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ABSTRACT. Object-relational databases will replace relational systems to become the next 
great wave of databases because they combine traditional database characteristics with 
object-oriented principle. So, it is fundamental to propose metrics for control the quality of 
this kind of databases. But metrics definition must be done in a methodological way, it is 
necessary to follow a number of steps for ensure the reliability of the proposed metrics. In this 
work, we present the method we apply for the metrics proposal (which is composed by metrics 
definition, formal verification and empirical validation) and how we have used it obtain 
metrics for object-relational databases. 
RÉSUMÉ. Les bases de données objet-relationnelles substitueront les systèmes apparentés pour 
devenir la prochaine grande vague des bases de données parce qu'elles combinent des 
caractéristiques traditionnelles de base de données avec le principe orienté a l’objet. Ainsi, il 
est fondamental proposer des métriques pour controller la qualité de ce genre de bases de 
données. Mais la définition de métriques doit être faite d'une voie méthodologique, il est 
nécessaire suivre un certain nombre d'étapes pour assurer la fiabilité de les métriques 
proposées. Dans ce travail, nous présentons la méthode que nous utilisons pour la 
proposition des métriques (qui se compose par définition de métrique, validation formelle et 
validation empirique) et comment nous l'avons utilisée pour obtenir  des métriques pour les 
bases de données objet-relationnelles.  
KEY WORDS. Object-relational databases, metrics, quality, theoretical validation, empirical 
validation. 
MOTS-CLÉS. Base de données objet-relationnelles, métriques, qualité, validation théorique, 
validation empirique. 
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1. Introduction 
 

Metrics for databases have been neglected in the metric community ([SNE 98]). 
Most all of the metrics proposed from the McCabe ([MCA 76]) famous cyclomatic 
number until today have been centered in measuring programs complexity. 
However, in modern Information Systems (IS) databases have become a crucial 
component,  so there is a need to propose and study some measures to assess its 
quality. It is important that databases are evaluated for every relevant quality 
characteristic using validated or widely accepted metrics. These metrics could help 
designers, to choose the most maintainable, among semantically equivalent alternative 
schemata. Moreover, the object-relational databases will replace relational systems 
to become the next great wave of databases ([STO 99]) so, it is fundamental to 
propose metrics for control the quality of this kind of databases. 

Database quality depends on several factors, one of which is maintainability ([ISO 
94]). Maintenance is considered the most important concern for modern IS department 
and requires greater attention by the software community ([FRA 92], [MCL 92], [PIG 
97]). Maintainability is affected by understandability, modifiability and probability 
which depend on complexity ([LI 87]). Three types of complexity can be distinguished 
(HEN 96]): human factor complexity, problem complexity and product complexity. We 
focus our work in this last kind of complexity. 

We have put forward different measures (for internal attributes) in order to measure 
the complexity that affects the maintainability (an external attribute) of the object-
relational  databases which is useful for control its quality.  

In this paper we present on section 2 the framework used for metrics definition, 
metrics proposed for object-relational databases come in section 3. In section 4 we 
present the formal verification of some of the metrics. We show two experiments 
made to validate our metrics in section 5, in this section both experiments and the 
results obtained for each one are described. Finally, conclusions and future work 
come on the last section. 

 
2. A Framework for Developing and Validating Database Metrics 

 
As we have said previously, our goal is to define metrics for controlling object-

relational databases maintainability, through metrics that capture complexity. But 
metrics definition must be done in a methodological way, it is necessary to follow a 
number of steps for ensure the reliability of the proposed metrics. Figure 1 presents 
the method we apply for the metrics proposal.  
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Figure 1. Steps followed in the definition and validation of the database metrics 

 

 

The first step is the metrics proposal. This step must be made taking into account 
the specific characteristics of the object-relational databases and the experience of 
database designers and administrators of these databases. One methodological way 
to made the metrics proposal is by following the Goal-Question-Metric (GQM) 
approach. The goal of this approach is based in the fact that any metric can be 
defined by a top-down design with three levels, the conceptual level (Goal) where 
the objectives are defined, the operational level (Question) where the questions are 
made and the quantitative level where the metrics are defined. In this way, the goal 
is defined by a set of questions and every question is redefined through a set of 
metrics.  

