
Deriving Coupling Metrics from Call Graphs
Simon Allier∗†, St́ephane Vaucher∗, Bruno Dufour∗, and Houari Sahraoui∗

†VALORIA, Université de Bretagne-Sud
∗DIRO, Universit́e de Montŕeal

{alliersi, vauchers, dufour, sahraoui}@iro.umontreal.ca

Abstract—Coupling metrics play an important role in em-
pirical software engineering research as well as in industrial
measurement programs. The existing coupling metrics have
usually been defined in a way that they can be computed from
a static analysis of the source code. However, modern programs
extensively use dynamic language features such as polymorphism
and dynamic class loading that are difficult to capture by static
analysis. Consequently, the derived metric values might not
accurately reflect the state of a program. In this paper, we express
existing definitions of coupling metrics using call graphs. We
then compare the results of four different call graph construction
algorithms with standard tool implementations of these metrics
in an empirical study. Our results show important variations in
coupling between standard and call graph-based calculations due
to the support of dynamic features.

I. I NTRODUCTION

Many studies have demonstrated the importance of software
metrics and measurement programs to quantitatively evaluate
and improve the quality of software products [10], [7], [14].
In these measurement programs, metrics of internal attributes
of software products such as size and coupling are used to
assess quality factors such as error proneness, changeability,
and reusability. To allow metric gathering, measurement tools
have been proposed either as standalone software or as parts
of integrated development environments [8].

Most object-oriented metrics are intended to be computed
static by examining the source code of a software system.
These metrics, however, were defined in the nineties to manage
the quality of systems developed in C++ [6]. Since then,
programming languages as well as development practices
have evolved significantly: modern programs often make an
extensive use of dynamic language features such as poly-
morphism, dynamic class loading, dynamic class generation,
and reflection. In comparison, these features were either used
infrequently in C++, or were simply not available.

When computing metrics, it is important to account for
dynamic features used by a system in order to obtain an
accurate portrait of the behavior of an application. In par-
ticular, coupling metrics try to quantify the amount of in-
teraction between different classes in a system. Variations
in the strategies used to handle the dynamic features of a
program can therefore significantly affect coupling measures.
For example, without proper handling of polymorphic method
invocation and dynamic class loading, one could miss an
important portion of the actual coupling between classes or,
conversely, overestimate it. While some coupling metric defi-
nitions consider polymorphism (e.g., [5]), the vast majority of

tool implementations disregard it completely. Other dynamic
features, such as dynamic class loading, are ignored in both
metric definitions and tool implementations. This is in partdue
to the common belief that computing the required information
statically is too difficult, time-consuming or imprecise. More-
over, even when polymorphism is taken into account, the level
of precision used to determine the set of potentially invoked
methods can still greatly influence the computed metric results.

The objective of this paper is to investigate the effect of
various strategies to handle dynamic language features on
the statically computed coupling metric values. This infor-
mation is necessary to allow metric tool implementors to
make informed design decisions. Specifically, we focus on
two particularly widespread dynamic features: polymorphism
and dynamic class loading. This paper therefore makes the
following contributions:

• We present a formulation of existing coupling metric def-
initions that relies on call graphs to capture the behavior
of program related to polymorphism and dynamic class
loading.

• We use type-analysis algorithms combined with program-
ming heuristics to build call graphs that approximate the
runtime behaviour of a program with various levels of
precision. These graphs are then used to quantify the
coupling.

• We conduct an empirical study of the effect of poly-
morphism and dynamic class loading on coupling using
two well-known systems. Our results show that classical
methods under- or overestimate the coupling for systems
where dynamic features are used. In some situations, the
variations are very significant.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of the related work. Section III de-
scribes our approach. After giving formal definitions of some
coupling metrics, we show how polymorphism and dynamic
class loading are considered when building call graphs. We
then illustrate the metric calculation from these call graphs.
A case study is discussed in Section IV. Finally, conclusive
remarks are given in Section V.

