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Abstract
There has been a lot of interest of late for programming languages
that incorporate features from dependent type systems and proof
assistants in order to capture in the types important invariants of
the program. This allows type-based program verification and is
a promising compromise between plain old types and full blown
Hoare logic proofs.

With the introduction of GADTs in GHC, such dependent typ-
ing is finally available in an industry-quality implementation, mak-
ing it possible to consider its use in large scale programs. One of the
most common examples of GADTs (after the proverbial List α n) is
to annotate a mini language with its typing rules, so we decided to
develop the toy example to a complete compiler whose main prop-
erty is that the GHC type checker verifies mechanically that each
phase of the compiler properly preserves types.

The use of typed intermediate languages is fairly common
nowadays, but is normally limited to testing that the generated
code is properly typed, whereas we get to verify formally that our
compiler indeed preserves typing. This has already been done to
some extent, but in proof assistants or experimental languages, and
usually limited to a particular phase (typically the CPS transfor-
mation), or else with a much more ambitious goal which requires
much more extensive proof annotations.

Other than guaranteeing that types are preserved, our compiler
has the following unusual characteristics: it uses Template Haskell
to get a type checker for free; it uses de Bruijn indices in its closure
conversion phase but higher-order abstract syntax (HOAS) in its
CPS conversion phase, so it includes a conversion to and from
HOAS.

General Terms

Keywords Compilation, Typed assembly language, de Bruijn,
Higher-Order Abstract Syntax

1. Introduction
While there is still a long way to go until they become as common
place as in digital systems, formal methods are rapidly improving
and gaining ground in software. Type systems are arguably the most
successful and popular formal method used to develop software,
even more so since the rise of Java. For this reason, there is a lot of
interest in exploring more powerful type systems to enable them to
prove more complex properties.

[copyright notice will appear here]

Thus as the technology of type systems progresses, new needs
and new opportunities appear. One of those needs is to ensure the
faithfulness of the translation from source code to machine code.
After all, why bother proving any property of our source code, if
our compiler can turn it into some unrelated machine code? One of
the opportunities is to use types to address this need. This is what
we are trying to do.

Typed intermediate languages have been used in compilers for
various purposes such as type-directed optimization [Leroy, 1992,
Tarditi et al., 1996, Shao, 1997a], sanity checks to help catch
compiler errors, and more recently to help construct proofs that
the generated code verifies some safety properties [Morrisett et al.,
1999, Hamid et al., 2002]. Typically those compilers represent
the source level types in the form of data-structures which have
to be carefully manipulated to keep them in sync with the code
they annotate as this code progresses through the various stages of
compilation. This has several drawbacks:

• It amounts to testing the compiler, thus bugs can lurk, unde-
tected.

• A detected type error, reported as an “internal compiler error”,
will surely annoy the user, who generally holds no responsibil-
ity for what went wrong.

• It incurs additional work, obviously, which can slow down the
compiler.

• Errors are only detected when we run the type checker, but
running it as often as possible slows down our compiler even
more.

To avoid those problems, we want to represent the source types of
our typed intermediate language as types instead of data. This way
the type checker of the language in which we write our compiler
can verify once and for all that our compiler preserves the typing
correctly. The compiler itself can then run at full speed without
having to manipulate and check any more types. Also this gives us
even earlier detection of errors introduced by an incorrect program
transformation, and at a very fine grain, since it amounts to running
the type checker after every instruction rather than only between
phases.

We believe that type preservation by a compiler is the perfect
example of the kind of properties that type systems of the future
should allow programmers to conveniently express and verify. Oth-
ers (e.g. [Chen and Xi, 2003]) have used typeful program repre-
sentations to statically enforce type preservation, but as far as we
know, the work presented here is the first attempt to do so using a
language so widely used and well supported as Haskell, for which
an industrial strength compiler is available. Also, to our knowledge,
this is the first time such a technique is applied to closure conver-
sion and hoisting.

This work follows a similar goal to the one of [Leroy, 2006,
Blazy et al., 2006], but we only try to prove the correctness of
our compiler w.r.t the static semantics rather than the full dynamic
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semantics. In return we want to use a more practical programming
language and hope to limit our annotations to a minimum such that
the bulk of the code should deal with the compilation rather than
its proof. Also we have started this work from the frontend and are
making our way towards the backend, whereas Leroy’s work has
started with the backend.

In an earlier article [Guillemette and Monnier, 2006], we pre-
sented the CPS phase of our compiler, which used a higher order
abstract syntax (HOAS) [Pfenning and Elliot, 1988] representation
of terms to render the type preservation proof easier. In this arti-
cle we present the closure conversion and function hoisting phases,
both of which use a first order representation of terms, using de
Bruijn indices. We found a first order representation to be easier to
use for closure conversion.

Our main contributions are the following:

• We show type-preserving CPS and closure conversions as well
as a function hoisting phase, all written in Haskell with GHC
extensions (mainly GADTs) and where the GHC type checker
verifies the property of type-preservation.

• We extend the classical toy example of a generalized algebraic
data type (GADT) representation of an abstract syntax tree, to a
full language with bindings, once using HOAS and once using
de Bruijn indices.

• We use higher-order abstract syntax (HOAS) in our interme-
diate representation, following [Washburn and Weirich, 2003],
and we show how to combine this technique with GADTs and
how to build such terms using Template Haskell [Sheard and
Jones, 2002].

• Our combination of GADTs with meta programming lets GHC
do the type checking of our source programs for us.

• We additionally show a type preserving conversion from strongly
typed HOAS terms into strongly typed first order terms using
de Bruijn indices.

Overview The source language we are compiling is a simple
call-by-value functional language currently limited to monomor-
phic types. The general compilation strategy follows the one used
in [Morrisett et al., 1999]: after parsing and type checking we first
fix the order of evaluation and make stack manipulation explicit
using a CPS conversion; then make the manipulation of closures
explicit using a closure conversion phase; then hoist all the func-
tions (which are now all closed) to the top-level; after that should
come register allocation and code generation, although we have not
implemented that part yet.

