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Abstract—Coupling metrics play an important role in em- tool implementations disregard it completely. Other dyitam
pirical software engineering research as well as in industrial features, such as dynamic class loading, are ignored in both
measurement programs. The existing coupling metrics have meyric definitions and tool implementations. This is in hre

usually been defined in a way that they can be computed from . - . . .
a static analysis of the source code. However, modern programs to the common belief that computing the required infornratio

extensively use dynamic language features such as polymorphismstatically is too difficult, time-consuming or imprecise oké-
and dynamic class loading that are difficult to capture by static over, even when polymorphism is taken into account, the leve
analysis. Consequently, the derived metric values might not of precision used to determine the set of potentially ingbke
accurately reflect the state of a program. In this paper, we eXpss  athads can still greatly influence the computed metricltesu

existing definitions of coupling metrics using call graphs. We L . ) . .
then compare the results of four different call graph constructon The objective of this paper is to investigate the effect of

algorithms with standard tool implementations of these metrics Various strategies to handle dynamic language features on
in an empirical study. Our results show important variations in  the statically computed coupling metric values. This infor

coupling between standard and call graph-based calculations due mation is necessary to allow metric tool implementors to

to the support of dynamic features. make informed design decisions. Specifically, we focus on
two particularly widespread dynamic features: polymosphi
l. INTRODUCTION and dynamic class loading. This paper therefore makes the

Many studies have demonstrated the importance of softwdodowing contributions:
metrics and measurement programs to quantitatively etealua . We present a formulation of existing coupling metric def-
and improve the quality of software products[10], [7].][14] initions that relies on call graphs to capture the behavior
In these measurement programs, metrics of internal attxgbu of program related to polymorphism and dynamic class
of software products such as size and coupling are used to |oading.
assess quality factors such as error proneness, changeabil + We use type-analysis algorithms combined with program-

and reusability. To allow metric gathering, measuremealsto ming heuristics to build call graphs that approximate the
have been proposed either as standalone software or as partsruntime behaviour of a program with various levels of
of integrated development environmerits [8]. precision. These graphs are then used to quantify the

Most object-oriented metrics are intended to be computed coupling.
static by examining the source code of a software system., We conduct an empirical study of the effect of poly-
These metrics, however, were defined in the nineties to neanag  morphism and dynamic class loading on coupling using
the quality of systems developed in C+# [6]. Since then, two well-known systems. Our results show that classical
programming languages as well as development practices methods under- or overestimate the coupling for systems
have evolved significantly: modern programs often make an where dynamic features are used. In some situations, the
extensive use of dynamic language features such as poly- variations are very significant.
morphism, dynamic class loading, dynamic class generationThe remainder of this paper is organized as follows. Sec-
and reflection. In comparison, these features were eitred USion [l gives an overview of the related work. Section 11l de-
infrequently in C++, or were simply not available. scribes our approach. After giving formal definitions of som

When computing metrics, it is important to account fogoypling metrics, we show how polymorphism and dynamic
dynamic features used by a system in order to obtain @ss |oading are considered when building call graphs. We
accurate portrait of the behavior of an application. In pagnen jllustrate the metric calculation from these call giap

ticular, coupling metrics try to quantify the amount of in-a case study is discussed in Sectlod IV. Finally, conclusive
teraction between different classes in a system. Variatiopymarks are given in Sectidn V.

in the strategies used to handle the dynamic features of a

program can therefore significantly affect coupling measur Il. RELATED WORK

For example, without proper handling of polymorphic method Over the past two decades, numerous studies have es-
invocation and dynamic class loading, one could miss aablished relationships between product metrics and tyuali
important portion of the actual coupling between classes characteristics of object-oriented (OO) systems. Briand a
conversely, overestimate it. While some coupling metric-defiViist [4] summarize some of these studies. In particular,
nitions consider polymorphisneg., [5]), the vast majority of metrics are used to quantify internal attributes of sofensurch



