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ABSTRACT: This work presents an approach to circumvent one of the major problems with 
techniques to build and apply software quality estimation models, namely the use of precise 
metric thresholds values. We used a fuzzy logic based approach to investigate the stability of 
a reusable class library interface, using structural metrics as stability indicators. To evaluate 
this new approach, we conducted a study on three versions of a commercial C++ class 
library. The obtained results are very promising when compared to those of two classical 
machine learning (ML) approaches, Top Down Induction of Decision Trees and Bayesian 
classifiers. 
RÉSUMÉ: Ce travail présente une approche pour résoudre un des principaux problèmes reliés 
aux techniques de construction et d’application des modèles d'estimation de la qualité de 
logiciel, à savoir l'utilisation des valeurs- seuils précises pour les métriques. Nous avons 
utilisé une approche basée sur la logique floue pour étudier la stabilité de l’interface des 
bibliothèques de classes. Nous nous sommes basés sur les métriques structurelles comme 
indicateurs de stabilité. Pour évaluer cette nouvelle approche, nous avons entrepris une étude 
sur trois versions d'une bibliothèque de classes commerciale écrite en C++. Les résultats 
obtenus sont très prometteurs comparativement à ceux de deux approches classiques 
d’apprentissage,TDIDT et classificateurs bayésiens. 
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1. Introduction 
 
Object oriented (OO) design and programming have reached the maturity stage, 

OO software products are becoming more complex and time consuming. Pressman 
estimated at 60% the part devoted to maintenance in the total effort of the software 
development industry [PRE 97], from which 80% is devoted directly or indirectly to 
software evolution (adaptive and perfective maintenance) [PIG 97]. Quality 
requirements are increasingly becoming determining factors in the choice of design 
alternatives during software development. Indeed, the adopted solutions often 
depend on whether the designer (programmer) privileges reliability, maintainability 
or reusability. In this context, it is crucial to automate the detection of symptomatic 
situations (e.g. problematic constructs in the code and/or design) according to some 
quality characteristic. It is also crucial to find ways to propose alternatives that allow 
the reach of given quality requirements.  

Several works have shown that metrics can successfully be used to measure the 
quality of a system (see, for example, [HEN 96] and [LOR 94]). Software measures 
have been extensively used to help software managers, customers, and users to 
assess the quality of a software product. However, most of the quality characteristics 
are not directly measurable a priori. For example, the maintainability of a software 
product (which can be measured by the maintenance effort) can only be measured 
after a certain time of use. On the other hand, even if structural metrics cannot 
measure these characteristics directly, they can be good indicators of them. In this 
case, we speak of estimation models. Many large software companies have 
intensively adopted estimation models to better understand the relationships between 
software quality and software product internal attributes, in order to improve their 
software development processes. For instance, software product measures have 
successfully been used to assess software maintainability and error-proneness. Large 
software organizations, such as NASA and HP, have been able to estimate costs and 
delivery time via software product measures. 

Estimation models can take different forms depending on the building technique 
that is used. For example, they can be mathematical models (case of statistical 
techniques like linear and logistic regression). They can also be rule sets or decision 
trees (case of machine learning algorithms). In all cases, they allow affecting a value 
to a quality characteristic based on the values of a set of software measures, and they 
allow the detection of design and implementation anomalies early in the software 
life cycle. They also allow organizations that purchase software to better evaluate 
and compare the offers they receive. 

In most techniques, the estimation process depends on threshold values that are 
derived from a sample base. This dependency raises the problem of representativity 
for the samples, as these often do not reflect the variety of real-life systems. In this 
respect, what is needed is not the determination of specific thresholds but the 
identification of trends. This work circumvents the problem of using precise metric 
thresholds values associated with the estimation models by replacing them with 
fuzzy thresholds.  
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The paper is organized as follow. Section 2 gives an idea of existing work in the 
field. In section 3, we briefly present two examples of techniques to build quality 
estimation models and we discuss their limits. Our fuzzy logic based approach is 
described in section 4. To better illustrate our contribution, we discuss in section 5 
its application to the particular case of assessing class library interface evolution. In 
section 6, we introduce a new approach that combines fuzzy logic with domain 
specific knowledge to improve the estimation accuracy. Finally, section 7 provides 
our conclusions.  