It is also important to validate the metrics from a formal point of view in order to 
ensure its usefulness. Several frameworks for measure characterization have been 
proposed. Some of them ([BRI 96], [WEY 88], [BRI 97]) are based on axiomatic 
approaches. The goal of these approaches is merely definitional by proposing 
formally desirable properties for measures for a given software attribute, so axioms 
must be used as guidelines for the definition of a measure. Others ([ZUS 98}) are 
based on measurement theory which specifies the general framework in which 
measures should be defined.  

However, into the aspects of software measurement, the research is needed ([NEI 
94]), from theoretical but also from a practical point of view ([GLA 96]).  So, it is 
necessary to do experiments to validate the metrics. Empirical validation can be 
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used to investigate the association between proposed software metrics and other 
indicators of software quality as maintainability ([HAR 98]). So, the goal of this step 
is to prove the practical utility of the proposed metrics. There are a lot of ways to 
made it but basically we can divide the empirical validation in two: experimentation 
and case studies. The experimentation is usually made using controlled experiments 
and the case studies usually work with real data. Both of them are necessary, the 
controlled experiments for having a first approach and the case studies for making 
the results stronger. In both cases, the results are analyzed using either statistics tests 
or advanced techniques.  Also is necessary the replication of the experiment because 
with the results isolate of an experiment it is difficult to understand how widely 
applicable the results are and, thus, to assess the true contribution to the field ([BAS 
99]). 

As we can see in figure 2, the process of defining and validating database metrics is 
evolutionary and iterative. As a result of the feedback metrics could be redefined of 
discarded depending of the theoretical, empirical or psychological validations. 

In the rest of this paper we will show the different steps of this framework applied to 
obtain metrics for object-relational databases. 

 

3. Object-relational metrics definition 

 
One of the problems of relational databases is related with representativeness 

limitations (complex elements which are present in several domain like graphics, 
geography are hard to represent). On the other hand, object oriented (OO) databases 
are not enough mature to be accepted. and it is really difficult to convert relational 
specialists and to convince managers to adopt this new paradigm with all the 
possible risks involved.  

From this point of view, object-relational paradigm proposes a good compromise 
between both worlds. Object-relational databases combine traditional database 
characteristics (data model, recovery, security, concurrency, high-level language, 
etc.) with object-oriented principles (e.g. encapsulation, generalization, aggregation, 
polymorphism, ...). These products offer the possibility of defining classes or 
abstract data types, in addition to tables, primary and foreign keys and constraints1, 
as do relational databases.  

Furthermore, generalization hierarchies can be defined between classes (super 
and subclasses) and between tables, subtables and supertables. Table attributes can 
be defined in a simple domain, e.g. CHAR(25), or in a user-defined class as a 
complex number or image. In Figure 2 we present an  example of two object-
relational tables definition. 

                                                           
1 In this first approximation constraints are not considered for measure purposes.  
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In this example we can notice that part of the data are expressed using relational 
concepts (tables, primary and foreign keys and references) and the other part using 
OO concepts (types, and methods). The richness of the resulting model somewhat 
increases its complexity ([STO 99]). For this reason it is very important to have 
metrics that allow for the complexity of this kind of databases to be controlled.  

 
CREATE TABLE subs( 
idsubs INTEGER, 
name VARCHAR(20), 
subs_add address, 
PRIMARY KEY (idsubs)); 
 
CREATE TABLE dep( 
iddep INTEGER, 
name VARCHAR(20), 
dep_loc location, 
budget DECIMAL (8,2), 
PRIMARY KEY (iddep)); 
 
CREATE TABLE subs-dep( 
idsubs INTEGER, 
iddep INTEGER 
PRIMARY KEY (idsubs,iddep), 
FOREIGN KEY idsubs REFERENCES subs(idsubs) 
FOREIGN KEY iddep REFERENCES dep(iddep)); 
 
CREATE TABLE employee( 
idemp INTEGER, 
name VARCHAR2(40), 
emp_date date, 
emp_loc location, 
emp_add address, 
manager INTEGER, 
dep INTEGER, 
PRIMARY KEY (idemp), 
FOREIGN KEY manager REFERENCES 
employee(idemp), 
FOREIGN KEY dep REFERENCES dep(iddep)); 