To let the Haskell type checker verify that we preserve types,
we need to make our types visible to Haskell’s type checker. The
way we do that is that instead of representing each intermediate
language using abstract data types like Exp, we use GADTs that
let us encode the typing rules of our languages and give our terms
types such as Exp t where t represents the source-level type of the
expression. Then we can express the type preservation property of
each phase by giving it a type such as ∀t.Expin t -> Expout t. To
be more precise since the type of the output code is related but may
be different from the type of the output code, the type of a phase
will be more like ∀t.Expin t -> Expout (f t) where f is a type-
level function that expresses how source-level types are changed by
this phase.

Outline This article is structured as follows: Section 2 briefly
presents the techniques used to represent our intermediate terms.
Section 3 gives an overview of the compiler. Then we show each
phase of the compiler in more details in Sec. 4, 5, 6, 7, and 8.
Section 9 concludes with related and future work.

2. Background
In this section we briefly introduce the techniques we use in the rep-
resentation of our intermediate terms, namely GADTs, HOAS, and
de Bruijn indices. GADTs provide a limited form of dependent typ-
ing sufficient to encode the typing rules of our source language, so
they are our main tool to express the typing preservation property.
HOAS and de Bruijn are two standard ways to represent variable
bindings, both of which are used in our compiler.

Generalized algebraic datatypes Generalized algebraic datatypes
(GADTs) [Xi et al., 2003, Cheney and Hinze, 2003] are a general-
ization of algebraic datatypes where the return types of the various
data constructors for a given datatype need not be identical – they
can differ in the type arguments given to the type constructor be-
ing defined. The type arguments can be used to encode additional
information about the value that is represented. For our purpose,
we primarily use GADTs to represent abstract syntax trees, and use
these type annotations to track the source-level type of expressions.
For example, consider some common typing rules:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2 Γ ` n : int

Using plain algebraic datatypes, we would represent object pro-
grams with a type such as the following:

data Exp where
Cst :: Int -> Exp
App :: Exp -> Exp -> Exp
. . .

where the source types of e1 and e2 are unconstrained. In contrast,
with GADTs, we can explicitly mention source types as type argu-
ments to Exp to encode the typing rule:

data Exp t where
Cst :: Exp Int
App :: Exp (t1 -> t2) -> Exp t1 -> Exp t2
. . .

This type guarantees that if we can construct a Haskell term of
type Exp t, then the source expression it represents is well typed: it
has some type τ , the source type for which t stands. Note that the
use of the arrow constructor (t1 -> t2) to represent function types
(τ1 → τ2) is purely arbitrary: we could just as well have used any
other type of our liking, say Arw t1 t2, to achieve the same effect.

While this example captures the essential feature of GADTs we
need, there remain non-trivial decisions to be made concerning the
way we use such annotations to track the type of binders as they are
introduced in syntactic forms like λ or let.

HOAS. Consider the typing rule for let-expressions:

Γ ` e1 : τ1 Γ, x :τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

With higher-order abstract syntax, this typing rule would be en-
coded as follows:

data Exp t where
Let :: Exp t1 -> (Exp t1 -> Exp t2) -> Exp t2
. . .

that is, binders in source programs would be represented by Haskell
binders – and thus there is not need for an explicit introduction
form for variable occurrences. As long as bindings in the source
language behave the same as bindings in Haskell, the technique
amounts to re-using Haskell’s (implicit) type contexts to impose
type constraints on source programs. The technique is particularly
concise, but its simplicity has a cost: explicit constraints on the
type context of a term cannot be expressed. For instance, we cannot
express the fact that a term is closed.

A Type-Preserving Compiler in Haskell 2 2007/8/22



De Bruijn indices. In contrast to HOAS, a first-order represen-
tation introduces variables explicitly. With de Bruijn indices, as
with HOAS, variables names are irrelevant, and variables are in-
stead represented as indices. The type associated with an index is
drawn from an explicit type argument (ts) to Exp, which is a list of
types that represents the expression’s type context:

data Exp ts t where
Bvar :: Index ts i t -> Exp ts t
Blet :: Exp ts s -> Exp (s, ts) t -> Exp ts t
. . .

A term of type Exp ts t is an expression that may refer to vari-
ables whose types are listed in ts. More precisely, a Haskell term
being of type Exp ts t implies that the source term it represents (e)
satisfies Γ ` e : τ , where the Haskell type t stands for the source
type τ , and the type ts reflects Γ.

An index of type Index ts i t represents a de Bruijn index
with index value i, whose type is t within the type environment ts.
Such indices are represented with type-annotated Peano numbers:

data Index ts i t where
I0 :: Index (t, ts) Tzero t
Is :: Index ts n t -> Index (t0, ts) (Tsucc n) t

where Tzero and Tsucc reify the natural numbers as types. Note
that individual indices are polymorphic in ts and t, and assume a
particular type given a particular type context ts.

3. Overview
As mentioned in the introduction, the source language we are com-
piling is a simple call-by-value functional language currently lim-
ited to monomorphic types. The general compilation strategy fol-
lows the one used in [Morrisett et al., 1999]. The general structure
of our compiler is as follows:

λ
typecheck−−−−−→ λ→

CPS
convert
−−−→ λK

de Bruijn
convert
−−−−→ λb

K

closure
convert
−−−→ λb

C
hoist−−→ λb

H

The first phase infers types for all subterms of the source program,
and all the subsequent ones are then careful to preserve them. In
this section we will briefly show what each of those phases does to
the code and the types.