II. RELATED WORK

Over the past two decades, numerous studies have es-
tablished relationships between product metrics and quality
characteristics of object-oriented (OO) systems. Briand and
Wüst [4] summarize some of these studies. In particular,
metrics are used to quantify internal attributes of software such

as size-complexity, coupling, cohesion and inheritance. The
program characteristics that are studied range from reliability
to maintainability.

The majority of software metrics are computed statically
from either source code or binaries. Dynamic language fea-
tures, however, are known to be difficult to capture by a purely
static analysis [20]. To circumvent this problem, metrics have
been proposed to measure the actual coupling between objects
at runtime using a dynamic analysis. For each execution,
precise coupling metric values can be computed. Arisholm
et al. [1] defined a suite of dynamic coupling metrics at the
class and object levels for the problem of change proneness
evaluation during the evolution of software. All their metrics
are defined for individual executions. They showed empirically
that their metrics are better predictors of code change thanthe
static metrics. Similarly, Yacoubet al. [19] proposed a set
of metrics to dynamically measure coupling and complexity.
Some of the metrics were defined for single executions, others
were general to a set of executions with respect to a specific
set of scenarios. Each scenario was assigned a probability cor-
responding to its execution frequency. The final metric value
is defined as the mathematical expectation of the individual
scenario-based metric values by considering the scenario prob-
abilities. These metrics served later to study the reliability risk
at the architecture level [18]. While these dynamic techniques
can precisely capture relationships between classes, theysuffer
from limitations. First, executions of a program with different
parameters usually lead to different values for the same metric.
Consequently, it is difficult to derive a universal value for
a particular metric from execution traces. This problem is
compounded when we wish to extract metrics on every module
of a large program, as it requires finding traces that ensure
an adequate coverage of a program. Requiring an adequate
sample of all executions through a program is prohibitively
expensive, and consequently, most organisations still heavily
rely on static metrics despite their limitations. While our
work shares a goal with dynamic metrics, our focus is on
investigating the impact of dynamic language features on all
executions rather than a finite set of concrete executions.

Static analyses that cannot cope with certain dynamic fea-
tures such as dynamic class loading and reflection are forcedto
make conservative assumptions about the possible behaviorof
a program that often significantly degrade the precision of the
analysis. Because the required information is only observable
at runtime (and therefore, determining the behavior purely
statically is an undecidable problem), techniques have been
recently developed that inject various levels of dynamic infor-
mation in a static analysis in order to improve their precision
(e.g., [3]). In particular, such techniques have been applied
to the problem of extraction method invocation relationships
from programs (in the form of call graphs). A similar approach
could be used to extend metric extraction tools to estimate
runtime behavior. To the best of our knowledge, this approach
remains unexplored.

Other researchers have used program analysis formalisms to
express coupling metric computations. For example, Harman

et al. [12] defined coupling in terms of program slicing.
Program slicing is a technique that removes from a pro-
gram all entities (e.g., statements) that are not relevant for
a given computation. For example, Harmanet al. use slicing
to identify variable definitions outside of a modulem used
by m as well as variables defined inm used elsewhere in
the program. This information is used to quantify coupling
in an application. Myers and Binkley [13] have performed
a large-scale empirical study of slice-based metrics, including
the coupling metrics defined by Harmanet al. , on a large set of
C programs. Their computation relies on system-dependence
graphs (SDGs) and procedure-dependence graphs (PDGs),
which represent control- and flow-dependence, both intra-
and interprocedurally. Computing these dependences in the
context of modern, more dynamic languages requires similar
techniques as those used this work. Therefore, our study is
complementary to the work on sliced-based metrics.

III. A PPROACH

To measure the impact of polymorphism and dynamic class
loading on metric results, it is important to define the metrics
in a way that enables experimentation with different strategies.
In this section, we first review the classical definition of
two popular coupling metrics (Coupling Between Objects
and Response for Class). We then refine these definitions to
account for polymorphism and dynamic class loading.