as size-complexity, coupling, cohesion and inheritandee Tet al. [12] defined coupling in terms of program slicing.
program characteristics that are studied range from iiétiab Program slicing is a technique that removes from a pro-
to maintainability. gram all entities €g., statements) that are not relevant for
The majority of software metrics are computed statically given computation. For example, Harmetral. use slicing
from either source code or binaries. Dynamic language fea- identify variable definitions outside of a module used
tures, however, are known to be difficult to capture by a gureby m as well as variables defined im used elsewhere in
static analysis [20]. To circumvent this problem, metriesdn the program. This information is used to quantify coupling
been proposed to measure the actual coupling between @bjéttan application. Myers and Binkley [13] have performed
at runtime using a dynamic analysis. For each executic)arge-scale empirical study of slice-based metricspitiolg
precise coupling metric values can be computed. Arisholthe coupling metrics defined by Harmetral. , on a large set of
et al. [1] defined a suite of dynamic coupling metrics at th€ programs. Their computation relies on system-dependence
class and object levels for the problem of change pronenggaphs (SDGs) and procedure-dependence graphs (PDGs),
evaluation during the evolution of software. All their miesr which represent control- and flow-dependence, both intra-
are defined for individual executions. They showed emdlsica and interprocedurally. Computing these dependences in the
that their metrics are better predictors of code changetiiran context of modern, more dynamic languages requires similar
static metrics. Similarly, Yacoult al. [19] proposed a set techniques as those used this work. Therefore, our study is
of metrics to dynamically measure coupling and complexitgomplementary to the work on sliced-based metrics.
Some of the metrics were defined for single executions, sther
were general to a set of executions with respect to a specific
set of scenarios. Each scenario was assigned a probaloitity c To measure the impact of polymorphism and dynamic class
responding to its execution frequency. The final metric @aldoading on metric results, it is important to define the nostri
is defined as the mathematical expectation of the individuala way that enables experimentation with different syiate
scenario-based metric values by considering the scenanid p In this section, we first review the classical definition of
abilities. These metrics served later to study the reitghilsk two popular coupling metrics (Coupling Between Objects
at the architecture level [18]. While these dynamic techesquand Response for Class). We then refine these definitions to
can precisely capture relationships between classessthfgy  account for polymorphism and dynamic class loading.
from limitations. First, executions of a program with diffat . . .
parameters usually lead to different values for the sameicmetA' Classic coupling metrics
Consequently, it is difficult to derive a universal value for Chidamber and Kemerer![6] have proposed a set of object-
a particular metric from execution traces. This problem ®riented metrics including Coubling Between Objects (CBO)
compounded when we wish to extract metrics on every mod#ied Response for Class (RFC). Informally, the CBO metric
of a large program, as it requires finding traces that ensi@éns to measure the amount of interconnectivity between a
an adequate coverage of a program. Requiring an adequgi¥en class and other classes in the system, while the RFC
sample of all executions through a program is prohibitivelfjpetric quantifies the number of distinct methods that can be
expensive, and consequently, most organisations stillilyea invoked from a given object. The CBO and RFC metrics
rely on static metrics despite their limitations. While ougéefined by Chidamber and Kemerer have later been formalized
work shares a goal with dynamic metrics, our focus is ddy Briandet al. [5]. We review these definitions next.
investigating the impact of dynamic language features bn al @) Coupling Between Object (CBO): According to the
executions rather than a finite set of concrete executions. original definition of CBO by Chidamber and Kemerer, the
Static analyses that cannot cope with certain dynamic f€@BO for a class is a count of the number of other classes to
tures such as dynamic class loading and reflection are faocedvhich it is coupled. A class is said to becoupled to a class
make conservative assumptions about the possible betalviod if ¢ usesd or d usesc. A classc uses a clasg if one of
a program that often significantly degrade the precisiornef tits methods invokes a method defined in cladssr accesses
analysis. Because the required information is only obsevaa field defined in clasg. More formally, Briandet al. have
at runtime (and therefore, determining the behavior purefiefined the CBO metric as follows:
statically is an undecidable problem), techniques haven bee
recently developed that |rlject various Ievels of dyn.amfon.n. CBO(C) = |d € C — {c}|uses(c, d) V uses(d, o)|
mation in a static analysis in order to improve their pregisi
(eg., [3]). In particular, such techniques have been applied whereC is a set of classes ande C, and
to the problem of extraction method invocation relatiopshi
from programs (in the form of call graphs). A similar approac
could be used to extend metric extraction tools to estimatges(c,d) = (3m € M;(c) : Im’ € M;(d) : m" € PIM (m))
runtime behavior. To the best of our knowledge, this apgroac V(@m € My(c) : 3a € Ar(d) : a € AR(m))
remains unexplored.
Other researchers have used program analysis formalisms tahere A;(c) is the set of implemented attributes in class
express coupling metric computations. For example, HarmanAR(m) is the set of referenced attributes in the method