3.1 Type checking: AST -> ∃t.Exp t

The type checking phase takes a simple abstract data type AST,
then it infers and checks its type t, and returns a GADT of type
Exp t which does not just represent the syntax any more but a
proof that the expression is properly typed in the form of a type
derivation. In order for the CPS phase to more closely match the
natural presentation, we make it work on a HOAS representation
of the code, so the type checking phase also converts the first order
abstract syntax (where variables are represented by their names)
to a HOAS (where variables are represented by meta variables)
at the same time. Constructing an efficient HOAS representation
generally requires some form of meta programming, so we use
Template Haskell for that phase, which gives us the type checker
for free.

3.2 CPS conversion: Exp t -> ExpK (cps t)

Conversion to continuation-passing style (CPS) names all interme-
diate results and makes the control structure of a program explicit.
In CPS, a function does not return a value to the caller, but in-
stead communicates its result by applying a continuation, which
is a function that represents the “rest of the program”, that is, the
context of the computation that will consume the value produced.
Additionally a special form halt is used to indicate the final “an-

swer” produced by the program. For example:

let a = 1.8
b = 32
c = 24
c2f = λx . a · x + b

in c2f c

CPS
=⇒

let a = 1.8
b = 32
c = 24
c2b = λ〈x, k〉 .

let v0 = a · x
v1 = v0 + b

in k v1

in c2b 〈c, λv . halt v〉

For an input expression of type Exp t the output type should be
ExpK (cps t) where cps is a type-level function that describes the
way types are modified by this phase: mostly input types of the
form t1 -> t2 are mapped to (t′1 * (t′2 -> Z)) -> Z where Z is
the void type.

3.3 Conversion to de Bruijn: ExpK t -> ExpKB ts t

While HOAS is convenient for the CPS conversion, it cannot be
used (or is at least impractical) in the closure conversion, so we
switch representation mid-course from λK to λb

K where the only
difference is the representation of variables, which uses de Bruijn
indices. Among other things this forces us to make the type envi-
ronment explicit in the type of our terms. So for an input expression
of type ExpK t, meaning the represented expression has type t in
the current context, the return value will have type ExpKB ts t,
which means it represent an expression of type t but this time in a
type environment codets. Making the type environment explicit is
crucial when we need to express the fact that a particular expres-
sion is closed, which is the key property guaranteed by the closure
conversion and used by the hoisting phase.

3.4 Closure conv: ExpKB ts t -> ExpC (map cc ts) (cc t)

Closure conversion makes the creation of closures explicit. Func-
tions are made to take an additional argument, the environment, that
captures the value of its free variables. A closure consists of the
function itself, which is closed, along with a copy of the free vari-
ables forming its environment. At the call site, the closure must be
taken apart into its function and environment components and the
call is made by passing the environment as an additional argument
to the function. For example, the above CPS example code will be
transformed by the closure conversion into the following code:

let a = 1.8
b = 32
c = 24
c2f = closure λ〈〈x, k〉, env〉 . let v0 = env.0 · x

v1 = v0 + env.1
〈kf , kenv〉 = open k

in kf 〈v1, kenv〉
〈a, b〉

〈c2ff , c2fenv〉 = open c2f
in c2bf 〈〈c, closure (λ〈v, env〉 . halt v) 〈〉〉, c2fenv〉

Note that usually (as in [Morrisett et al., 1999]) closures are rep-
resented as existential packages, whereas we use special purpose
constructs closure and open specifically to avoid introducing gen-
eral existential in our language. We intend to add polymorphism
and existential types to our source language, but this is a non-trivial
future extension.

3.5 Hoisting: ExpC ts t -> ExpH ts t

After closure conversion, λ-abstractions are closed and can be
moved to the top level. This phase is conceptually trivial, but a bit
less so from a typing point of view which is why it also deserves a
section of its own. The previous example after hoisting will look as
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follows:

let `0 = λ〈〈x, k〉, env〉 . let v0 = env.0 · x
v1 = v0 + env.1
〈kf , kenv〉 = open k

in kf 〈v1, kenv〉
`1 = λ〈v, env〉 . halt v
a = 1.8
b = 32
c = 24
c2f = closure `0 〈a, b〉
〈c2ff , c2fenv〉 = open c2f

in c2bf 〈〈c, closure `1 〈〉〉, c2fenv〉

4. Type checking
Having the front-end produce HOAS raises the issue of residual
redexes in the program representation. That is, a direct implemen-
tation leads to things like recursive calls to the parser hidden inside
closures of functional arguments to constructors with functional ar-
guments, like those for λ or let – with dramatic consequences on
performance. This motivates the use of Template Haskell, a meta-
programming facility for Haskell bundled with GHC, to generate a
fresh HOAS representation to feed into subsequent phases. By so
doing, we also get a source-level type-checker for free.

Our compiler employs a conventional parser producing first-
order abstract syntax, and then “lifts” the program to HOAS
through a Template Haskell function. The latter has type:

lift :: AST -> ExpQ

where AST is the first-order representation, and ExpQ is the Template
Haskell type for representing Haskell expressions. Special syntax is
provided that renders the implementation of lift similar to Scheme
code with quasi-quotations. The main driver of the compiler has the
form:

compile program_text =
let ast = parse program_text

exp = $(lift ast)
in (hoist . cc . toB . cps) exp

where $(−) is a special form for applying Template Haskell func-
tions. In essence, lift rewrites the source program in Haskell, in
terms of the constructors that define our HOAS representation. If
the resulting Haskell code is well-typed, then so is the source pro-
gram.

5. CPS conversion
CPS conversion is relatively straightforward and allows us to
demonstrate the basic elements that constitute the approach taken
in all transformation phases, based around the pairing of GADT-
encoded type correspondence witnesses along with the produced
code. It is also a nice showcase of the elegance of HOAS. In com-
parison to de Bruijn indices as used in the closure conversion and
hoisting phases, HOAS relieves us from any index-mangling code
that tend to clutter the code with unwanted detail. We can even ob-
tain a lightly optimizing CPS transform (eliminating administrative
redexes on-the-fly) with very little effort.