A. Classic coupling metrics

Chidamber and Kemerer [6] have proposed a set of object-
oriented metrics including Coubling Between Objects (CBO)
and Response for Class (RFC). Informally, the CBO metric
aims to measure the amount of interconnectivity between a
given class and other classes in the system, while the RFC
metric quantifies the number of distinct methods that can be
invoked from a given object. The CBO and RFC metrics
defined by Chidamber and Kemerer have later been formalized
by Briandet al. [5]. We review these definitions next.

a) Coupling Between Object (CBO): According to the
original definition of CBO by Chidamber and Kemerer, the
CBO for a class is a count of the number of other classes to
which it is coupled. A classc is said to becoupled to a class
d if c usesd or d usesc. A classc uses a classd if one of
its methods invokes a method defined in classd or accesses
a field defined in classd. More formally, Briandet al. have
defined the CBO metric as follows:

CBO(c) = |d ∈ C − {c}|uses(c, d) ∨ uses(d, c)|

whereC is a set of classes andc ∈ C, and

uses(c, d) = (∃m ∈ MI(c) : ∃m
′ ∈ MI(d) : m

′ ∈ PIM (m))

∨(∃m ∈ MI(c) : ∃a ∈ AI(d) : a ∈ AR(m))

whereAI(c) is the set of implemented attributes in class
c, AR(m) is the set of referenced attributes in the method

m, MI(c) is the set of implemented methods in classc and
PIM (m) is the set of polymorphically invoked methods ofm.
An attributea is in AR(m) if a is read or written in the body
of the methodm.

b) Response For Class (RFC): Chidamber and Kemerer
define RFC for a given class as the number of distinct methods
that can be (directly) invoked in response to a message to
an object of that class. Briandet al. have formalized this
definition as follows:

R0(c) = M(c)

R1(c) = ∪m∈M(c)PIM (m)

RFC (c) = |R0(c) ∪R1(c)|

where M(c) is the set of implemented, overridden and
inherited methods in classc, and PIM (m) is again the set
of polymorphically invoked methods ofm.

B. Accounting for dynamic language features

Polymorphism and dynamic class loading can affect the
CBO and RFC metric computations in two different ways.
First, invoking methods from a classC constitutes a use of
C according to the classical definition of coupling. Poly-
morphism is therefore reflected directly in thePIM set
computation. Different strategies for determining the setof
possible method targets for a call will result in a different
PIM set. Second, dynamic class loading can add classes to
the setC of all classes in the system, and therefore potentially
indirectly affect thePIM computation as well. We examine
different strategies for handling polymorphism and dynamic
class loading next.

1) Polymorphism: In order to account for polymorphism
in the metric computations, it is necessary to know the set of
methods that can be invoked at each call site in the program
(i.e., invocation targets). This information is commonly ob-
tained by building acall graph for the entire program. A call
graph is a directed graph in which nodes represent methods of
a program, and edges represent calls between these methods.1

Call graph construction has been extensively studied in the
program analysis community. Many techniques have been
developed to compute call graphs both statically from source
code and dynamically, using one or more concrete program
executions. Because dynamic call graphs only represent a
subset of the whole behavior of a program, we only consider
static call graph building techniques.

1Basic call graphs contain a single node for each method in the program,
but more precise (context-sensitive) call graph representation are also possible.