CREATE TYPE address AS( 
street CHAR(30), 
city CHAR(20), 
state CHAR(2), 
zip INTEGER); 
 
CREATE TYPE location AS( 
building CHAR(4), 
office CHAR(4), 
table CHAR(4); 
 
 
 

  

 

Figure 2. Example of table definition in SQL:1999 

 

 

For this kind of database we can propose table related metrics (when we apply the 
metrics to a table) and schema oriented metrics (when the metrics are applied to the 
schema).  
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3.1. Table level metrics 

At the table level we propose, being T a table, the metrics DRT(T), RD(T),  
PCC(T), NIC(T), NSC(T) and TS defined as follows: 

DRT(T) metric. Depth of Relational Tree of a table T (DRT(T)) is defined as the 
longest referential path between tables, from the table T to any other table in the 
schema database  

RD(T) metric. Referential Degree of a table T (RD(T)) is defined as the number of 
foreign keys in the table T. 

PCC(T) metric. Percentage of complex columns of a table T.  

NIC(T) metric. Number of involved classes. This measures the number of all classes 
that compose the types of the complex columns of T using the generalization and the 
aggregation relationships. 

NSC(T) metric. Number of shared classes. This measures the number of involved 
classes for T that are used by other tables. 

TS metric. The table size metric is defined as the sum of  the total size of the simple 
columns (TSSC) and the total size of the complex columns (TSCC), each of these 
complex columns can be a class or an user defined type UDT) in the table: 

TSCCTSSCTSi +=  

We consider that all simple columns have a size equal to one, then the TSSC 
metric is equal to the number of simple attributes in the table (NSA). 

NSATSSC =  

And the TSCC is defined as the sum of each complex column size (CCS): 

∑
=

=
NCC

i
iCCSTSCC

1
 being NCC the number of complex columns in the table. 

The value for CCS is obtained with: 

NCU
SHCCCS =  

Being SHC the size of the hierarchy above which the column is defined and 
NCU is the number of columns defined above this hierarchy. This expression is due 
to the fact that the understandablility is less if more than one column is defined 
above the same class. If the number of columns that are defined above a class is 
greater than one, the complexity of this class decreases (respect to each column, but 
not for the total columns) and this fact must be appointed when we calculate the 
complexity of a class. 
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The SHC may be defined as the sum of each class size in the hierarchy (SC): 

∑
=

=
NCH

i
iSCSHC

1

  being NCH the number of classes in the hierarchy. 

The size of a class is defined as:  

NHC
SMCSACSC +

=  

Being SAC the sum of the size attributes of the class, SMC the size methods of 
the class and NHC the number of hierarchies to which the class pertain. 

The attributes of a class may also be simple or complex (which can be a class or 
an UDT), then the SAC is defined as the sum of the simple attributes size (SAS, that 
have size equal to one then the metric corresponds with the number of simple 
attributes) and the complex attributes size (CAS) in the class. 

CASSASSAC +=  

And the SMC is calculated with the version of the cyclomatic complexity of 
McCabe given by ([LI 93]): 

∑
=

=
NMC

i
i GVSMC

1
)(  being NMC the number of methods in the class 

 

3.2. Schema level metrics 

At the schema level, we can apply the next metrics: 

DRT metric. Depth of referential Tree, defined of the longest referential path 
between tables in the database schema. 

RD metric. Referential Degree is defined as the number of foreign keys in the 
schema database. 

PCC metric. Percentage of complex columns in the schema database.   

NIC metric. Number of involved classes, number of all classes that composes the 
types of the complex columns, using the generalization and aggregation 
relationships, of all tables in the schema. 

NSC metric. Number of shared classes, number of shared classes by tables of the 
schema. 

SS metric. Size of a Schema defined as the sum of the tables size (TS) in the 
schema: 

∑
=

=
NT

i
iTSSS

1

 being NT the number of tables in the schema. 
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3.3. Example 

We present the values for the different metrics for the example presented in 
Figure 2. Let us assume that the date type has a size equal to one.  