 
 

2. Related work  
 

Since an important part of the quality characteristics of software products is not 
directly measurable a priori, empirical investigations of measurable internal 
attributes and their relationship to external quality characteristics are crucial for 
improving the assessment of a software product quality [FEO 00]. In this context, a 
large number of object-oriented (OO) measures have been proposed in the literature 
(see, for example, [BRI 97], [CHI 94], [LIH 93] and [BIE 95]).  

Basili & al. show in [BAS 96] that most of the metrics proposed by Chidamber 
and Kemerer in [CHI 94] are useful for predicting the fault-proneness of classes 
during the design phase of OO systems. In the same context, Li and Henry have 
shown that the maintenance effort may be predicted with combinations of metrics 
collected from the source code of OO components [LIH 93].  

In the case of reusable components, Demeyer and Ducasse show in [DEM 99] 
that, for the particular domain of OO frameworks, size and inheritance metrics are 
good indicators for the stability of a framework but are not reliable to detect 
problems. Basili & al. [BAS 97] conducted a study to model and understand the cost 
of rework for a library of reusable software components; A predictive model of the 
impact of error source on rework effort was built. In the same vein, Price and 
Demurjian [PRI 97] presented a technique to analyze and measure the reusability of 
OO designs; a set of eight metrics were derived from the combination of two 
classifications: general vs. specific, and related to other classes vs. unrelated. These 
metrics would help evaluate OO systems from a reuse standpoint. For example, a 
dependency from a General class to another General class in related hierarchies is 
good for reuse, while a dependency from a General class to a Specific class in 
related hierarchies is bad for reuse.  

Close to the technique that we have followed, Genero et al. [GEN 00] have 
proposed a fuzzy regression tree-based approach to empirically assess the quality of 
entity relationship diagrams, the dominant conceptual modeling method in the 
database community.  

In the past, our team has explored both statistical and machine learning 
techniques as modeling approaches for software product quality. For instance, we 
have proposed models to measure reusability [MAO 98] and class fault-proneness 
[BRI 99]. In [DAL 99], we conducted an empirical study of different ML algorithms 
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to determine their capability to generate accurate correctability models. The study 
was accomplished on a suite of very-well known, public-domain ML algorithms 
belonging to three different families of ML techniques. The algorithms were 
compared in terms of their capability to assess the difficulty of correct Ada faulty 
components.  

 
 

3. Machine learning based approaches  
 

In previous work, we have privileged the use of ML algorithms in order to build 
software quality predictive models. Our raison was that real-life software 
engineering data are incomplete, inexact, and often imprecise; in this context, ML 
could provide good solutions. Another reason was that, somehow, ML produces 
predictive models with superior quality than models based on statistical analysis. 
ML is also fairly easy to understand and use. But, perhaps the biggest advantage of a 
ML algorithm – as a modeling technique- over statistical analysis lies in the fact that 
the interpretation of production rules is more straightforward and intelligible to 
human beings than principal components and patterns with numbers that represent 
their meaning. 

In this section, we present two popular algorithms, C4.5 and RoC, which 
represent the Top Down Induction of Decision Trees (TDIDT) and Bayesian 
approaches to ML. We then outline their limitations when dealing with software 
quality estimation models. 

Most of the work done in ML has focused on supervised ML algorithms. Starting 
from the description of classified examples, these algorithms produce definitions for 
each class. In general, they use an attribute-value representation language that 
allows the exploitation of the learning set statistical properties, leading to efficient 
software quality models. C4.5 is representative of the TDIDT approach [QUI 93]. 
We used it in many past works to generate estimation models in software 
engineering. This was the case in [MAO 98] where the goal was to assess an 
empirical value of reusability starting from coupling, inheritance, and complexity 
metrics on OO systems. 