2http://www.aivosto.com
3http://www.borland.com/us/products/together/index.html
4http://www.virtualmachinery.com/products.htm
5http://www.powertoolsuk.co.uk
6http://www.mccabe.com/iq.htm
7http://www.spinellis.gr/sw/ckjm/
8http://masu.sourceforge.net
9http://www.ptidej.net/downloads/pmart/

TABLE I
CBO IMPLEMENTATION DETAILS FOR DIFFERENT METRIC TOOLS

Tool Type Considers method invocations?
Aivosto2 Commercial X, uses declared types
Together3 Commercial X, uses declared targets
JHawk4 Commercial ×, counts referenced types
Powertools5 Commercial ×, counts association types
McCabe IQ6 Commercial ×, counts external references
CKJM7 Research X, uses declared targets
MASU8 Research X, uses declared targets
POM9 Research X, uses declared targets

Different static call graph building algorithms make dif-
ferent trade-offs in terms of time and precision. Building a
precise call graph typically requires sophisticated analyses and
large amounts of time and memory, while less precise call
graphs can be computed very cheaply. The most basic call
graph building algorithm,Class Hierarchy Analysis (CHA)
[9], only considers the type hierarchy when computing the
set of possible targets at a given call site. In other words,
CHA assumes that the declared target method and any of its
overriding methods could be invoked at a given call site. CHA
thus generally overapproximates the set of possible targets
methods, but has the advantage of being very inexpensive.
Rapid Type Analysis (RTA) [2] is almost identical to CHA,
but refines its results by considering the set of objects types
that may be allocated. The key optimisation of RTA is that
it ignores any type not instantiated in the program. This
observation is used to prune the set of types computed by
CHA and obtain a more precise call graph.Variable Type
Analysis (VTA) [15] is a simple dataflow analysis that tracks,
for each object reference (e.g., variable) in the program, the
set of object types that it can contain. This information is used
to further reduce the set of possible invocations at any given
call site, at the expense of additional computing time. Other,
more sophisticated call graph building techniques exist (e.g.,
[11], [16]), but are not explored in this work because of their
high computation costs.

A common strategy in metric extraction tools involves using
the declared target of a method call rather than the set of all
possible targets to approximate thePIM set. Conceptually,
this technique corresponds to building a call graph where an
edge is present from methodm to methodm′ if and only if
m contains a call withm′ as the declared target. While this
approach does not account for all possible executions of a
program, a survey of existing metric extraction tools indicates
that this strategy is used by all tools that consider method
invocations as part of their coupling measures. The remaining
tools completely ignore method invocations and simply rely
on a count of referenced types in a given class as a basis
for the coupling measures. Table I presents the results of our
survey. Of the eight tools that we examined, none respected the
definition provided by Briandet al. Because of the popularity
of using declared method targets to approximate thePIM sets
in practice, we include this algorithm as part of our study for

http://www.aivosto.com
http://www.borland.com/us/products/together/index.html
http://www.virtualmachinery.com/products.htm
http://www.powertoolsuk.co.uk
http://www.mccabe.com/iq.htm
http://www.spinellis.gr/sw/ckjm/
http://masu.sourceforge.net
http://www.ptidej.net/downloads/pmart/

static void main() {
B b1 = new B();
C c = new C();
useA(b1);
useB(c);

}

static void useA(A a) {
a.m();

}

static void useB(B b2) {
b2.m()

}

class A {
void m() {...}

}

class B extends A {
void m() {...}

}

class C extends B {
void m() {...}

}

class D extends B {
void m() {...}

}

Fig. 1. Example for call graph algorithms

(a) DT (b) CHA

(c) RTA (d) VTA

Fig. 2. Call graphs for example in Figure 1

comparison purposes. It will henceforth be referred to asDT.
a) Example: Consider the example in Figure 1. Method

main allocates two object instances, one of typeB and the
other of typeC, before calling methodsuseA anduseB with
these objects as parameters. Manual inspection easily reveals
that methoduseA will always result in a call to methodm
defined in classB, while a call to methoduseB will always
result to a call to methodC.m. Using the DT call graph
building strategy, we obtain the call graph in Figure 2a. Note
that this call graph is not a conservative one; it does not include
the real runtime behavior of the example program. When
using CHA to build the call graph, we obtain a conservative
but imprecise call graph. The algorithm considers that the
call site a.m() in methoduseA can result in calls to all
implementations ofm. Similarly, the algorithm considers that
the callb2.m() can potentially invoke the implementations
of m in classB and all of its subclasses. The resulting call
graph appears in Figure 2b. RTA is able to improve the
precision of the resulting call graphs by observing that no
objects of typesA or D are ever created. Therefore, it only
considers implementations ofm from classesB and C. As
show in Figure 2c, however, it is not capable of identifying
the fact that each polymorphic call site has a single target.
Finally, VTA can track the types of the values assigned to
variables across method call boundaries, and can successfully
compute a precise call graph for the given example (as shown
in Figure 2d).