We can calculate the values for the address and location classes as: 

5.1
2
3

2
2
4

==

==

location

address

CCS

CCS
 

And with these values we can obtain the values shown in table 1 for each column 
size of each table: 

 

 COLUMN 
NAME 

COLUMN TYPE COLUMN SIZE 

idsubs Simple 1 
name Simple 1 

 
SUBS 

subs_add Complex 2 
iddep Simple 1 
name Simple 1 

dep_loc Complex 1.5 

 
DEP 

budget Simple 1 
idsubs Simple 1  

SUBS_DEP iddep Simple 1 
idemp Simple 1 
name Simple 1 

emp_date Simple 1 
emp_loc Complex 1.5 
emp_add Complex 2 
manager Simple 1 

 
 
 

EMPLOYEE 

dep Simple 1 
 

 

Table 1. Size for each column 
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With these data, we obtain the following values for the table size metric:  

195.825.44

5.85.35

2
5.45.13

422

=+++=

=+=

=

=+=
=+=

−

SS

TS

TS
TS
TS

employee

depsucc

dep

succ

 

The other metrics for the tables are summarized in Table 2. 

 

 SUBS  DEP SUBS_DEP EMPLOYEE 
TS 4 4.5 2 8.5 
RD 0 0 2 2 

DRT 0 0 1 2 
PCC 33% 25% 0% 28.57% 
NIC 1 1 0 2 
NSC 1 1 0 2 

 

 

Table 2. Metric values for the example of Figure 2 

 

 

4. Object-relational metrics formal verification 

 
As we have said previously, it is important to validate the metrics from a formal 

point of view in order to ensure its usefulness and there are two main tendencies for 
making it: axiomatic approaches (the goal of these approaches is merely definitional 
by proposing formally desirable properties for measures) and the formal frameworks 
based on measurement theory which specifies the general framework in which 
measures should be defined.  

The strength of measurement theory is the formulation of empirical conditions 
from which we can derive hypothesis of reality. Measurement theory gives clear 
definitions of terminology, a sound basis of software measures, criteria for 
experimentation, conditions for validation of software measures, foundations of 
prediction models, empirical properties of software measures, and criteria for 
measurement scales.  
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In this section we present the formal verification of the TS, the RD and the DRT 
metrics made in the formal framework proposed by Zuse ([ZUS 98]) and based on 
the measurement theory. All the information related with this framework can be 
found in ([ZUS 98]). 

For our purposes, the Empirical Relational System could be defined as: 

R = (R, • >=,  o) 

Where R is a non-empty set of relations (tables), • >= is the empirical relation 
“more or equal complex than” on R and o is a closed binary (concatenation) operation 
on R. In our case we will choose natural join as the concatenation operation. Natural 
join is defined generally as ([ELM 99]) :  

    Q ← R (<list1>*,< list2>) S 

Where <list1> specifies a list of i attributes of R and <list2> is a list of i attributes of 
S. These lists are used in order to make the comparison equality conditions between 
pairs of attributes. These conditions are afterwards related with the AND operator. Only 
the list corresponding to the R relation is preserved in Q.  

Depending on the characteristics of the combined tables, natural join can derive in 
Cartesian product. Furthermore, it is possible to make the natural join through foreign 
key-primary key or between any columns of two tables defined over the same domain. 

All these characteristics of the natural join will be useful in order to design the 
combination rule of the metrics. 

 

4.1. TS metric formal verification 

The TS (Table Size) measure is a mapping:  TS: R -> ℜ such that the following 
holds for all relations Ri and Rj ∈ R: Ri • >= Rj ⇔ TS(Ri) >= TS(Rj). 

In order to obtain the combination rule for TS when we combine tables by natural 
join we may think that if the combined tables have not common columns, the attributes 
of the obtained table is the union of the attributes of the two table combined and  the 
size will be the sum of each attribute size, but if the tables have any common column, 
the size of the obtained tables will be the sum of each size attribute minus the size of the 
duplicate simple column (by definition we must subtract only the simple column size 
because on the size of a complex column is reflected if the hierarchy, among to which 
the column is defined, is shared by more than one column). 