C4.5 belongs to the divide and conquer algorithms family. In this family, a 
decision tree generally represents the induced knowledge. C4.5 works with a set of 
examples where each example has the same structure, consisting of a number of 
attribute/value pairs. One of these attributes represents the class of the example. 
Usually the class attribute takes only the values {true, false}, or {success, failure}. 

The key step of the algorithm is the selection of the “best” attribute to obtain 
compact trees with high predictive accuracy. A measure of entropy is used to 
measure how informative a node is. Given an attribute A that takes on values from a 
set {ai}i=1,…,n  and a probability distribution P={p(ai)}i=1,…,n, where p(ai) is the 
probability that A=ai, the information conveyed by this attribute is given by 
Shannon’s  entropy: 
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This notion is exploited to rank attributes and to build decision trees where, at 
each node, we use the attribute with the greatest discrimination power. 

Closer to probabilistic approaches, RoC is a Bayesian classifier (see [LAN 92]). 
It is trained by estimating the conditional probability distributions of each attribute, 
given the class label. The classification of a case, represented by a set of values for 
each attribute, is accomplished by computing the posterior probability of each class 
label, given the attributes values, by using Bayes’ theorem. The case is then assigned 
to the class with the highest posterior probability. 

The following formula corresponds to the probability of the class value C=cj 
given the set of attribute values ek={A1=a1k, …, Am=amk}: 
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The simplifying assumptions underpinning the Bayesian classifier are that the 
classes are mutually exclusive and exhaustive and that the attributes are 
conditionally independent once the class is known. Recent empirical evaluations 
have found the Bayesian classifier to be accurate (see [KOH96]) and very efficient 
at handling large databases (e.g., data mining tasks). RoC extends the capabilities of 
the Bayesian classifier to situations in which the database reports some entries as 
unknown. It can then train a Bayesian classifier from an incomplete database. More 
information about this process is given in [RAM 98]. 

One of the great advantages of C4.5, when compared to RoC, is that it produces 
a set of rules that is readily understandable by software managers and engineers. 
However, our past experience with this ML algorithm, as well as with “classical” 
ML approaches in general, when applied to production software data, reveals 
weaknesses in the learning/classification process. One of the main points concerns 
the fact that the generated estimation models are too specific or precise. This is first 
due to the algorithms themselves, but also to the non-availability of data sets. The 
consequence of this situation is that we obtain specific models that are not general 
enough to be efficiently applicable by software managers. 

In both C4.5 and RoC, the classification process depends on threshold values 
that are derived from a learning set. This dependency creates a problem in the light 
of the representativity of the training samples, which often do not reflect the variety 
of real-life systems. In this respect, identifying trends is the learning set may be 
more useful than the determination of specific thresholds. For instance, the previous 
ML algorithms could induce rules as the following: “if number of methods of a class 
C is greater than 20, then class C is hard to maintain”. Is it then justified to discuss 
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this value of 20; what does it mean? Can a class that has 19 methods be considered, 
in this context, as similar to one with 20 methods? Are they simply two large classes 
or do we have to distinguish between them? 

Another problem concerns the classification problem itself. During the process 
of classifying a new case, an algorithm such as C4.5 exploits the first valid path/rule 
while we would expect it to consider all the valid paths/rules and, then, deduce a 
more consensual result. 

To address these concerns, we propose the fuzzy logic approach of the next 
section. 

 
 

4. A fuzzy logic-based approach (FLAQ) 
 

The main cause for the problems outlined above is that, in most decision 
algorithms based on classical ML approaches, only one rule is fired at a time while 
traversing the decision tree. As a result, only one branch is followed from any given 
node, leading to one single leave as a conclusion, and exclusive of all other possible 
paths. While this approach works well for disjoint classes where different categories 
can be separated with clearly defined boundaries, it is not representative of most 
real-life problems where the input information is vague and imprecise, when not 
fragmentary. For such problems, the idea of setting thresholds at the nodes, and, 
then, of following decision paths based on whether given input attribute values are 
above of below the thresholds, may lead to opposite conclusions for any two values 
that are close to a threshold from opposite directions. In such situations, one would 
like to be able to:    

− “Partially” fire a rule; 

− simultaneously fire several rules. 