The source and target languages of the CPS conversion are
formalized in Fig. 1. The source language (λ→) is a simply typed,
call-by-value λ-calculus, with a non-recursive let-form and integers
as a base type. Its static and dynamic semantics are standard and are
not reproduced here. However we will henceforth refer to a typing
judgement Γ ` e : τ over λ→ expressions, assuming standard
definitions.

The target language (λK) differs from λ→ in that its syntax is
split into two syntactic categories of expressions and values. Val-

Source language (λ→)

(types) τ ::= τ1 → τ2 | int
(type env) Γ ::= • | Γ, x :τ

(primops) p ::= + | − | ·
(exps) e ::= x | let x = e1 in e2 | λx . e | e1 e2 | n

| e1 p e2

CPS language (λK)

(types) τ ::= τ → 0 | τ1 × · · · × τn | int
(type env) Γ ::= • | Γ, x :τ

(values) e ::= x | λx . e | 〈e0, . . . , en−1〉 | e.i
(exps) e ::= let x = v in e | let x = v1 p v2 in e | v1 v2

| if0 v e1 e2 | halt v

Figure 1. Source and target languages of CPS conversion

KtypeJintK = int
KtypeJτ1 → τ2K = (τ1 × (τ2 → 0)) → 0

KJxK κ = κ x
KJλx . eK κ = κ (λ〈x, c〉 . KJeK c)
KJe1 e2K κ = KJe1K (λx1. KJe2K (λx2. x1 〈x2, κ〉))

. . .

Figure 2. CPS conversion

ues represent those things that can be bound to a variable: either
another variable, or the introduction forms for functions, integers
or pairs. Expressions consist of a list of declarations (introduced by
let forms), followed by either a function application, a conditional
expression, or the special form halt, which indicates the final “an-
swer” produced by the program. The fact that a function does not
return to the caller is reflected in its type as τ → 0. We will refer
to typing judgements Γ K̀ e over λK expressions and Γ K̀ v : τ
over λK values, again assuming standard definitions.

The usual call-by-value CPS conversion is shown in Fig. 2.
In the next section, we discuss how this transformation preserves
types.

5.1 Type preservation
In its simplest form, type preservation states that if a program is
well-typed in λ→, then the program after CPS conversion will also
be well-typed:

THEOREM 5.1. (CPS type preservation) If • ` e : τ , then • K̀

KprogJeK.

In order to prove this theorem, it is useful to prove a stronger
property that establishes the correspondence between the types in
λ→ and those in λK . We can state this correspondence formally as
follows:

THEOREM 5.2. (λ→–λK type correspondence) If • ` e : τ , then
• K̀ λc. KJeK c : (KtypeJτK → 0) → 0.

Note that the expression in CPS is “wrapped” into a λ-abstraction
and thus turned into a value, so that it can be given a type.

5.2 Implementation
Encoding type correspondence At first approximation, by apply-
ing the Curry-Howard isomorphism, the type correspondence prop-
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erty of the CPS transform (Theorem 5.2) might be reflected in the
type of its implementation in this way:

cps :: Exp t -> (ValK KtypeJtK -> ExpK) -> ExpK

where Exp represent λ→ terms, and ValK and ExpK represent λK
values and expressions, respectively. Here, indeed, we abuse no-
tation by using KtypeJ−K in a Haskell type expression – we can-
not express KtypeJ−K directly since Haskell lacks intensional type
analysis at the level of types [Harper and Morrisett, 1995, Trifonov
et al., 2000]. In the absence of this feature, we encode the relation
between a type and its converted form using yet another GADT:

data CpsForm t cps_t where
CpsInt :: CpsForm Int Int
CpsFun :: CpsForm s cps_s -> CpsForm t cps_t

-> CpsForm (s -> t)
((cps_s, cps_t -> Z) -> Z)

A term of type CpsForm t cps t represents a proof that cps t =
KtypeJtK, and the type of cps would rather be:

cps :: Exp t ->
(∃cps_t. (CpsForm t cps_t,

(ValK cps_t -> ExpK) -> ExpK))

Constructing and examining such witnesses is indeed cum-
bersome. In particular, it requires that we prove separately that
KtypeJ−K is indeed a function:

cpsUnique :: CpsForm t cps_t -> CpsForm t cps_t’
-> Equal cps_t cps_t’

data Equal a b where
Eq_refl :: Equal a a

This fact is needed, for example, when converting a function
application, where we need to convince the type checker that the
converted function and its actual argument agree in types. In the
remainder of this paper, we will freely use functions like KtypeJ−K
in type expressions, with the implied meaning of using explicit
witnesses in the actual implementation.

Concrete representation When saying that it would be repre-
sented in this way:

data Exp t where
Let :: Exp t1 -> (Exp t1 -> Exp t2) -> Exp t2
. . .

we overlooked a number of details of the concrete representation.
In practice, we would rather use a type like this one:

data ExpF (α t) where
Let :: α t1 -> (α t1 -> α t2) -> ExpF (α t2)
. . .

type Exp α t = Rec ExpF α t

where Rec plays the role of a fixed-point type operator. A term
of source type t would be represented as a Haskell term of type
∀α. Exp α t (where the parametricity in α rules out exotic terms.)
The type Exp comes equipped with an elimination form (the “cata-
morphism”), whose type is

cata :: (∀t. (ExpF (β t) -> β t))
-> (∀t. (∀α. Exp α t) -> β t)

Intuitively, the type β stands for “the result of the computation”
over the source term (indexed by source type). In the case at hand,
we obtain cps by applying cata with β t instantiated at the type:

type CPS α t = (ValK α KtypeJtK -> ExpK α) -> ExpK α

(type env) Γ ::= • | τ, Γ

(values) v ::= λ e | j | . . .
(exps) e ::= let v in e | let v1 p v2 in e | . . .
(indices) j ::= i0 | i1 | . . .