I1l. APPROACH



. . . TABLE |
m, Mj(c) is the set of implemented methods in clasand CBO IMPLEMENTATION DETAILS FOR DIFFERENT METRIC TOOLS

PIM (m) is the set of polymorphically invoked methodsraf
An attributea is in AR(m) if a is read or written in the body

Tool Type Considers method invocations?
of the methodm. Aivostc? Commercial | v, uses declared types
b) Response For Class (RFC): Chidamber and Kemerer Togethe? Commercial | v, uses declared targets
define RFC for a given class as the number of distinct methods ~ JHawk Commercial| x, counts referenced types
. . . Powertool8 | Commercial | x, counts association types
that can be (directly) invoked in response to a message t0 \ccape IG | Commercial| x, counts extemal references
an object of that class. Brianet al. have formalized this CKJIM? Research v, uses declared targets
definition as follows: MASUS Research v/, uses declared targets
POM® Research v/, uses declared targets

Ri(c) = Unmeni(e)PIM (m
1(c) M) (m) Different static call graph building algorithms make dif-

RFC(c) = |Ro(c) U Ry(c)] ferent trade-offs in terms of time and precision. Building a
precise call graph typically requires sophisticated asedyand
where M(c) is the set of implemented, overridden angarge amounts of time and memory, while less precise call
inherited methods in class and PIM (m) is again the set graphs can be computed very cheaply. The most basic call
of polymorphically invoked methods of:. graph building algorithmClass Hierarchy Analysis (CHA)
[Q], only considers the type hierarchy when computing the
set of possible targets at a given call site. In other words,
Polymorphism and dynamic class loading can affect tH@éHA assumes that the declared target method and any of its
CBO and RFC metric computations in two different waysverriding methods could be invoked at a given call site. CHA
First, invoking methods from a clags constitutes a use of thus generally overapproximates the set of possible wrget
C according to the classical definition of coupling. Polymethods, but has the advantage of being very inexpensive.
morphism is therefore reflected directly in theIM set Rapid Type Analysis (RTA) [2] is almost identical to CHA,
computation. Different strategies for determining the gkt but refines its results by considering the set of objectsstype
possible method targets for a call will result in a differenthat may be allocated. The key optimisation of RTA is that
PIM set. Second, dynamic class loading can add classesttagnores any type not instantiated in the program. This
the setC of all classes in the system, and therefore potentialgbservation is used to prune the set of types computed by
indirectly affect thePIM computation as well. We examineCHA and obtain a more precise call grap¥ariable Type
different strategies for handling polymorphism and dyramidnalysis (VTA) [15] is a simple dataflow analysis that tracks,
class loading next. for each object referencee.g., variable) in the program, the
1) Polymorphism: In order to account for polymorphism set of object types that it can contain. This informationgedi
in the metric computations, it is necessary to know the set tof further reduce the set of possible invocations at anyrgive
methods that can be invoked at each call site in the prograaill site, at the expense of additional computing time. ©the
(i.e, invocation targets). This information is commonly obmore sophisticated call graph building techniques exasf,(
tained by building acall graph for the entire program. A call [11], [16]), but are not explored in this work because of thei
graph is a directed graph in which nodes represent methodsigh computation costs.

a program, and edges represent calls between these mBthods, common strategy in metric extraction tools involves using
Call graph construction has been extensively studied in the declared target of a method call rather than the set of all
program analysis community. Many techniques have begBssible targets to approximate tiM set. Conceptually,
developed to compute call graphs both statically from sBurghis technique corresponds to building a call graph where an
code and dynamically, using one or more concrete prograffige is present from method to methodm’ if and only if
executions. Because dynamic call graphs only represent,acontains a call withn’ as the declared target. While this
subset of the whole behavior of a program, we only considgpproach does not account for all possible executions of a
static call graph building techniques. program, a survey of existing metric extraction tools iadés
that this strategy is used by all tools that consider method
invocations as part of their coupling measures. The rem@ini

B. Accounting for dynamic language features

1Basic call graphs contain a single node for each method in rihgram,
but more precise (context-sensitive) call graph repreientare also possible.