These possibilities are not available from algorithms such as C4.5, RoC, and 
most algorithms that rely on statistics or classical information theory to build the 
decision tree. In each case, the obtained tree leads to a set of rules of which only one 
is validated at a time, and where the antecedent of each rule is evaluated to be either 
true of false, leading to a consequent that is also either true or false. Because each 
antecedent consists of a comparison to determine whether a given input is above or 
below a threshold, the end result is that only one of the leaves in the tree will be 
reached at any given time, all the other leaves being ignored. 

On the other hand, the use of a fuzzy decision process allows the simultaneous 
validation of all the rules; each input value is considered to be both above and below 
the corresponding threshold, but with gradual and typically different certainties. The 
end result will be the outcome of combining all of the partial results, each 
contributing its weight to the decision process. 

 The creation of a fuzzy decision tree follows the same steps as that of a classical 
decision tree: a training set of examples is used in conjunction with a set of 
attributes to define the tree based on some metric. As a result, partitions of the 
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attributes are defined and a chain of if-then rules is applied to subsequent inputs in 
modus-ponens fashion to identify a given class. The differences between the two 
approaches stem from the metrics used, the way partitions are created and the way 
the obtained tree is interpreted. 

 
 

4.1. Creation of a fuzzy decision tree 
 

As we obtained better results using the C4.5 algorithm over RoC, we decided to 
study a fuzzy version of C4.5. The TDIDT approach can easily be ported to the 
creation of fuzzy decision trees by using fuzzy entropy to measure the information 
provided by a node. Fuzzy entropy (also called star entropy) is an extension of 
Shannon's entropy where classical probabilities are replaced by fuzzy ones 
[TAN 79]. For an attribute A with values {ai}i=1,…,n, fuzzy entropy is defined as: 
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Fuzzy probabilities differ from normal probabilities in that they represent the 
weighted average of a set of values provided by a membership function µ.  These 
values represent the degrees of membership of a value ai to the different elements 
(labels), ei, of a fuzzy set. 
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Figure 1. Basic concepts of fuzzy logic 
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In a fuzzy decision tree, the processing of input attribute values starts with the 
fuzzification of each attribute so that it takes values from a discrete set of labels. 
Each label has an associated membership function that sets the degree of 
membership of a given input value to that label. Because the membership functions 
of adjacent labels overlap, this results in the weighted and simultaneous membership 
to multiple labels of each input value, the degree of membership being equal to the 
value of the membership function (figure 1).  

Contrary to classical methods of converting numerical intervals into discrete 
partitions, fuzzy partitions are not disjoint and consist, each, of an independent fuzzy 
kernel and a shared transition region.  As a result, the partitioning of a learning set 
into fuzzy attribute partitions involves both the identification of the partition 
domains, and the identification of the overlap boundaries. These tasks are often done 
heuristically, using an expert’s experience. In this work, they were automated using 
a clustering algorithm based on mathematical morphology [MAR 96]. The algorithm 
works by applying a sequence of antagonistic, but asymmetrical filtering operations 
to the input data, until fuzzy kernels are obtained that mostly include representatives 
of one class each. 

 
 

4.2. Fuzzy tree inference for classification 
 

Another difference between a classical and a fuzzy decision tree is the decision 
process that they use. Figure 2 illustrates two binary trees of the same height, where 
one uses sharp thresholds and the other fuzzy thresholds to process the input data. 
For the given input, applying the rules of binary inference for the first tree and of 
fuzzy inference for the second, the conclusion reached by the first tree is that the 
input data corresponds to class 1 (with no possible assignment to class 0). On the 
other hand, the fuzzy decision tree leads to the conclusion that the input corresponds 

to class 0 with truth-value 0.65 and class 1 with truth-value 0.31. 