Figure 3. The CPS language in de Bruijn form (λb
K)

let a = 1.8
b = 32
c = 24
c2b = λarg . let x = arg.0

k = arg.1
v0 = a · x
v1 = v0 + b

in k v1

in c2b 〈c, λv . halt v〉

=⇒

let 1.8
32
24
λ let i0.0

i1.1
i5 · i1
i0 + i5

in i2 i0
in i0 〈i1, λ halt i0〉

Figure 4. Example program converted to de Bruijn indices

Syntactic classes Ideally, we would like to define ValK and ExpK

as two separate, mutually recursive types. However our fixed point
operator (Rec) can only be applied to a single type, so instead we
use the same type for the two syntactic categories:

data V t
data ExpKF a where

-- values
KVnum :: Int -> ExpKF (a (V Int))
KVlam :: (a (V s) -> a Z) -> ExpKF (a (V (s -> Z)))
-- expressions
Klet :: a (V t) -> (a (V t) -> a Z)

-> ExpKF (a Z)
. . .

type ValK a t = Rec ExpKF a (V t)
type ExpK a = Rec ExpKF a Z

As can be seen, the distinction between expressions and values
is actually not lost: we take advantage of the GADTs to recover this
distinction by encoding the corresponding syntactic constraints as
type constraints: values have source type V t whereas expressions
have source type Z, so types statically enforce that constructors
for values cannot appear where an expression is expected and vice
versa.

Danvy and Filinski’s CPS transform Our compiler actually im-
plements Danvy and Filinski’s one-pass CPS conversion [Danvy
and Filinski, 1992], where administrative redexes are reduced on-
the-fly. As shown in [Washburn and Weirich, 2003], it can be con-
veniently implemented by adding an extra component to the result
of cps, that expects an object-level continuation (cps-obj) instead
of a meta-level one (cps-meta):

type CPS α t =
((ValK α KtypeJtK -> ExpK α) -> ExpK α, – cps-meta
ValK α (KtypeJtK -> Z) -> ExpK α) – cps-obj

6. Conversion to de Bruijn indices
This section addresses the task of converting HOAS to de Bruijn
form. We refrained from the temptation to let Template Haskell do
the work, as we did for type checking, since the performance argu-
ment does not really hold here. The exercise led us to realize that
the lack of explicit type contexts in the higher-order representation
rules out fully static checking of this conversion’s type safety, as
discussed below.

A Type-Preserving Compiler in Haskell 5 2007/8/22



The differences between the original CPS language (λK) and its
de Bruijn variant (λb

K) are summarized on Fig. 3. A variable x is
represented by an index in: the index i0 refers to the nearest binder
(irrespective of whether it is introduced by λ or let), i1 refers to the
second nearest binder, etc. The syntactic constructs for let and λ
do not mention variable names. Type environments take the form
τ0, . . . , τn−1, •, meaning that each index in scope ik has type τk.

The effect of translating λK into λb
K is illustrated on Fig. 4,

where it is applied the CPS-converted example program. The two
programs are line-by-line equivalent.

Implementation The key point in converting to de Bruijn indices
is that a index simply reflects the difference between the type
context Γ where the variable is defined, and the context Γ′ where
the variable is used. As in Section 5.2, the conversion operates
over a HOAS representation, so the implementation is obtained by
applying the appropriate catamorphism (here, λK’s). This time, the
result of the computation has type:

β t = ∀ts. EnvRep ts -> ExpKb ts t

where ts is a Haskell type that stands for Γ, EnvRep ts reifies this
context as a Haskell term, and ExpKb ts represents a well-typed λb

K
expression in type context Γ.

By parameterizing the resulting term by the type context, we
are able to compare the type context where the binder is introduced
and the context where the variable occurs. The difference in length
between the two contexts tells us the de Bruijn index to put in place
of the variable:

mkIndex :: Ctxrep (t, ts) -> CtxRep ts’
-> ∃i. Index ts’ i t

where ts and ts’ are the Haskell types that stand for Γ and Γ′.
For mkIndex to succeed, Γ′ must actually be an extension of Γ,
in the sense that new types may have been added to the initial
context Γ to form the new context. Although it is indeed expected
to always be the case, the types we use do not statically guarantee
it; in consequence, mkIndex needs to compare the common part of
ts’ and (t, ts) to prove that they match.

Limitations This explicit comparison of type contexts is far from
satisfactory. This indeed is testing, not verification – but can we do
better?

In HOAS, the body of the let is represented by a function of
type α s -> α t. Given this type, the relationship between the
initial static context and the context at the point where a variable
occurs simply cannot be expressed. The best we can do is to have
ts appear in α, thus in effect propagating ts unchanged. This does
not express how ts gets extended as binding forms are traversed.

Thus, to explicitly capture context extensions in HOAS would
require deep changes to the representation. The conversion to de
Bruijn being an artifact introduced as a consequence of our subjec-
tive choice of encoding, we found little motivation to look deeper.
We leave it to future work to investigate a HOAS representation
that would uncover a closer relationship to a typed de Bruijn repre-
sentation as used here.

7. Closure conversion
The implementation of closure conversion turns out to be substan-
tially more involved than CPS conversion. One reason for this is
that the type of the output term depends on the result of a program
analysis (computing the free variables) – this is in contrast to CPS
conversion which is a direct, purely syntax-directed transformation.
Another source of complexity is the use of de Bruijn indices, as it
forces us to spell out the type safety proof in greater detail and to
structure the algorithm in a somewhat peculiar manner. In counter-
part, the resulting implementation has far improved precision w.r.t

(types) τ ::= closure τ | . . .
(values) v ::= closure ef eenv | . . .
(exps) e ::= let open e1 in e2 | . . .