Zhtp://www.aivosto.com tools completely ignore method invocations and simply rely
Zhttp://www.borland.com/us/products/together/indexint on a count of referenced types in a given class as a basis
jhttpi//WWW-virtualmachinery.com/productsrtm for the coupling measures. Talble | presents the results of ou
Thtip-/iwwiw. powertoolsuk.co. gk survey. Of the eight tools that we examined, none respebted t

€http://www.mccabe.com/ig.htm e . . .
Thttp:/fwww.spinellis.gr/swickjm/ definition provided by Briandt al. Because of the popularity

&http://masu.sourceforge. net of using declared method targets to approximateRh# sets
Chttp://www.ptidej.net/downloads/pmart/ in practice, we include this algorithm as part of our study fo


http://www.aivosto.com
http://www.borland.com/us/products/together/index.html
http://www.virtualmachinery.com/products.htm
http://www.powertoolsuk.co.uk
http://www.mccabe.com/iq.htm
http://www.spinellis.gr/sw/ckjm/
http://masu.sourceforge.net
http://www.ptidej.net/downloads/pmart/

static void main() {
B bl = new B();
Cc = new ();
useA(bl);
useB(c);

static void useA(A a) {
a.m();

static void useB(B b2) {
b2. m()

(a) DT (b) CHA
class A {

) void () {...}

class B extends A {

| void m() {...}

class C extends B {

} void m() {...}

class D extends B {

) void () {...}

et

Fig. 1. Example for call graph algorithms (c) RTA (d) VTA
Fig. 2. Call graphs for example in Figuré 1

comparison purposes. It will henceforth be referred t@d@s sumptions regarding the classes that can be loaded dynami-
a) Example: Consider the example in Figuié 1. Methodally. In this work, we consider that any applicatiare( non-

mai n allocates two object instances, one of tyeand the library) class can be potentially loaded at runtime. Whilis th
other of typeC, before calling methodsseA anduseB with  iS not guaranteed to be a truly conservative assumption, in
these objects as parameters. Manual inspection easilglgevéractice it is almost always sufficient.
that methoduseA will always result in a call to methoch ~ While handling dynamic class loading enables a better
defined in clas$, while a call to methodiseB will always measure of the program’s behavior, it also introduces acgour
result to a call to methodC. m Using the DT call graph of imprecision due to the way dynamically loaded classes are
building strategy, we obtain the call graph in Figlré 2a.eNotypically used in Java. Figure 3 illustrates a common usage
that this call graph is not a conservative one; it does ndude scenario. First, a reference tojava. | ang. C ass object
the real runtime behavior of the example program. Whe# obtained at runtime using the name of the class to load (as
using CHA to build the call graph, we obtain a conservativ@ St ri ng). Second, an instance of the newly loaded class
but imprecise call graph. The algorithm considers that tfie created using th€l ass. newl nst ance method. Finally,
call sitea. m() in methoduseA can result in calls to all the object is cast to the appropriate type and used. Because
implementations ofm Similarly, the algorithm considers thatof their conservative nature, call graph building algarith
the callb2. () can potentially invoke the implementationsconsider all no-argument constructors as potentially kedo
of min classB and all of its subclasses. The resulting caly the call tonew nstance. This would cause method
graph appears in Figure 12b. RTA is able to improve tHeoo to be coupled with every no-argument constructor in
precision of the resulting call graphs by observing that r@l application classes. To solve this problem, we can elide
objects of typesA or D are ever created. Therefore, it onlysome edges from the call graph following its construction.
considers implementations oh from classesB and C. As Specifically, we do not consider any edges originating from
show in Figure 2c, however, it is not capable of identifyingall sites that correspond to metho@sass. f or Nanme and
the fact that each polymorphic call site has a single targél. ass. newl nst ance when computing theP’IM set. For
Finally, VTA can track the types of the values assigned @xample, for the code in Figuie 3, the coupling due to the call
variables across method call boundaries, and can sucthssfi¢ obj . () would be correctly computed.
compute a precise call graph for the given example (as shown
in Figure[Z2d). C. Extracting metrics using a call graph

2) Dynamic class loading: Dynamic class loading can also With the exception of the?/M sets computations, the CBO
affect a call graph building strategy. Because the spediiitec and RFC values can be easily determined for each class in
that will be loaded at runtime cannot be determined stdyicala system by a shallow analysis of the code. Computing the
static program analyses are forced to make conservative sest PIM (m) is more complex. However, it can be readily



void foo() {

dass ¢ = dass. for Name("M/d ass"); graph construction algorithm (recall that this algorithmiyo
('\)’Bt;jq 2(5)5 0531/ Ebg“’%’ﬁeaggj) gé?ew‘ nstance(); considers declared targets of calls, and ignores polynisnph
When computing metrics, we only considered coupling be-
} tween application classes$.€, excluding the Java standard
libraries).
Fig. 3. Typical usage of dynamic class loading in Java We computed the CBO and RFC metrics for both ArgoUML