The obtained fuzzy results may be defuzzified by computing the center-of-
gravity (COG) of classes 0 and 1 considered as singletons (i.e. by computing the 
average of classes 0 and 1, weighted by their truth values) and then by choosing the 
class that is closest in value to the obtained COG. Alternately, we may simply select 
the class with the maximum truth-value. This is the approach used in this work as 
both methods of defuzzification yield the same result in the case of a decision tree 
with two classes.   

                                                                 
1 The results where obtained by using the minmax algorithm : minimum truth value along 

each tree path, maximum truth value for each end leaf. 
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 Decision example for (DIT=3,CLD=2,NOM=4)  

DIT >> 2 

CLD >> 0 NOM >> 8 

0 1 1 0 

DIT >> 2 

CLD >> 0 NOM >> 8 

0 1 1 0 

0.65 0.35 

0.2 0.8 0.7 0.3 

0.2 0.65 0.35 0.3  
 

 

Figure 2. Classification using binary inference (left) and fuzzy inference (right) 
 
 

5. Case study: predicting interface evolution using inheritance aspects  
 

Because, we cannot easily measure the ability of a software product to evolve in 
a direct way, starting from its initial version, an indirect approach is to perform the 
assessment using the relationships that may exist between evolvability and 
measurable characteristics such as size, cohesion, coupling or inheritance.  

In this work, we focused our attention on how inheritance aspects can be good 
indicators of the interface evolution of an OO class library. More specifically, we 
investigated whether there is a causal relationship between some inheritance metrics, 
defined below, and the stability of OO library interfaces.  

 
 

5.1. Working hypothesis 
 
Because, we cannot easily measure the ability of a software product to evolve in 

a direct way, starting from its initial version, an indirect approach is to perform the 
assessment using the relationships that may exist between evolvability and 
measurable characteristics such as size, cohesion, coupling or inheritance.  

In this work, we focused our attention on how inheritance aspects can be good 
indicators of the interface evolution of an OO class library. More specifically, we 
investigated whether there is a causal relationship between some inheritance metrics, 
defined below, and the stability of OO library interfaces.  
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5.2. Identifying changes in library interfaces 
 
There have been extensively studies of the impact of changes on object-oriented 

software. Kung et al. [KUN 94] identify 25 types of changes that may occur in an 
OO class library. The changes may concern data, a method, a class or the class 
library. In the same way, in [LIO 96], Li and Offutt define another set of change 
types for OO software. Changes are classified in two categories: change of a method 
(7 types of changes) and change of a data member (6 types of changes). More 
recently, Chaumum et al. [CHA 00] have expanded this categorization to include 
changes on classes; 13 types of changes are identified.  

In the previous projects, the authors were interested in an exhaustive 
classification of changes to study their impact on software in general. In our work, 
we were specifically interested in the impact that version changes in a class library 
may have on systems that use a given version of the library and that are upgraded to 
the next version. To this end, we identified two categories of changes at the class 
level, each one organized into types as follows: Let Ci be the interface of a class C in 
version i of the library and Ci+1 be the interface of C in version i+1. Then, the two 
categories of changes for C are: 

A. The interface Ci is no longer valid in version i+1. This happens in four 
cases: 

1. C is removed 

2. Ci+1 = Ci – some public members 

3. Ci+1 = Ci – some protected members 

4. Ci+1 = Ci – some private members 

B. The interface Ci is still valid in version i+1. This happen in two cases: 

5.Ci+1  = Ci 

6.Ci  Ci+1  

These types of change were ranked from worst to best according to the degree of 
impact of each type. For example, the deletion of a class has a more serious impact 
than the deletion of a subset of its protected methods. They were subsequently 
attributed numerical values in ascending order (1 to 6, 5 and 6 being equal), In 
addition, the types are conservative and exclusive: A change of class is classified 
into type k only if it cannot be classified into the k-1 previous types. For example, if, 
for a class C, some public methods are deleted and other public methods are added, 
C belongs to type 2 and not to type 6. Finally, if a class is renamed, this is 
considered as a deletion of the class (type 1) and the creation of a new class. In the 
same way, a change in a method signature is considered as a method deletion. A 
scope change that narrows the visibility of a method (from public to protected or 
private and from protected to private) is also considered as a method deletion. 
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5.3. Defining the inheritance metrics 
 
Three aspects of inheritance that may influence the evolution of a class interface 

are: (1) the location of the class in the inheritance tree; (2) the ancestors and 
descendants of the class; (3) the addition, inheritance and overwriting of methods. 
Each of these aspects will be studied in the case of simple inheritance. 