Typing rules:

• C̀ ef : (τ × τenv) → 0 Γ C̀ eenv : τenv

Γ C̀ closure ef eenv : closure τ

Γ C̀ e1 : closure τ τenv, (τ1 × τenv) → τ2, Γ C̀ e2

Γ C̀ let open e1 in e2

Figure 5. The target language of closure conversion (λb
C)

CbJiKm = m i
CbJlet e1 in e2Km = let CbJe1Km

in CbJe2K(i0 : map shift m)
CbJλ eKm = closure (λ ebody) eenv

where (m′, [j0, . . . , jn−1]) = mkEnv (tail (fvs e))
ebody = let i0.0 (original argument)

i1.1 (environment)
in CbJeK(i1 : map (λj . i0.j) m′)

eenv = 〈m j0, . . . , m jn−1〉

mkEnv [] j = ([], [])
mkEnv (False, b1, . . . , bp) j = ((⊥: m), [j0, . . . , jn−1])
mkEnv (True, b1, . . . , bp) j = ((n : m), [j0, . . . , jn−1, j])

where (m, [j0, . . . , jn−1]) = mkEnv [b1, . . . , bp] (j + 1)

fvs e = [b0, . . . , bn−1 | bi = True if ii appears in e;
False otherwise]

shift in = in+1

shift in.k = in+1.k

Figure 6. Closure conversion over λb
K

let a = 2
b = 4
c = 7
d = 8

in λx . a · x + c

let a = 2
b = 4
c = 7
d = 8

in closure (λarg . let x = arg.0
env = arg.1
a = env.0
c = env.1

in a · x + c)
〈a, c〉

let 2
4
7
8

in λ i4 · i0 + i2

⇓CbJ−K−

let 2 4 7 8
in closure (λ let i0.0

i1.1
in i0.0 · i1 + i0.1)

〈i3, i1〉

Figure 7. Example of closure conversion with variable names
(left) and de Bruijn indices (right)
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binders. It neatly captures not only the correspondence between the
type of the input and output terms, but also the one that holds be-
tween a closure’s environment and its functional part as they are
constructed, a central point for proving type safety.

We proceed as follows: We first argue in favour of de Bruijn
indices for the purpose of closure conversion and hosting, and then
present the algorithm and illustrate its workings by applying it on
a simple program, before going through the salient features of its
Haskell implementation.

Justifications Although our initial intent was to use HOAS
throughout all compilation phases, we soon realized that doing
so for closure conversion and hoisting had a price we were not
willing to pay:

1. The fact that HOAS does not represent variables explicitly has
the unfortunate consequence that variables cannot be identified:
given two variables a and b, we cannot (directly) determine
whether the two variables are actually the same – which is
essential for closure conversion. To recover this ability, one
needs to somehow “inject” identity into variables, for example
by annotating binders with some sort of names or indices.
This approach tends to negate the chief advantages of HOAS,
namely its conciseness and elegance. One would argue that such
an “augmented” representation makes HOAS degenerate into
something actually more complex than de Bruijn indices.

2. The fact that HOAS handles type environments implicitly pre-
cludes explicit constraints on type contexts, such as terms being
closed. However, the hoisting transformation actually relies on
the fact that functions inside closures are closed.

This is not to say that closure conversion over HOAS is im-
possible, but doing so would inevitably involve non-conventional
extensions to the basic representation. So we settled for de Bruijn
indices, conceding a little ground in elegance and conciseness: The
result of this re-structuring is the algorithm shown in Fig. 6, care-
fully formulated to make it typeable.

The algorithm The target language of closure conversion (λb
C ,

shown in Fig. 5) extends λb
K with syntactic forms for constructing

and opening closures. We will refer to typing judgements Γ C̀ e
over λb

C expressions and Γ C̀ v : τ over λb
C values; these

judgements enforce a type system identical to that of λb
K, with the

addition of the typing rules for closures (as shown).
The closure conversion algorithm is defined in Fig. 6, where

CbJeKm denotes the closure-converted form of a λb
K expression

e given local variables map m. The map m, for a source term
with n variables in scope, has form [e0, . . . , en−1], where ek gives
the local binding in the target program for source variable ik.
In general, ek will be either a de Bruijn index (when ik is a
local variable of the function being converted) or a projection of
the environment (when ik is a free variable.) The definition of
CbJ−K− refers to auxiliary functions mkEnv and fvs that are used
for constructing the map m when forming closures.

To illustrate how this works, we’ll go through the closure con-
version of a simple program. For simplicity, the example is written
in direct style rather than CPS; there is non loss of generality, as
there is basically no interaction between our CPS and closure con-
version phases. The example is shown in Fig. 7. It is shown with
variable names on the left, so as to make it easier to follow. The
first step computes the free variables:

fvs (i4 · i0 + i2) = [True, False, True, False, True]

meaning that i0 appears in the term, and so do i2 and i4, but
not i1 or i3. Next is the construction of the environment and the
corresponding local variables map, which is handled by mkEnv.

CtypeJintK = int
CtypeJτ → 0K = closure CtypeJτK

CenvJ•K = •
CenvJτ, ΓK = CtypeJτK, CenvJΓK

Figure 8. Correspondence between types (en environments) in λb
K

and λb
C .

We have:

(m′, [j0, . . . , jn−1]) 0
= mkEnv (tail (fvs (i4 · i0 + i2))) 0
= mkEnv (tail [True, False, True, False, True]) 0
= mkEnv [False, True, False, True] 0
= ([⊥, 1,⊥, 0], [i3, i1])

The second component ([i3, i1]), simply enumerates the source
indices to be put in the environment. The first one, m′, maps vari-
ables in scope in the function’s body (except the function’s origi-
nal argument, i0) to corresponding projections of the environment.
From this m′, CbJ−K− constructs a map in which to interpret the
function’s body:

(i1 : map (λj . i0.j) m′) = [i1,⊥, i0.1,⊥, i0.0]

Finally, the function’s body can be converted:

CbJi4 · i0 + i2K[i1,⊥, i0.1,⊥, i0.0] = i0.0 · i1 + i0.1

7.1 Type preservation
As for the CPS transform, type preservation states that closure
conversion takes well typed programs to well typed programs:

THEOREM 7.1. (CC type preservation) For any λb
K expression e,

if • K̀ e, then • C̀ CJeK.

