro
ba

bi
lit

y

Gradient Magnitude Level

Histogram

Output histogram
Target histogram

Original histogram

 0

 0.05

 0  0.1  0.2  0.3
O

cc
ur

en
ce

 P
ro

ba
bi

lit
y

Gradient Magnitude Level

Histogram

Output histogram
Target histogram

Original histogram

 0
 0  0.1  0.2  0.3

O
cc

ur
en

ce
 P

ro
ba

bi
lit

y

Gradient Magnitude Level

Histogram

Output histogram
Target histogram

Original histogram

Fig. 4. Algorithm B. Image rendering procedure with different classes
of detail accuracy levels. From top to bottom and left to right, images and
edge histogram specification results (with the target histogram superimposed
on the output edge histogram) for respectively one, two and three different
classes of detail accuracy levels (by specifying the outputedge histogram to
be respectively uni-modal, bimodal and three modal). The original images are
shown at Figures 1 and 2.

two images of (possibly) the same scene. This correction
can be useful in order to normalize an image set (e.g., for
mosaicing generation, fusion, registration, lighting correction,
indexing, retrieval systems or other applications). Fig. 5shows
different views and icons of the cathedral church of Notre-
Dame-de-Fourviere (Lyon, France) taken by different cameras,
at different times (thus with different resolution levels and
color palettes). One of these images is the cathedral image
already used in the preceding experiments and considered, in
this test, as the target high resolution color image on whichwe
desire to normalize the other images in the color and resolution
degree senses. The results of our edge and color histogram
specification method (Algorithm D withnt = 2, i.e, in the two
first order senses and exploiting the first algorithm, presented
at the end of Sect. II, to ensure a specification of the color
histogram) on the three original images are shown in Fig. 5.

The proposed edge specification method can also be used
to transform one input image into another with different edge
geometric and textural properties. To this end, we have applied
the Algorithm D on a portrait image exploiting the three first
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Fig. 5. Algorithm D. Image (resolution and color) normalization procedure. From left to right, two original images and target image, and output edge
and color normalized result images obtained by our algorithm (with nt = 2).

edge distributions (i.e.,nt = 3 in Algorithm D along with the
second specification method for color histogram) estimated
from a target image representing a certain drawing style. The
resulting images are shown in Fig. 6.

We have compared ournt-edge and color histogram spec-
ification method (Algorithm D) with a classical method that
exploits only color information. Fig. 7 shows for a magnified
region of the cathedral image (shown at Fig. 5a), that a
single color histogram specification strategy (first algorithm of
Sect. II, i.e., the same as that used in our algorithm D) does
not allow to get an output image with the same statistical
edge geometric properties and level of detail of the target
image (which is more detailed that the original image). This
“detail level specification” can also be quantified with the
Bhattacharya distanceDB (between the edge histograms of the
output and the target image) which is respectively0.310, 0.058
and0.534 for the original image (i.e., before any specification
method), after our edge and color histogram specification
method and after a classical color histogram specification.For
our algorithm, the similarity of the edge histogram shapes
of the resulting and target image thus noticeably increases;
demonstrating that our algorithm allows to transfer, not only
the color information but also the edge geometric properties
of the target image (more precisely thent shapes of its edge
distributions). Another consequence of our algorithm is that it
does not distribute the different colors of the target imagein
the same way of our edge and color histogram specification
method, since our algorithm D seems to find a compromise
between a similarity between the distribution of color levels
and also the distribution of gradient magnitudes of the target
image. These remarks can also be confirmed in the case of a
texture transfer technique only using a single color histogram
specification strategy (second algorithm of Sect. II), which do
not allow to copy the edge textural property of a given drawing
style. This is particularly visible in the case of the pointillist
style transfer technique for which its edge distributions are
specific and far away from those of a natural image.

D. Sensitivity to Internal Parameters

• First, it is worth mentioning that our algorithm is rela-
tively insensitive to high values of the step sizeγ because
of our adaptive decreasing schedule which adaptively
adjusts, and reduces this value in the conjugate gradient
procedure if this parameter is set mistakenly too high.