Symbol Name Comments  

DIT  Depth of Inheritance Tree 
Measures the size of the longest path 
from a class to a root class within the 
same inheritance tree. 

CLD  Class to leaf Depth 
Measures the size of the longest path 
from a class to a leaf class within the 
same inheritance tree. 

PLP Position in the longest path DIT/(CLD+DIT) 

 
 
Table 1. Class location metrics 
 
 

Since the location of a class may be defined with respect to either the root of the 
inheritance tree or a leaf, we used two metrics, DIT and CLD (see table 1), to 
specify its value. On the other hand, it may be more interesting to measure the 
location of the class relative to the longest path containing the class. Indeed, the 
information that a class is in the third level of inheritance out of a path of 8 levels is 
more meaningful than just saying the class is in the third level. This led us to define 
an additional metric, PLP, to provide this information. 

Symbol Name Comments  

NMA  Number of methods added New methods in a class 

NMI  Number of methods inherited 
Methods inherited and not 
overridden 

NMO  Number of methods overridden Methods overridden 

NOM  Number of methods NMA + NMI +NMO 

PMA  Percentage of methods added NMA/NOM 

PMI  Percentage of methods inherited NMI/NOM 

PMO  Percentage of methods overridden NMO/NOM 

 
 
Table 2.  Class methods-related metrics 
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The ancestors and descendents of the class were measured using three standard 

metrics2, NOC, NOP and NOD (see table 2 for definitions).  

Finally, counting the new and the inherited methods was accomplished with the 
following metrics: NMA, NMI, NMO and NOM (see table 3 for definitions). In the 
same way as for the location parameter, the percentages of added, inherited and 
overridden methods, PMA, PMI and PMO, were introduced to possibly provide 
more useful information that than just counting absolute numbers. 

 

Symbol Name Comments  

NOC  Number of children  

NOD  Number of descendants   

NOP Number of parents NOP {0, 1} in the case of simple inheritance 
 
 
Table 3. Class ancestors/descendents metrics 

 
 

5.4. Application of FLAQ 
 
As stated in the section 5.1, our hypothesis is that inheritance aspects may serve 

as indicators of library interface stability or, more precisely, that there is a relation 
between some inheritance metrics and a measure of OO library interface stability.  
 
5.4.1. Data collection 

To build the estimation model, we studied three versions of a C++ class library 
called OSE [OSE 99], 4.3, 5.2 and 6.0, and we focused our attention on changes 
from version 4.3 to version 5.2, and from version 5.2 to version 6. Version 4.3 of the 
library contains 120 classes while version 5.2 contains 126. For each of the 246 
classes (120 +126), we extracted the change type and the values for the inheritance 
metrics. Then, we randomly selected 75% of the classes to serve in the learning 
process and 25% for testing the generated evolvability model. 

Looking at the distribution of the cases (classes) by change types given in table 
4, we notice that change types 0, 2 and 4 are not sufficiently represented. This 
                                                                 
2 We do not consider the number of ancestors (NOA) since it is equal to DIT in the case of 

simple inheritance 
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observation led us to also consider, in our experiment, the change categories (A and 
B), as additional factors (see table 5).  