In reality, there is a close correspondence between types in LS

and those in LC . That correspondence between types (and type
environments) is captured by the relation CtypeJ−K (and CenvJ−K)
defined in Fig. 8.

We can now be more precise about the type of the converted
term, and generalize the statement to open terms:

THEOREM 7.2. (CC type correspondence)

1. For any λb
K expression e, if Γ K̀ e, then Γ C̀ CenvJΓKCJeK, and

2. for any λb
K value v, if Γ K̀ v : τ , then CenvJΓK C̀ CJvK :

CtypeJτK.

The above theorem captures the key invariant that guarantees
type preservation: an index j of type τ in the source program is
mapped to an index j′ of type CtypeJτK in the target program. In
particular, when constructing a closure, every variable referenced
in the body of the closure is bound to a value (extracted from the
environment) of the expected type.

7.2 Implementation
This final section provides a brief outline of the way in which the
technical details of closure conversion over de Bruijn terms trans-
late into Haskell types. After reviewing the program representa-
tion, we define a notion of type-preserving maps over type contexts,
that serves as building block with which we construct the type of
CbJ−K− and, in turn, that of idfvs and mkEnv.

Program representation As mentioned above, a first-order rep-
resentation with explicit type contexts allows us to express the fact
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that functions inside closure are closed. In addition, GADT’s exis-
tential types can naturally be used to hide the type of the environ-
ment when forming a closure.

data ExpCb ts t where
CBVclosure :: ExpCb () ((s, env) -> Z)

-> ExpCb ts env
-> ExpCb ts (V (Closure s))

CBopen :: ExpCB ts (Closure s)
-> (forall env.

ExpCb (((s, env) -> Z, env), ts) Z)
-> ExpCb ts Z

. . .

Type-preserving maps Conceptually, a type-preserving map, of
type MapT ts c, associates each index of type Index ts i t with
a value of type c t.

data MapT ts c where
M0 :: MapT () c
Ms :: c t -> MapT ts c -> MapT (t, ts) c

For example, a type-safe evaluator over de Bruijn expressions
might be given the type:

eval :: MapT ts Value -> ExpS ts t -> Value t

where the evaluation environment (MapT ts Value) maps each
variable in scope (of type τ ) to a value of the corresponding type
(of type Value τ .) The type MapT supports the usual functions over
associative lists:

lookupT :: MapT ts c -> Index ts i t -> c t
updateT :: MapT ts c -> Index ts i t -> c t

-> MapT ts c

Type correspondence Again, we encode the correspondence be-
tween the type τ (for which t stands) and its converted form
CtypeJτK (for which cc t stands) using a GADT:

data CC_type t cc_t where
CCint :: CC_type Int Int
CCfun :: CC_type s cc_s -> CC_type t cc_t

-> CC_type (s -> t) (Closure cc_s cc_t)

and encode correspondence on type environments (CenvJ−K) simi-
larly.

The function CbJ−Km receives a source term (in context ts) and
a local variables map (mapping ts indices to indices in some target
context ts’), and produces an expression (in the target context ts’).
Its type is the following:

cc :: ExpS ts t
-> MapT CenvJtsK (SomeIndex ts’)
-> ExpC ts’ CtypeJtK

where SomeIndex ts t is a type that abstracts away from the nu-
meric value of the target index:

type SomeIndex ts t = ∃i. Index ts i t

The map’s domain is chosen to be CenvJtsK rather than ts in or-
der to get a type-safe mapping to variables in the closure converted
program. It dos not cause a technical problem, as ts and CenvJtsK
are indeed isomorphic.

Free variables The fvs function, given an expression, indicates
whether each index in scope appears in the expression. Its imple-
mentation produces its result in the type MapT:

fvs :: ExpS ts t -> MapT ts BoolT

where BoolT is a wrapper for the type Bool that has an extra type
argument t that is simply ignored:

(programs) p ::= letrec e0

...
en−1

in e

(indices) j ::= . . . | `n

Figure 9. Target language of the hoisting transformation (λb
H)

collect `m j = ([], j)

collect `m (λ e) = ([λ e′, em+1, . . . , en], `m)
where ([em+1, . . . , en], e′) = collect `m+1 e

collect `m (let e1 in e2) = ([em, . . . , en, en+1, . . . , ep],
let e′1 in e′2)

where ([em, . . . , en], e′1) = collect `m e1

([en+1, . . . , ep], e′2) = collect `n+1 e2

. . .

hoist e = letrec e0

...
en−1

in e′

where ([e0, . . . , en−1], e
′) = collect `0 e

Figure 10. Hoisting transformation (transforms λb
C into λb

H)

data BoolT t = BoolT Bool

Closure environment construction The function mkEnv in essence
consumes the list of free variables and produces two results: (1) a
local variables map, mapping each index in scope to a projection
of the environment, and (2) a list of indices to be packed in the
environment. There is of course a direct connection between the
two: the local variables map assumes a target context formed out
of the environment being constructed. We can readily express this
in types as follows:

mkEnv :: MapT ts BoolT
-> ∃env. (MapT CenvJtsK (SomeIndex env),

MapT env CenvJtsK)

8. Hoisting
The techniques developed for closure conversion are in large part
applicable to hoisting as well, and the implementation is structured
in a similar manner, but it is indeed simpler, as one would expect.