So, we can define the combination rule for TS as: 

TS (Ri o Rj) = TS (Ri) + TS(Rj) – SASC(Ri∪Rj) 

Where SASC(Ri∪Rj)  is the size of the common simple attributes of Ri and Rj. 

We can rename this last expression as v (being v a variable) and define the 
combination rule for TS as: 

 TS(RioRj) = TS(Ri) + TS(Rj) - v 
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TS fulfils the first axiom of weak order, because if we have two relations R1 and 
R2, it is obvious that TS(R1) >= TS(R2) or TS(R2) >= TS(R1) (completeness) and let 
R1, R2 and R3 three relations, transitivity is always fulfilled: TS(R1) >= TS(R2) and 
TS(R2) >= TS(R3), then TS(R1) >= TS(R3). 

TS does not fulfil positivity, because if we combine a relation R1 with itself without 
cycles: TS(R1 o R1) is not greater than TS(R1). But it fulfils weak positivity , because 
it is always true that: TS(R1 o R2) >= TS(R1) for all R1, R2 ∈ R. 

TS fulfils associativity and commutativity (axioms 3 and 4) , because the natural 
join operation is associative and commutative. 

TS does not fulfil weak monotonicity because if we have two tables (R1 and R2) 
with the same number of attributes with the same size and we combine every one of 
these tables with a third table (R3) that has one common attribute with the first table 
(R1) and none common attribute with the second table (R2), the table that results of 
R1oR3 will have less size than the table that results of R2oR3. 

Due to the fact that the number of attributes vary when we combine one table 
with itself, we can conclude that the metric is not idempotent and is necessary to 
prove the Archimedean axiom. 

In order to prove that the Archimedean axiom is not accomplished is important 
to observe that when two tables are combined by natural join successively, the 
number of attributes vary and also the size. Moreover the tables obtained in 
successive concatenations will be the same than these obtained in the first 
concatenation. Then, if we have four tables R1, R2, R3 and R4, and R3 has three 
attributes and a size equal to three, R4 has two attributes and a size equal to two, R1 
has three attributes (one of them common with R3) and a size equal to three and R2 
has four attributes and a size equal to four, and we make the concatenation R3o R1 
(that is equal to the concatenation R3oR21oR1o...), obtaining a table with five 
attributes and a size equal to 5, and we make the concatenation R4 oR2 (that is equal 
to the concatenation R4oR2oR2o...), obtaining a table with six attributes and a size 
equal to six, the Archimedean axiom is not accomplished. 

So, measure TS does not assume an extensive structure. 

Would TS verify the independence conditions?. As we have seen the metric do not 
accomplish the axiom of  weak monotonicity, then it can accomplish neither 
independence conditions. 

In fact, this type of  combination rules do not assume the independence conditions. 
The part –v rejects the condition C1 that implies the rejection of the axiom of weak 
monotonicity, monotonicity and extensive structure. 

Then we must study if TS fulfils some of the modified relations of belief.  

MRB1 is fulfilled, because  giving two relations R1 and R2 ∈ ℑ (ℑ is the set of all 
the possible relations made with the attributes of the relational schema) TS(R1) >= 
TS(R2) or TS(R2) >= TS(R1).  
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MRB2 is also fulfilled (transitivity of natural join). For MRB3 we will consider that 
a relation R1  ⊇ R2 if all the attributes of R2 are present in R1. In this case it is evident 
that TS(R1) >= TS(R2), and MRB3 is fulfilled.  

MRB4 is fulfilled because if a relation R1 ⊃ R2 then TS(R1) > TS(R2) and TS(R1 
U R3) > TS(R2 U R3), being R1 ∩ R3 = φ. If the relations R1 and R3 do not have any 
attribute in common, adding the attributes of R3 to both R1 and R2, (if R1 subsumes 
R2), then the number of attributes of R1 and R3 is greater than the number of attributes 
of R2 and R3, and also their size.   

MRB5 is fulfilled because a relation must always have zero or more attributes, then 
the size must be equal or greater than zero. 

In summary, we can characterize TS as a measure above the level of the ordinal 
scale, assuming the modified relation of belief. 

The validation of the other metrics can be made following the same steps: 
defining the combination rule for the metric and proving the different properties in 
order to obtain the appropriate scale for the metric. 