2) Dynamic class loading: Dynamic class loading can also
affect a call graph building strategy. Because the specific code
that will be loaded at runtime cannot be determined statically,
static program analyses are forced to make conservative as-

sumptions regarding the classes that can be loaded dynami-
cally. In this work, we consider that any application (i.e., non-
library) class can be potentially loaded at runtime. While this
is not guaranteed to be a truly conservative assumption, in
practice it is almost always sufficient.

While handling dynamic class loading enables a better
measure of the program’s behavior, it also introduces a source
of imprecision due to the way dynamically loaded classes are
typically used in Java. Figure 3 illustrates a common usage
scenario. First, a reference to ajava.lang.Class object
is obtained at runtime using the name of the class to load (as
a String). Second, an instance of the newly loaded class
is created using theClass.newInstance method. Finally,
the object is cast to the appropriate type and used. Because
of their conservative nature, call graph building algorithms
consider all no-argument constructors as potentially invoked
by the call to newInstance. This would cause method
foo to be coupled with every no-argument constructor in
all application classes. To solve this problem, we can elide
some edges from the call graph following its construction.
Specifically, we do not consider any edges originating from
call sites that correspond to methodsClass.forName and
Class.newInstance when computing thePIM set. For
example, for the code in Figure 3, the coupling due to the call
to obj.m() would be correctly computed.

C. Extracting metrics using a call graph

With the exception of thePIM sets computations, the CBO
and RFC values can be easily determined for each class in
a system by a shallow analysis of the code. Computing the
set PIM (m) is more complex. However, it can be readily

void foo() {
Class c = Class.forName("MyClass");
MyClass obj = (MyClass)c.newInstance();
obj.m(); // Use the object
...

}

Fig. 3. Typical usage of dynamic class loading in Java

computed from a call graph by aggregating the targets for
each call site inm. Formally, let a call graph be denoted by
CG(M,E) whereM is a set of methods in a program andE a
set of edges between these methods. We then definePIM (m)
as follows:

PIM (m) = {m′|(m,m′) ∈ E ∧ c, d ∈ C ∧m ∈ MI(c) ∧m′ ∈ MI(d)}

In other words,PIM (m) is the union of all method targets
for each call site in methodm. By varying the call graph
building algorithms, we can therefore compute different ver-
sions of the coupling metrics that use different strategiesto
handle dynamic language features.

IV. CASE STUDY

In order to assess the impact of dynamic language features
on coupling metric computations, we performed an empirical
study using two Java applications: ArgoUML and Azureus. In
this section, we describe the experimental setting used, and
discuss the empirical results.

A. Experimental setting

a) Applications: ArgoUML 0.18.1 is a UML modelling
tool with code generation and reverse-engineering capabilities.
It provides the user with a set of views and tools to model
programs using UML diagrams, to generate the corresponding
code skeletons and to reverse-engineer diagrams from existing
code. The set of classes and interfacesC used to compute
CBO andRFC corresponds to the elements of the package
org.argouml. The setC has 1237 classes and 100 inter-
faces.