 

Change type Learning data Test data Total 

0 2 2 4 
1 35 13 48 
2 2 1 3 
3 46 17 63 

4 6 3 9 

5 89 30 119 

Total 180 66 246 
 
 
Table 4. Distribution of classes by change types 
 
 

Categories Learning data Test data Total 

0 or A 88 30 118 
1 or B 95 33 128 
Total 183 63 246 

 
 
Table 5. Distribution of classes by change categories 
 
5.4.2. Building interface evolution models 

We conducted experiments using both absolute metrics (DIT, CLD, NOC, NOP, 
NOD, NMA, NMI, NMO and NOM) and relative metrics (PLP, PMA, PMI, PMO) 
substituted for the corresponding absolute metrics. In addition, we looked at their 
effect on both change types and categories. This led us to build four prediction 
models using the FLAQ approach. The models were as follows:  

1) Model A2 based on the 2 categories of changes and the absolute metrics. 

2) Model A6 based on the 6 types of changes and the absolute metrics. 

3) Model R2 based on the 2 change categories and the set of metrics obtained 
by combining absolute and relative metrics. 

4) Model R6 based on the 6 types of changes and using the same metrics as in 
model R2. 

 
5.4.3. Results 
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Figure 3 shows one of the four decision trees that were obtained by using FLAQ, 
the one corresponding to model R2. Each node contains a condition of classification 
relating to a metric and an interval which defines the values for which there is an 
uncertainty on the truth of the condition (see section 4.1). The remaining 3 models 
are not shown for lack of space but follow similar patterns. 

 

NOP <= 0.5
[0, 1]

NOM <= 100.5
[2.5, 198.5]

0NOM <= 21
[2.5, 39.5]

0

NMI/NOM <= 52%
[49%, 55%]

0

NOM <= 17
[7.5, 26.5]

1

01

NOD <= 6
[4, 8]

1NMI/NOM <= 49.5%
[31%, 68%]

NMO/NOM <= 6%
[5%, 7%]

10  
 
 

Figure 3. An example of fuzzy decision tree (evolvabiliy estimation model)  
 
 

One observation that can be drawn from this figure is the absence of class 
location metrics (DIT, CLD and PLP). This was true for all of the obtained models 
and leads to the conclusion, within the limited size of our training set, that these 
metrics may not be good indicators of class interface stability between consecutive 
library versions. All the others metrics appeared at least in one of the four models 
and were, therefore, retained as potential indicators. 
 
5.4.4. Comparison with “classical” ML techniques 

To compare the performance of the models obtained with FLAQ with models 
obtained with C4.5 and RoC, we used the same data and built 4 models using each 
of these two techniques. 

All three techniques yielded the same results regarding the relevance of the 
proposed metrics as indicators, the use of a fuzzy decision tree did not appear to 
bring improvements over existing ML techniques. 
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Figure 4. Estimation accuracy rates of class interface stability 
 
 

We also compared the three techniques form the standpoint of estimation 
accuracy rates. The comparison was made using the computed estimation accuracy 
rates obtained with both the training data and the test data. In addition, we compared 
the loss of accuracy when moving form the learning to the test data. 

Our results show that for the learning data, C4.5 presents the higher estimation 
accuracy rates for all four models while FLAQ has comparable rates in most cases 
as shown in figure 4; RoC provides the lowest rates. 

When using the test data, FLAQ has the best rates in the majority of cases while 
the rates of C4.5 drop by about 12% in three out of the four models. RoC maintains 
its rates (see figure 4). 

Consequently, the results shows that the fuzzy technique improves the estimation 
accuracy rates either from the perspective of stability as we move from the training 
to the test data (in comparison to C4.5), or from that of numerical value (in 
comparison with RoC). This can be explained by the facts that the fuzzy approach 
modifies C4.5 by keeping its inherent strength at identifying relevant indicators and 
removing the inconvenience of using absolute threshold values. 
 
 
6. Towards a domain-Knowledge based approach 
 

As stated by Fenton and Neil in [FEN 00], most of the techniques used to build 
prediction models produce naïve models with a single level of decision. This is also 
true for our approach. For instance, the model of figure 3 shows a certain correlation 
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between the various inheritance metrics and interface stability, but it  is weak at 
providing evidence for a causal relationship. 

This limitation of naïve models is especially true when the variables under 
consideration are cognitively distant. As a result, these models are hard to use in 
making intelligent decisions for software refactoring or redesign.  