and Azureus using 4 call graph building algorithms: DT, CHA,
i RTA, and VTA. In the case of VTA, we used two different
computed from a call graph by aggregating the targets 9L jons of the algorithm: one with support for dynamic slas

each call site inn. Formally, let a call graph be denoted by, ing (henceforth referred to as “VTAd"), and one without
CG(M, E) wherelM is a set of methods in a program afica Note that dynamic class loading does not affect the calllggap

set of edges between these methods. We then defile(m) p it using the DT, CHA, and RTA algorithms.

as follows: All experiments were performed on an IBM Java Virtual
Machine (JVM) version 6.0 running in server mode on an
PIM(m) = {m|(m,m') € EAc,d€ CAme Mi(c) Am’ € Mi(d)}  AMD Opteron 2Ghz machine with 8GB of RAM with Fedora
Core In order to make the analysis more scalable, we
In other words,PIM (m) is the union of all method targets(?Omp_umd the metrics using version 1.4 of th_e Java star_ndard
for each call site in methodn. By varying the call graph libraries (rather than 1.6). Because the metric computafio

building algorithms, we can therefore compute different veo_nly consider application classes, there is no impact of the
sions of the coupling metrics that use different strategies final results.

handle dynamic language features. B. Bxecution times

IV. CASE STUDY In order to compare the relative costs of the various al-

In order to assess the impact of dynamic language featufdithms, we computed their execution times for both ap-
on coupling metric computations, we performed an empiricg[ications. Table 1l shows the execution times by call graph
study using two Java applications: ArgoUML and Azureus. mlgorlthm used. The table lists three times for each applica

this section, we describe the experimental setting used, dIP": the time required to build the call graph (*CG"), the
discuss the empirical results. time required to compute the metrics (“Metrics”) from the

previously computed call graph, and finally the total of the t
A. Experimental setting previous valugs. Because both the CBO and RFC metrics are

a) Applications: ArgoUML 0.18.1 is a UML modelling computed simultaneously, we only report combined timings
tool with code generation and reverse-engineering cafiabil for both metrics. Also note_that while the DT algon.thm can
It provides the user with a set of views and tools to mod@€ conceptually expressed in terms of a call graph, it does no
programs using UML diagrams, to generate the correspondiig/Vever require an explicit call graph to be built in order to
code skeletons and to reverse-engineer diagrams froningxisCOMPute the metrics. We therefore use this optimized approa
code. The set of classes and interfacésused to compute 2nd report a CG computing time of zero for DT.

CBO and RFC corresponds to the elements of the package TABLE Il

or g. argoumn . The setC has 1237 classes and 100 inter- EXECUTION TIMES (IN MINUTES:SECONDS
faces. . ) . CG algorithm ArgoUML Azureus
Azureus 2.1.0.0 is a popular, multi-platform BitTorrent CG  Metrics Total| CG  Metrics Total
client that allows users to share files using a peer-to-peep’ (5)5(132 gfgg gf‘l‘g gf(l)g gf‘z‘g gfig
network. This application has 1232 classes and 250 intesfac g5 3543 203 3946 23-46 291 26:07
from the packager g. gudy. azur eus?2. VTA 12:42 2:31  15:13| 7:30 0:50  8:20
b) Implementation: Our metric computation tool is im- _VTAd 14:47 2:55 1742 11:44 128 1312

plemented using Soot, a popular Java static analysis frame-
work [17]. Soot provides the call graph construction algo-

“‘h”.‘s presenteld' in Sectignllll. It aIsp supports dynamiss| fastest, completing in under a minute for each application.
loading by requiring the user to specify a set of classescat While all algorithms complete in under 40 minutes, RTA is

be loaded at runtime. The tool supports building call graplPﬁe only algorithm that requires longer than 20 minutes to
from either source code or bytecode. All results from thi@

) qf iled byteddH omplete. This result is surprising, and we believe it is due
experiment were computed from compiled byteqgle. 1o its implementation in Soot. With the exception of RTA,
We extended Soot to compute the CBO and RFC metrics
from call graphs. We also added support for the DT calliiye ran the JvM in compressed reference mode in order to inctease
memory efficiency on the 64-bit architecture.