The target language is shown in Fig. 9. It extends λb
K with a syn-

tactic category of programs, providing a top-level letrec construct.
The letrec construct introduces a number of indices `0, . . . , `n−1;
the scope of all those indices spans the body of all the letrec-
bindings (e0, . . . , en−1) plus the program body (e). The binders
introduced by letrec (`0, . . . , `n−1) form a set of indices distinct
from those introduced by λ or let (that is, i0, i1 . . . ).

The hoisting transformation is shown in Fig. 10. The auxiliary
function collect, as its name implies, collects the λ-abstractions
contained in a source term. Its first argument `m indicates the
smallest unassigned index (that is, the smallest value of m for
which the binders `0 . . . `m−1 are already assigned to λ-abstractions,
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but `m is not.) The second argument gives the source term to con-
vert. The result of collect `m e is a pair consisting of:

1. a list of λ-abstractions em . . . en, where each ek is assigned
the binder `k, and each sub-term of ek that is λ-abstraction is
replaced by its assigned binder, and

2. the converted form of e, that is, e with each λ-abstraction
subterm replaced by its assigned binder.

8.1 Implementation
We first describe a program representation for λb

H, and then
outline the main features of the implementation of collect and
hoist, which mainly concern the way the types of the expressions
e0 . . . en−1 is constructed as collect proceeds.

Program representation The letrec construct of λb
H introduces a

number of bindings by listing the expressions (e0 . . . en−1) asso-
ciated with each respective binder (`0 . . . `n−1); the bundle of ex-
pressions (`0 . . . `n−1) can be represented with the usual type for
tuple formation (〈e0, . . . , en−1〉):

data Tuple ts t where
B0 :: Tuple ts ()
Bs :: ExpH ts s -> Tuple ts t

-> Tuple ts (s, t)

where the first type parameter, ts, reflects the De Bruijn context
of every expression in the tuple, and the second type parameter,
t, reflects the type of the tuple itself. To get a bundle of mutually
recursive terms, we take ts = t:

data Program t where
Letrec :: Tuple ts ts -> ExpH ts t -> Program t

Collecting λ-abstractions The parameter `m to the function
collect reflects the number of binders that have already been as-
signed λ-abstractions: when collect meets a λ-abstraction, it read-
ily assigns it to `m, knowing that it’s the smallest unused index.
Each time a λ-abstraction is assigned to a binder, the bundle of
terms to be put in the letrec grows by one – and we have to track
the type of the bundle of functions as it grows when recursive calls
to collect are made.

9. Related work
Closure conversion is a well-studied problem, both from a perfor-
mance point of view [Shao and Appel, 1994], as well as its inter-
action with types [Minimide et al., 1996, Morrisett et al., 1998].
For obvious reasons we use a fairly naive algorithm, and since our
source language is simply typed, we are not affected by the poten-
tial difficulties linked to closure conversion of polymorphic code.

There has been a lot of work on typed intermediate languages,
beginning with the TIL [Tarditi et al., 1996] and FLINT [Shao
and Appel, 1995, Shao, 1997b] work, originally motivated by the
optimizations opportunities offered by the extra type information.
[Necula, 1997] introduced the idea of Proof-Carrying Code, mak-
ing it desirable to propagate type information even further than the
early optimization stages, as done in in [Morrisett et al., 1999].

In [Shao et al., 2002], Shao et al. show a low-level typed in-
termediate languages for use in the later stages of a compiler, and
more importantly for us, they show how to write a CPS transla-
tion whose type-preservation property is statically and mechani-
cally verified, like ours.

In [Pasalic, 2004], Emir Pašalić develops a statically verified
type-safe interpreter with staging for a language with binding struc-
tures that include pattern matching. The representation he uses is
based on de Bruijn indices and relies on type equality proofs in
Haskell.

In [Chen and Xi, 2003], Chiyan Chen et al. also show a CPS
transformation where the type preservation property is encoded in
the meta language’s type system. They use GADTs in similar ways,
including the explicit manipulation of proof terms, but they have
made other design trade-offs: their term representation is first order
using de Bruijn indices, and their implementation language is more
experimental. In a similar vein, Linger and Sheard [Linger and
Sheard, 2004] show a CPS transform over a GADT-based repre-
sentation with de Bruijn indices; but in contrast to Chen’s work and
ours, they avoid explicit manipulation of proof terms by express-
ing type preservation using type-level functions. In [Guillemette
and Monnier, 2006], we showed the details of the CPS phase of
our compiler, where the distinguishing feature is the use of a term
representation based on HOAS and in [Guillemette and Monnier,
2007] we showed the details of our closure conversion phase where
we switched to de Bruijn indices.

In [Leroy, 2006], Leroy shows a backend of a compiler writ-
ten in the Coq proof assistant, and whose correctness proof is com-
pletely formalized. He uses a language whose type systems is much
more powerful than ours, but whose computational language is
more restrictive. This was pushed further to the front-end in [Blazy
et al., 2006]. The goal of that project is a lot more ambitious since
they prove that the dynamic semantics of the output programs are
faithful to their source code, whereas we only verify type preser-
vation. In [Chlipala, 2007], Chlipala presents a similar work which
is even closer to ours since his source language is also the simply
typed λ-calculus. There as well, the programming language used is
Coq and he focuses on dynamic semantics, although he also does
use a typed representation similar to ours (using de Bruijn indices).

In [Fegaras and Sheard, 1996], Fegaras and Sheard show how to
handle higher-order abstract syntax, and in [Washburn and Weirich,
2003], Washburn and Weirich show how to use this technique in a
language such as Haskell. We use this latter technique and extend it
to GADTs and to monadic catamorphisms. Recently, Brigitte Pien-
tka [Pientka, 2006] presented a new language where programming
in HOAS is made simpler by providing special support for it.

GADTs were introduced many times under many different
names [Xi et al., 2003, Cheney and Hinze, 2003, Sheard and
Pašalić, 2004]. Their interaction with type classes is a known prob-
lem in GHC and a possible solution was proposed in [Sulzmann
et al., 2007] and is in the process of being implemented.
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