Azureus 2.1.0.0 is a popular, multi-platform BitTorrent
client that allows users to share files using a peer-to-peer
network. This application has 1232 classes and 250 interfaces
from the packageorg.gudy.azureus2.

b) Implementation: Our metric computation tool is im-
plemented using Soot, a popular Java static analysis frame-
work [17]. Soot provides the call graph construction algo-
rithms presented in Section III. It also supports dynamic class
loading by requiring the user to specify a set of classes thatcan
be loaded at runtime. The tool supports building call graphs
from either source code or bytecode. All results from this
experiment were computed from compiled bytecode.10

We extended Soot to compute the CBO and RFC metrics
from call graphs. We also added support for the DT call

10We also computed the same results from source code for comparison,
and as expected found virtually no difference between the two sets of results.

graph construction algorithm (recall that this algorithm only
considers declared targets of calls, and ignores polymorphism).
When computing metrics, we only considered coupling be-
tween application classes (i.e., excluding the Java standard
libraries).

We computed the CBO and RFC metrics for both ArgoUML
and Azureus using 4 call graph building algorithms: DT, CHA,
RTA, and VTA. In the case of VTA, we used two different
versions of the algorithm: one with support for dynamic class
loading (henceforth referred to as “VTAd”), and one without.
Note that dynamic class loading does not affect the call graphs
built using the DT, CHA, and RTA algorithms.

All experiments were performed on an IBM Java Virtual
Machine (JVM) version 6.0 running in server mode on an
AMD Opteron 2Ghz machine with 8GB of RAM with Fedora
Core 7.11 In order to make the analysis more scalable, we
computed the metrics using version 1.4 of the Java standard
libraries (rather than 1.6). Because the metric computations,
only consider application classes, there is no impact of the
final results.

B. Execution times

In order to compare the relative costs of the various al-
gorithms, we computed their execution times for both ap-
plications. Table II shows the execution times by call graph
algorithm used. The table lists three times for each applica-
tion: the time required to build the call graph (“CG”), the
time required to compute the metrics (“Metrics”) from the
previously computed call graph, and finally the total of the two
previous values12. Because both the CBO and RFC metrics are
computed simultaneously, we only report combined timings
for both metrics. Also note that while the DT algorithm can
be conceptually expressed in terms of a call graph, it does not
however require an explicit call graph to be built in order to
compute the metrics. We therefore use this optimized approach
and report a CG computing time of zero for DT.

TABLE II
EXECUTION TIMES (IN MINUTES:SECONDS)

CG algorithm ArgoUML Azureus
CG Metrics Total CG Metrics Total

DT 0:00 0:49 0:49 0:00 0:48 0:48
CHA 5:11 3:59 9:10 3:15 2:28 5:43
RTA 35:43 4:03 39:46 23:46 2:21 26:07
VTA 12:42 2:31 15:13 7:30 0:50 8:20
VTAd 14:47 2:55 17:42 11:44 1:28 13:12

Table II shows that as expected, the DT algorithm is the
fastest, completing in under a minute for each application.
While all algorithms complete in under 40 minutes, RTA is
the only algorithm that requires longer than 20 minutes to
complete. This result is surprising, and we believe it is due
to its implementation in Soot. With the exception of RTA,

11We ran the JVM in compressed reference mode in order to increasethe
memory efficiency on the 64-bit architecture.

12We excluded the time taken to perform common operations such as
loading the classes from disk or outputting the metric results.

the algorithms that take polymorphism into account become
progressively slower with increased precision. For instance,
CHA completes in just under 10 minutes for ArgoUML,
while the more precise VTA algorithm with dynamic class
loading (VTAd) requires nearly twice the amount of time to
run. This difference is entirely due to an increase in call
graph building time. In fact, the metric computation time
tends todecrease with increases in the precision of the call
graph building algorithm. Because metric computations only
considerreachable classes (i.e., classes that have at least one of
their methods reachable from the program entry point through
application classes), an increase in call graph precision results
in less code being examined to compute the metrics. Note
that the DT algorithm, however, considers all classes, whether
or not they are reachable. In addition, the variant of VTA
that does not consider dynamic class loading ignores certain
reachable classes that are only accessed via dynamic loading.
As a result, it considers even less code that VTAd, which
also results in a faster metric computation time (but produces
incomplete results). The impact of unreachable code will be
examined in more details in Section IV-D.