10we also computed the same results from source code for compariso ?We excluded the time taken to perform common operations such as
and as expected found virtually no difference between tles®is of results. loading the classes from disk or outputting the metric result

Table[l shows that as expected, the DT algorithm is the



the algorithms that take polymorphism into account beconsboice of algorithm has a significant impact on CBO values for
progressively slower with increased precision. For instan ArgoUML. This indicates that ArgoUML makes an extensive
CHA completes in just under 10 minutes for ArgoUMLuse of non-trivial polymorphismi.g., it features a deep class
while the more precise VTA algorithm with dynamic claséierarchy). The results also show that the DT algorithm
loading (VTAd) requires nearly twice the amount of time tainderapproximates the CBO value for a large number of
run. This difference is entirely due to an increase in catlasses. This is explained by the fact that for truly polypiic
graph building time. In fact, the metric computation timeall sites, the class declaring the caller method should be
tends todecrease with increases in the precision of the calcoupled to each callee’s class. Examining the differennes i
graph building algorithm. Because metric computations/ onCBO values between the DT and VTAd algorithms shows that
considerreachable classesi(e, classes that have at least one athis is indeed the case. We found that for classes whose CBO
their methods reachable from the program entry point thmougalue increased by going from DT to VTAd in ArgoUML,
application classes), an increase in call graph precigeults the increase in CBO value was on average 13. This clearly
in less code being examined to compute the metrics. Natkows the importance of polymorphism in this benchmark.
that the DT algorithm, however, considers all classes, dret Note that even in the cases where CBO and VTAd result in the
or not they are reachable. In addition, the variant of VTAame CBO value, the set of coupled classes are not necgssaril
that does not consider dynamic class loading ignores certaentical. For example, consider once again the code from
reachable classes that are only accessed via dynamic ¢padiigure[1. The contribution to CBO from methodeA would

As a result, it considers even less code that VTAd, whidbe 1 according to both DT and VTA. However, in the former
also results in a faster metric computation time (but preduccase this coupling would be due to classvhile in the latter
incomplete results). The impact of unreachable code will lmase it would be due to clag On the other hand, there are

examined in more details in Sectibn 1V-D. cases where Ddverapproximates the coupling for a class. For
TABLE Il example, in ArgoUML, the clas®Jrl Di agr amRender er
CALL GRAPH SIZES is coupled to 63 other classes according to DT but only 6
CG algorithm ArgoUML AZUrelS classes according to VTAdJr Di agr anRender er is an
Nodes Edges | Nodes  Edges abstract class that provides default implementations af tw
STH'? gg gzg i i(l)g gg g; 34213 ggg 228 public methods, which make calls that increase the coupling
VTA 32085 | 715109 | 25 377 | 279 392 of the Uml Di agr amRender er class to other application
VTAd 36 632 | 1858348 | 27 076 | 613 025 classes. The two public methods are however redefined in all

subclasses dim Di agr anRender , and therefore cannot be
called in practice. VTAd correctly identifies this situatiand
Table(Il] shows the size of the call graphs computed by eagB 3 result computes a much lower CBO value for the same

algorithm. Note that as mentioned above, the DT algorithglass. In fact, even the less precise CHA is sufficient toexehi
does not build an explicit call graph and therefore no sizge same result in this case.
results are provided for it. The table shows that the main Figure[4b shows that there are much fewer differences be-
impact of the various algorithms is on the number of edges §§een various algorithms in the case of Azureus. This is due t
the graphs rather than the nodes. This shows that most c@gi€fact that Azureus uses very little inheritance, and trarg
in an application is potentially reachable, and the impdovgey of its call sites are truly polymorphic. The DT algorithm
algorithms only help to disambiguate calls rather than demonowever, differs significantly from the other algorithms. |
strate that some methods cannot be invoked. Also, the |ar§@rticular, DT reports that only 49 classes are unreachable
increase in the number of edges in VTAd clearly demonstrar@Bo:o), whereas the other algorithms identify between 264
the importance of properly handling dynamic class loadmg hng 291 such classes. This constitutes an overapproximatio
practice. Note that VTA produces much smaller call grapkger the CBO value of around 4 on average, and therefore
than the other algorithms because it considers an incomplgizds to the peaks seen in Figliré 4b around 0.2 and 0.6.
program. This demonstrates the importance of dynamic clasq:igureB shows the frequency of RFC values in terms
loading in both benchmarks. of number of classes (again using a logarithmic scale). The
C. Distribution of coupling values reSl_JIt_s are very sim!lar to t.hose obtained for_ CBQ. ArgoUML

exhibits a wide variation in RFC results with different call

In order to study the impact of polymorphism and dynam:éraph algorithms, with DT being biased towards smaller imetr

class loading on coupling metrics, we computed the freque , z :
of CBO and REC values in terms of number of classeﬁ\alues and CHA producing significanly higher RFC values.