 

5. Object-relational metrics empirical validation 

 
In this section, we present the experiment developed in order to evaluate whether 

the proposed measures can be used as indicators for estimating the maintainability of 
an OR database.  

 

5.1. Data Collection 

Five object-relational databases were used in this experiment with the average of 10 
relations per database (ranging from 6 to 13). These databases were originally relational 
ones. For the purpose of the experiment, they were redesigned as OR databases. A brief 
description of these databases is given in table 3. 

 

Database Number of 
tables 

Average 
attributes/table 

Average complex 
attributes/table 

Airlines 6 4,16 1,83 
Animals 10 2,7 0,6 
Library 12 2,91 0,75 
Movies 9 4,33 0,88 

Treebase 13 3,46 0,86 
 

 

Table 3. Databases used in the experiment 
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Five people participated in the experiment the first time we made it (Canadian 
experiment): one researcher, two research assistants and two graduate students. All 
of them are experienced in both relational databases and object-oriented 
programming. On the first experiment, one person did not complete the experiment, 
and we had to discard his partial results. So, in the replication (Spanish experiment) 
only four people made the experiment. Also all of them are experienced in both 
relational databases and object-oriented programming 

The people were given a form, which include for each table, a triplet of values to 
compute using the corresponding schema. These values are those of three measures 
TS, DRT and RD. Our idea is that to compute these measures, we need to 
understand the subschema (objects and relations) defined by the concerned table. A 
table (and then the corresponding subschema) is easy to understand if (almost) all 
the people find the right values of hte metrics in a limited time (2 minutes per table). 
We wanted to measure  understandability, we decided to give our people a limited 
time to finish the tests they had carry out and then, use all the tests that had been 
answered in the given time and in a correct way (following all the indications given 
for the development of the experiment). So, our study would focus on the amount of 
metrics correctly calculated. Formally, a value 1 is assigned to the maintainability of 
a table if at least 10 of 12 measures are computed correctly in the specified time (4 
people and 3 measures).  A value 0 is assigned otherwise. The tables are given to the 
people in a random order and not by database.  

 

5.2. Validation Technique 

To analyze the usefulness of the metrics proposed, we used two techniques: C4.5 
([QUI 93]), a machine learning algorithms and RoC ([RAM 99]), a robust Bayesian 
classifier.  

C4.5 belongs to the divide and conquer algorithms family. In this family, the 
induced knowledge is generally represented by a decision tree. The principle of this 
approach could be summarized by this algorithm: 

 

If the examples are all of the same class  

Then - create a leaf labelled by the class name; 

Else - select a test based on one attribute; 

 - divide the training set into subsets, each associated to one of the 
possible values of the tested attribute; 

   - apply the same procedure to each subset; 

Endif. 
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The key step of the algorithm above is the selection of the “best” attribute to 
obtain compact trees with high predictive accuracy. Information theory-based 
heuristics have provided effective guidance for this division process. C4.5 induces 
Classification Models, also called Decision Trees, from data. It works with a set of 
examples where each example has the same structure, consisting of a number of 
attribute/value pairs. One of these attributes represents the class of the example. The 
problem is to determine a decision tree that correctly predicts the value of the class 
attribute (i.e., the dependent variable), based on answers to questions about the non-
class attributes (i.e., the independent variables).  

In our study, the C4.5 algorithm partitions continuous attributes (the database 
metrics), finding the best threshold among the set of training cases to classify them on 
the dependent variable (i.e. understandability of the database schemes). 

RoC is a Bayesian classifier. It is trained by estimating the conditional 
probability distributions of each attribute, given the class label. The classification of 
a case, represented by a set of values for each attribute, is accomplished by 
computing the posterior probability of each class label, given the attributes values, 
by using Bayes’ theorem. The case is then assigned to the class with the highest 
posterior probability. 

The simplifying assumptions underpinning the Bayesian classifier are that the 
classes are mutually exclusive and exhaustive and that the attributes are 
conditionally independent once the class is known. RoC extends the capabilities of 
the Bayesian classifier to situations in which the database reports some entries as 
unknown. It can then train a Bayesian classifier from an incomplete database.  