• Second, it is also worth mentioning that our overall min-
imization procedure is relatively insensitive to the three
parametersLD

max, LS
max and LH

max, related to the different
number of iterations of the minimization procedures,
since the final stopping criterion (Emin and DBmin) will
ultimately check if the final solution is close enough to
a reliable solution.

• Third, Emin = 0.1 and DBmax = 0.1 (except for Algo-
rithm B, used as a detail enhancement or exaggeration
procedure, for whichDBmax has to be set by the user)
must not be considered as two internal parameters of our
algorithm but rather as a criterion (for example, required
by the schedule of conditions) for the expected estimation
accuracy of the final result.

• Fourth,Tf is easily findable in our case, since a good final
temperature for a simulated annealing-like minimization
procedure has to ensure that, at the end of the stochastic
search, very few sites change their luminance values
between two complete image sweeps. In our algorithm,
this parameter has been easily found after a few trials.
We have found thatTf = 5 · 10−10 was appropriate for
all the experiments presented in this correspondence.

• Finally, two internal parameters are sensitive and crucial
for our algorithm, namely the radius of explorationr and,
in a least measure, the starting temperatureT0 of the local
stochastic search. The first one was set in order to locally
explore a solution whose luminance values are close to
the initial solution given by the gradient minimization
procedure (a valuer = 0.04 ensures that the final solution
will exhibit output luminance values, centered around the
gradient estimation±0.04∗255 = ±10 luminance values
for a final luminance image whose luminance values are
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Fig. 6. Algorithm D. transfer procedure of the edge textural properties
belonging to an image to another. From top to bottom and left to right.
Original image and a set of pairs of images including a drawing style
(respectively, the ink painting, sanguine, pointillist and painting style) and
the obtained transfer result with Algorithm D (withnt = 3).

comprised in[0 : 255]. T0 is set in order to ensure that,
at the beginning of the stochastic search, approximately
50% of sites change their luminance values between two
complete image sweeps.

E. Algorithm

The computational times of our procedure vary greatly
depending on the shape of the input and target edge histograms
(i.e., between10 and 300 seconds) for an AMD Athlon
64 Processor 3500+,2.2 GHz, 2010.17 bogomips and non-
optimized code running on Linux. Besides, it must be noted
than our energy minimization can be efficiently implemented
by using the parallel abilities of a graphic processor unit (GPU)
(embedded on most graphics hardware currently available on
the market) and can be greatly accelerated (up to a factor of
200) with a standard NVIDIAc©GPU (2004) as indicated in
[16]. Source code (in C++ language) and pseudo-code of our
algorithm with the set of original and presented images (and
some additional images) are publicly available at the following
http address www.iro.umontreal.ca/∼mignotte/ ResearchMate-
rial/obehs in order to make possible eventual comparisons with
future algorithms and visual comparisons.

V. CONCLUSION

In this correspondence, we have presented an original edge
histogram specification model. Our approach is based both on
a strict ordering relation between each pair of pixels (existing
in the input image and separated by a given distance) followed
by a hybrid optimization process (i.e., a deterministic global
gradient followed by a stochastic local search) especially

Fig. 7. From top to bottom: magnified region of the image shownat Fig.
5a for a single color histogram specification strategy and our edge and color
histogram specification method. Texture transfer technique using the input
image shown at top of Fig. 6 and a drawing style and exploitingonly a single
color histogram specification strategy (to be compared to the results shown
in Fig. 6, last row).

well suited to our energy based edge histogram specification
model. Concretely, this energy based model iteratively and
geometrically distorts the edge structure of the input image
during the minimization process, in order to transform its
edge histogram, as much as possible, to another desired edge
histogram. Several applications of this model, such as a detail
exaggeration procedure, an edge high-boost or enhancement
filter and a texture transfer technique, have been presented
and discussed.
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