all call graph building algorithms. Note that the figure us
a logarithmic scale on the horizontal axis in order to reduc
the large range of obtained valusThe results show that the D, Dead code

13\We added one to CBO metric values before taking the logarithorder An _importapt at_:ivqntage of _using _Ca" graphs to compute
to avoid problems with classes whose CBO values are zero. coupling metrics is its capacity to ignomdead code (i.e,

éerarchies and true polymorphism.
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code that cannot possibly be executed for a given prograralgorithm will consider interfaces when performing couagli
The amount of dead code varies with the particular algorithaomputations. However, because call graphs resolve potymo
used to compute the call graph. Conservative algorithnes likhic calls to interfaces, the other algorithms will not unb
CHA and VTAd can underestimate the amount of dead codaterfaces in their CBO computations. In some cases, this ca
they can consider a class to tiee (not dead) when it is lead to extreme variations in CBO values. For example, class
not used in practice. Unsafe algorithms like DT can botRSUM_Mbdel Facade from ArgoUML has a CBO value of
underapproximate and overapproximate the amount of de&dvith the DT algorithm because it is never called directly
code in a program. Underapproximations are possible, fasing its static type, but rather invoke through a more gener
example, when non-trivial polymorphism is used. With DTracade interface. As a result, its computed CBO value with
a virtual call with an abstract declared target will contitds VTAd is 576!
to the coupling of the abstract class, while in fact at ruetim
all calls will necessarily invoke methods in subclasses of
this abstract class. Overapproximations, on the other ,haikd Polymorphism
can be caused by the reverse situation. For example, class
MbdeCr eat eLi nk in ArgoUML only uses library methods Changes in call graph building algorithms can affect the
(and therefore is not coupled to any other application clas80O measure of a clas§’' in two ways: they can vary
through outgoing invocations), and there are no invocatiofe set of classes used bgcoming calls (.e, calls using
in the program that use this class as the declared targggthods fromC) and by outgoing calls (.e, calls from C
Therefore, thevbdeCr eat eLi nk class appears to be dead® methods in other classes). Therefore, changes inPtié
from the point of view of DT, but VTAd correctly identifies Set of a methodn in class C' due to a variation in call
that methods in this class are reachable through polymorpBraph building algorithms most often has an impact on the
calls. CBO value ofC but also on the CBO values of all classes
Figure[Za clearly shows that the amount of dead code varfé&claring the potential target method. In order to gain ¢ebet
with the call graph algorithm used to compute the metricynderstanding of the impact of different algorithms on CBO
Dead classes correspond to those classes whose compMéddes, we measured the coupling due to incoming calls (CBO-
CBO value is @4 Interestingly, the very conservative naturdn) as well as for outgoing calls (CBO-Out). Figurk 6 shows
of the CHA algorithm renders it unable to identify mosthe results for ArgoUML. The DT algorithm can once again
of the dead code in ArgoUML. DT identifies 33 classes d¥ seen to underapproximate the coupling for both CBO-
dead (CBO=0), but some of these classes are misclassifi@dand CBO-Out as compared to VTAd. More interestingly,
VTAd identifies almost four times this number with 131Figure[6a clearly shows that the overapproximations from
dead classes. Note that the 273 classes identified as deadcbyd mainly stem from CBO-In rather than CBO-Out. This
VTA are not trully unreachable; most of these classes af@n be explained by the fact that certain classes can be
only reachable through dynamic class loading and reflecticifen as potentially called from a number of program lo-
For instance, VTA identifies all 11 concrete subclasses ®tions based on their inheritance hierarchy, but in fealit
the abstractW zard class in ArgoUML as dead becausealls are concentrated towards a small number of specific
they are all loaded and instantiated exclusively via reifiect classes rather than distributed across all potential tsrger
mechanisms. Figufe #b shows a similar trend for dead codee¥ample, the claséct i onAddMessagePr edecessor in
Azureus. Because Azureus has more statically resolved cdfgoUML inherits fromUMLAct i on. All calls that use the
than ArgoUML’ the variation between the amount of deageneriCUM_ACt i on as atarget will contribute to the CBO-In
code identified by the various algorithms is much smallenth®f Act i onAddMessagePr edecessor according to CHA,
for ArgoUML. For instance, VTAd identifies 282 dead classegesulting in a total CBO-In value of 252. VTAd, on the other
compared to 291 classes for VTA, 279 for RTA and 264 fdrand, can determine that very few of these calls actually
CHA. Only DT differs significantly from the other algorithms reachAct i onAddMessagePr edecessor, and as a result
it only labels 49 classes as unreachable. assigns a CBO-In value of only 3 to it. In both cases, the
Note that for RFC, as shown in Figdrk 5, there are no clas$e80O-Out value forAct i onAddMessagePr edecessor is
with RFC of values of 0 with any algorithm. This is due tof- Also note that while the incoming calls account for the
the fact that each class contains at least a default cotstrucnajority of the differences between algorithms, there is a