One of the great advantages of C4.5 comparing to RoC is that, it produces a set 
of rules, directly understandable by software manager and engineers.  

 

5.3. Results 

As specified in validation technique section, we applied RoC and C4.5 to 
evaluate the usefulness of the OR metrics in estimating the maintainability of the 
tables in an OR schema. 

 

5.3.1. RoC technique 

Using the cross-validation technique, the algorithm RoC was applied 10 times on 
the 50 examples obtained from the 50 tables of the five schematas   (500 cases). 369 
cases were correctly estimated for the Canadian experiment (accuracy 73.8%) and 
407 cases for the Spanish one (accuracy 81.4%) and all the other cases in both 
experiments were missclassified. Contrary to C4.5, RoC does not propose a default 
classification rule which guaranteed a coverage of all the proposed cases. However, 
in this experiment, it succeeded to cover all the 500 cases (coverage of 100%).  
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These results are summarized in the table 4. 

 

 Spain Canada 

Correct: 407 369 

Incorrect: 93 131 

Not classified: 0 0 

Accuracy: 81.4 % 73.8 % 

Coverage: 100.0 % 100.0 % 

 

 

Table 4. RoC quantitative results with data from Spain and from Canada 

 

 

RoC produces the model presented in figure 5 with the Canadian data. From this 
model, it is hard to say which metric is more relevant than another in an absolute 
manner. However, we can notice that when TS is smaller, the probability that the table 
is understandable is higher (for example 55% for TS <= 3). This probability decrease 
when the table size increase (9.5% for TS >10). Inversely, the same probability increase 
in estimating the table that are not understandable (varying from 13.6% for TS <= 3 to 
33.6% for TS >10).  

For DRT and RD, it is hard to draw a conclusion since no uniform variation is 
shown. This can be explained by the fact that for the sample used in this experiment, the 
values of DRT and RD are in defined in a narrow range ([0, 3] and [0, 5]).  

RoC produces the model presented in figure 6 with the Spanish data. The 
conclusions from this second model are the same as the first one because the models are 
very similar. 
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Canadian Model 

TS 

 (1 . 3) (3 . 5) (5 . 10) (10 . 17.5) 
 0 0.136 0.193 0.336 0.336 
 1 0.543 0.233 0.129 0.095 
DRT 

 0 1 2 3 
 0 0.336 0.221 0.193 0.250 
 1 0.336 0.371 0.233 0.060 
RD 

 0 1 2 3 4 5 
 0 0.319 0.319 0.148 0.09 0.062 0.062 
 1 0.316 0.247 0.316 0.040 0.040 0.040 
PCC 

 (0 . 25) (25 . 80) 
 0 0.471 0.529 
 1 0.603 0.397 
NIC 

 0 1 2 3 4 5 6 
 0 0.257 0.114 0.229 0.143 0.143 0.057 0.057 
 1 0.517 0.241 0.069 0.034 0.069 0.034 0.034 

NSC 

 0 1 2 3 4 5 
 0 0.462 0.233 0.090 0.090 0.062 0.062 
 1 0.799 0.040 0.040 0.040 0.040 0.040 
 

 

Figure 5. The model generated by RoC with data from Canada 

 

 
Spanish Model 

TS 

 (1 . 3) (3 . 5) (5 . 10) (10 . 17.5) 
 0 0.095  0.129 0.405 0.371 
 1 0.507 0.279 0.107 0.107 
DRT 

 0 1 2 3 
 0 0.371 0.198 0.164 0.267 
 1 0.307 0.364 0.250 0.079 
RD 

 0 1 2 3 4 5 
 0 0.351 0.316 0.075 0.109 0.075 0.075 
 1 0.290 0.262 0.348 0.033 0.033 0.033 
 

 

Figure 6. The model generated by RoC with data from Spain 
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5.3.2. C4.5 technique 

The results obtained for the Canadian experiment are shown in table 5. The model 
of C4.5 was very accurate in estimating the maintainability of a table, 94% and resent a 
high level of completeness (up to 100% for not understandable tables) and correctness 
(up to 100% for understandable tables). 