To increase the efficiency of our fuzzy logic based approach, we propose to 
transform the single level decision models using a causal model approach. As a large 
part of the relevant data is missing from the sample used for learning, we propose to 
us domain-specific heuristics for this transformation. An analogy could be made 
with work in the ML community, where the opposition between weak domain, 
theory-based learning and strong domain, theory-based learning is stated. Obviously, 
a learning process based on an available theory domain produces a knowledge that 
fits more with the perception we generally have about knowledge. 

 
 

6.1. Overview 
 

The idea behind the new approach is to palliate the weaknesses of a naïve model 
at supplying causal relationships by enhancing its operation with heuristic rules. As 
shown in figure 5, rather than simply using a naïve prediction model, we add 
domain-specific heuristics to derive the fuzzy rules, in an attempt to create a causal 
prediction model.  

Naïve model

Input fuzzification

Fuzzy rule derivation

Causal model

Sample data

Domain-specifc 
heuristics

 
 
 
Figure 5. Naïve to causal model transformation 
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6.2. Fuzzification and rule derivation 
 

Metric fuzzyfication in the naïve model is done the standard way, according to 
the algorithm below:  

/* Fuzzification of the metrics in the naïve model */  
FOR EACH input metric Mi in the naïve model DO 

FOR EACH condition “Mi comparator valuej” with a partition pj=[valuej1, 
valuej2] DO 

  1. Create a fuzzy label labelj 
  2. Derive the membership function of labelj from pj and the sample data 

END DO 
END DO 
 

On the other hand, rules derivation is done both using the set of naïve rules and 
additional constraint based on heuristics. The algorithm is as follows:   

/* Derivation of the set of naïve rules NR */  

FOR EACH path of the naïve model DO 
1. Derive a rule by replacing all the decision nodes by the corresponding fuzzy 

condition  “M1 labelj” with conjunctions.  

2. Add the derived rule to NR 
END DO 
 

/* Derivation of the causal rules CR */ 
FOR EACH rule ri in NR DO 
 Derive a set of rules CRi using domain specific heuristics such that:  

a. There exists a subset of rules ICRi where the conditions are fuzzy conditions 
of type   “M1 labelj” 

b. There exists a subset of rules FCRi where the conclusions are the estimation 
of the quality characteristic 

c. The conditions of each rule in CRi –ICRi are conclusion of rules in CRi 
d. Each rule in CRi represents a verifiable causal relationship 

END DO 

 
Once these new rules are obtained, causal, multi-layered fuzzy decision trees can 

be built. We are presently working on such a model. 
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7. Conclusion and future directions  
 

This paper presented a fuzzy -based approach to build interface stability 
estimation models for OO class libraries. Through an empirical study conducted on 
three versions of a commercial OO class library, we tried to answer the two 
following questions: 

1. Can inheritance aspects be used as indicators for class library interface 
stability? 

2. Does fuzzy-based learning improves the quality of the estimation models. 

If we analyze the results, we can say that the answer to question 1, like the used 
models, comprises uncertainties. The answer is Yes if we consider that the obtained 
models show that aspects such as types of methods, and the ancestors/descendents 
have a relationship with the categories of changes. It is No if we consider that our 
sample may not be representative enough to generalize our results, and if we 
consider that the obtained estimation rates are still not as high as desired (about 
60%).  

The response to the second question is definitely Yes. First, the threshold values 
in C4.5 and the other “classical” techniques are too specific to the learning sample to 
be easily generalized; this explains the difference between the learning and the test 
rates. By changing the threshold values to intervals, we capture trends rather than 
specific values, thereby increasing the estimation accuracy rates. 

Finally, this work used a simple fuzzy algorithm for building our estimation 
models. The use of more comprehensive algorithms that use fuzzy logic to its full 
potential (e.g. B-trees rather than binary trees, more comprehensive membership 
functions, etc.), and that make use of domain-based heuristics, would probably yield 
more significant results. 
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