The minimum possible RFC value is therefore 1. significant number of classes for which CHA computes a much
higher CBO-Out with CHA than other algorithms. This is also
E. Interfaces due to the inherent imprecision of the CHA algorithm. For

Similarly to dead code, the importance of interfaces ifi€S€ classes, CHA is not able to compute a precise set of
coupling metric computations varies greatly with the vasio [@rgets for some of their call sites. o _
call graph building algorithms used. Because the codefitsel The results for Azureus (not shown) indicate marginal

can use interface methods as declared call targets, the @fferences across the various algorithms for both CBOrid a
CBO-Out. This is again due to the fact that most calls in this

140r equivalently whose log(CBO+1) value is 0, in this case. application are non-polymorphic and can be resolved stiétic
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. . TABLE IV
G. Dynamic class loading USE OF DYNAMIC CLASSLOADING
forName new nstance invoke
ArgoUML 14 23 6
Azureus 6 7 1

Dynamic class loading is one of the reflection mechanisms
supported by modern programming languages such as Java,
that are rapidly gaining popularity. Tallle]lV shows theistat
tics for the usage of reflective features in both ArgoUML anHl. General discussion
Azureus. The results of our investigation show that botHiapp
cations make a non-trivial use of reflection, and in parécul
use it to load additional application classes during exenut
(the f or Name column). In light of this information, it is
clear that proper care must be taken in order to account
such behavior when computing coupling measures. Compariﬁg
the CBO and RFC values for VTA and VTAd in Figuké 4
indicates that the difference in CBO values for ArgoUML‘E)1
due to dynamic loading is very significant; failure to acCouq

for such features would artificially distort the distritari of .. . N ! .
t is not surprising to see that it is widely used in commdrcia

CBO values and render their usage difficult. This is due to tr'éend open-source tools alike. The other algorithms. however
“pluggable” architecture of ArgoUML. In ArgoUML, the en- P u S allke. gon  1OWeV

tire or g. ar gound . unl . cogni tive. critics package offer sufficient precision improvements to justify theirst®

uses of this plug-in architecture. Consequently, a signitic In certain cases.

number of classes are disconnected from the call graph whetthen c:1e0|dlﬂg how 'to |mﬁ:ebment sztr'fgoﬁg one n((ajeds to
we do not consider reflection. consider how the metrics will be used. Tool builders andsiser

interested in measuring coupling from a structural perdygec
For Azureus, we observed that the distribution of CB@iill prefer to use the DT approach; others interested in the
calculated by VTA and VTAd are virtually indistinguishablebehavioral aspect of coupling will want to consider altéiuea
even though the application uses reflective features incsoualgorithms. For example, users focusing on program under-
code. Consequently, we believe that dynamic class loadistanding tasks might want an abstract view of the code to
does not play a major role in practice for Azureus. In facgvoid inspecting all executable implementations of anrfate
a manual inspection of the source code reveals that Azureusa class; in this case, DT might be the prefered approach.
often performs dynamic loading of a predetermined class biowever, when using CBO in the context of change impact
using a fixed string constant that contains its name. or error propagation, it is important to be able to resolviésca

The results indicate that for programs that feature a non-
trivial class hierarchy and a significant use of polymorphis
such as ArgoUML, the choice of call graph building algorithm
H)?ed to compute coupling metrics can have an important
act on the computed values. Contrary to our expectations
DT algorithm seems to produce CBO and RFC results that
re much closer to those obtained by VTAd than we originally
elieved. Given the very low execution time associated with
his algorithm and the low complexity of its implementation
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