 
  Predicted maintainability  
  0 1 Completeness 
Real 0 28 0 100% 
Maintainability 1 3 19 86.36% 
 Correctness 90.32% 100%  

Accuracy = 94% 

 

 

Table 5. C4.5 quantitative results from the Canadian experiment 

 

 

And the rules obtained with C4.5 are: 

 
Rule 1: 

TS <= 9 ∧ DRT = 0 ∧ NSC = 0 -> class 1   [84.1%] 

Rule 2: 

TS <= 3 ∧ RD > 1 -> class 1    [82.0%] 

Rule 7: 

TS <= 9 ∧ DRT <= 2 ∧ NIC > 0 ∧ NSC = 0 -> class 1 [82.0%] 

Rule 5: 

TS > 9 -> class 0       [82.2%] 

Rule 6: 

DRT > 2 -> class 0       [82.0%] 

Default class: 0 

 

 

Figure 7. C4.5 estimation model from the Canadian data 
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TS seems to be an important indicator for the maintainability of the tables.  Rules 1, 
2 and 7, which determine if a table is maintainable, have all as part of the conditions 
that TS must be small. Inversely, in rule 5, it is stated a large size is sufficient to declare 
the table as not understandable. A small DRT is also required for rules 1 and 7 as partial 
condition to classify the table as understandable.  In the same time, a high value of DRT 
means that the table is hard to understand (rule 6). RD does not represent an interesting 
indicator.   

The results obtained for the Spanish experiments are shown in table 6. In this 
case the accuracy in estimating the maintainability was 94% and the levels of 
completeness and correctness were smaller than the Canadian experiment but were 
also very high. 

 
  Predicted maintainabilty  
  0 1 Completeness 
Real 0 21 1 95.45% 
Maintainabilty 1 3 25 89.29% 
 Correctness 87.5% 96.15%  

       Accuracy = 92% 
 

 

Table 6. C4.5 quantitative results from the Spanish experiment 

 

 

And the rules obtained with C4.5 are: 

 
Rule 1: 

        TS <= 5 ∧ DRT <= 2 ->  class 1   [89.4%] 

Rule 3: 

        TS > 5 ∧ PCC <= 66 ->  class 0   [82.3%] 

Rule 2: 

        DRT > 2   ->  class 0    [66.2%] 

Default class: 1 

 

 

Figure 8. C4.5 estimation model from the Spanish data 
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The model rules is smaller than the one of the first experiment but it confirms 
that (at least for the studied sample) TS and DRT are good indicators and not RD. 

Both experiments and both techniques find out that the table size metric (TS) is a 
good indicator for the maintainability of a table. The depth of the referential tree 
metric (DRT) is also presented as an indicator by C4.5 on both experiments and the 
referential degree metric (RD) does not seem to have a real impact on the 
maintainability of a table. 

 

6. Conclusions and future work 

 
It is important that software products, and obviously databases, are evaluated for 

all relevant quality characteristics, using validated or widely accepted metrics. 
However, more research is needed into the aspects of software measurement ([NEI 
94]), both from a theoretical and from a practical points of view ([GLA 96]).  We 
think it is very interesting to dispose on metrics for object-relational databases. These 
metrics can be used to flag outlying schemata for special attention, a strong requirement 
for low testing and maintenance costs would argue for justify extra managerial attention 
to a quite significant fraction of the object-relational database schemata. 

We have put forward different measures (for internal attributes) in order to measure 
the complexity that affect the maintainability (an external attribute) of the relational 
database schemata and consequently control its quality. These metrics were developed 
and characterized in accordance with a set of sound measurement principles, applying 
the formal framework proposed by Zuse ([ZUS 98]), in order to obtain the scales to 
which the metrics pertain. 

We have done some experiments to validate the proposed metrics, but more others 
are being developed at this moment. However the controlled experiments have 
problems (such as the large number of variables that cause differences, or the fact that 
these experiments deal with low level issues, microcosms of reality and small sets of 
variables) and limits (e.g. they do not scale up, are done in a class in training situations, 
are made in vitro and face a variety of threats of validity). Therefore, it is convenient to 
run multiple studies, mixing controlled experiments and case studies ([BAS 99]). For 
these reasons, a deeper empirical evaluation is under way in collaboration with 
industrial and public organizations in “real” situations. 
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