TABLE III
CALL GRAPH SIZES

CG algorithm ArgoUML Azureus
Nodes Edges Nodes Edges

CHA 36 872 1 113 377 27 825 384 330
RTA 36 642 1 102 549 27 749 383 650
VTA 32 085 715 109 25 377 279 392
VTAd 36 632 1 858 348 27 076 613 025

Table III shows the size of the call graphs computed by each
algorithm. Note that as mentioned above, the DT algorithm
does not build an explicit call graph and therefore no size
results are provided for it. The table shows that the main
impact of the various algorithms is on the number of edges in
the graphs rather than the nodes. This shows that most code
in an application is potentially reachable, and the improved
algorithms only help to disambiguate calls rather than demon-
strate that some methods cannot be invoked. Also, the large
increase in the number of edges in VTAd clearly demonstrates
the importance of properly handling dynamic class loading in
practice. Note that VTA produces much smaller call graphs
than the other algorithms because it considers an incomplete
program. This demonstrates the importance of dynamic class
loading in both benchmarks.

C. Distribution of coupling values

In order to study the impact of polymorphism and dynamic
class loading on coupling metrics, we computed the frequency
of CBO and RFC values in terms of number of classes.
Figure 4 shows this frequency for the CBO metric across
all call graph building algorithms. Note that the figure uses
a logarithmic scale on the horizontal axis in order to reduce
the large range of obtained values.13 The results show that the

13We added one to CBO metric values before taking the logarithm in order
to avoid problems with classes whose CBO values are zero.

choice of algorithm has a significant impact on CBO values for
ArgoUML. This indicates that ArgoUML makes an extensive
use of non-trivial polymorphism (i.e., it features a deep class
hierarchy). The results also show that the DT algorithm
underapproximates the CBO value for a large number of
classes. This is explained by the fact that for truly polymorphic
call sites, the class declaring the caller method should be
coupled to each callee’s class. Examining the differences in
CBO values between the DT and VTAd algorithms shows that
this is indeed the case. We found that for classes whose CBO
value increased by going from DT to VTAd in ArgoUML,
the increase in CBO value was on average 13. This clearly
shows the importance of polymorphism in this benchmark.
Note that even in the cases where CBO and VTAd result in the
same CBO value, the set of coupled classes are not necessarily
identical. For example, consider once again the code from
Figure 1. The contribution to CBO from methoduseA would
be 1 according to both DT and VTA. However, in the former
case this coupling would be due to classA while in the latter
case it would be due to classB. On the other hand, there are
cases where DToverapproximates the coupling for a class. For
example, in ArgoUML, the classUmlDiagramRenderer
is coupled to 63 other classes according to DT but only 6
classes according to VTAd.UmlDiagramRenderer is an
abstract class that provides default implementations of two
public methods, which make calls that increase the coupling
of the UmlDiagramRenderer class to other application
classes. The two public methods are however redefined in all
subclasses ofUmlDiagramRender, and therefore cannot be
called in practice. VTAd correctly identifies this situation and
as a result computes a much lower CBO value for the same
class. In fact, even the less precise CHA is sufficient to achieve
the same result in this case.

Figure 4b shows that there are much fewer differences be-
tween various algorithms in the case of Azureus. This is due to
the fact that Azureus uses very little inheritance, and thusvery
few of its call sites are truly polymorphic. The DT algorithm,
however, differs significantly from the other algorithms. In
particular, DT reports that only 49 classes are unreachable
(CBO=0), whereas the other algorithms identify between 264
and 291 such classes. This constitutes an overapproximation
over the CBO value of around 4 on average, and therefore
leads to the peaks seen in Figure 4b around 0.2 and 0.6.

Figure 5 shows the frequency of RFC values in terms
of number of classes (again using a logarithmic scale). The
results are very similar to those obtained for CBO. ArgoUML
exhibits a wide variation in RFC results with different call
graph algorithms, with DT being biased towards smaller metric
values and CHA producing significanly higher RFC values.
Azureus exhibits even less variations than with CBO, thus
supporting the claim that it makes very little use of deep class
hierarchies and true polymorphism.

D. Dead code

An important advantage of using call graphs to compute
coupling metrics is its capacity to ignoredead code (i.e.,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

0
20

0
30

0
40

0
50

0

log(CBO + 1)

N
um

be
r

of
 c

la
ss

es

dt
cha
rta
vta
vtad

(a) ArgoUML

0.0 0.5 1.0 1.5 2.0

0
10

0
20

0
30

0
40

0
50

0
log(CBO + 1)

N
um

be
r

of
 c

la
ss

es

dt
cha
rta
vta
vtad

(b) Azureus

Fig. 4. The distribution of CBO

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

0
20

0
30

0
40

0
50

0

log(RFC + 1)

N
um

be
r

of
 c

la
ss

es

dt
cha
rta
vta
vtad

(a) ArgoUML

0.0 0.5 1.0 1.5 2.0 2.5

0
10

0
20

0
30

0
40

0
50

0

log(RFC + 1)

N
um

be
r

of
 c

la
ss

es

dt
cha
rta
vta
vtad

(b) Azureus

Fig. 5. The distribution of RFC

code that cannot possibly be executed for a given program).
The amount of dead code varies with the particular algorithm
used to compute the call graph. Conservative algorithms like
CHA and VTAd can underestimate the amount of dead code:
they can consider a class to belive (not dead) when it is
not used in practice. Unsafe algorithms like DT can both
underapproximate and overapproximate the amount of dead
code in a program. Underapproximations are possible, for
example, when non-trivial polymorphism is used. With DT,
a virtual call with an abstract declared target will contribute
to the coupling of the abstract class, while in fact at runtime
all calls will necessarily invoke methods in subclasses of
this abstract class. Overapproximations, on the other hand,
can be caused by the reverse situation. For example, class
ModeCreateLink in ArgoUML only uses library methods
(and therefore is not coupled to any other application class
through outgoing invocations), and there are no invocations
in the program that use this class as the declared target.
Therefore, theModeCreateLink class appears to be dead
from the point of view of DT, but VTAd correctly identifies
that methods in this class are reachable through polymorphic
calls.

Figure 4a clearly shows that the amount of dead code varies
with the call graph algorithm used to compute the metrics.
Dead classes correspond to those classes whose computed
CBO value is 0.14 Interestingly, the very conservative nature
of the CHA algorithm renders it unable to identify most
of the dead code in ArgoUML. DT identifies 33 classes as
dead (CBO=0), but some of these classes are misclassified.
VTAd identifies almost four times this number with 131
dead classes. Note that the 273 classes identified as dead by
VTA are not trully unreachable; most of these classes are
only reachable through dynamic class loading and reflection.
For instance, VTA identifies all 11 concrete subclasses of
the abstractWizard class in ArgoUML as dead because
they are all loaded and instantiated exclusively via reflection
mechanisms. Figure 4b shows a similar trend for dead code in
Azureus. Because Azureus has more statically resolved calls
than ArgoUML, the variation between the amount of dead
code identified by the various algorithms is much smaller than
for ArgoUML. For instance, VTAd identifies 282 dead classes,
compared to 291 classes for VTA, 279 for RTA and 264 for
CHA. Only DT differs significantly from the other algorithms:
it only labels 49 classes as unreachable.

Note that for RFC, as shown in Figure 5, there are no classes
with RFC of values of 0 with any algorithm. This is due to
the fact that each class contains at least a default constructor.
The minimum possible RFC value is therefore 1.

E. Interfaces

Similarly to dead code, the importance of interfaces in
coupling metric computations varies greatly with the various
call graph building algorithms used. Because the code itself
can use interface methods as declared call targets, the DT

14Or equivalently whose log(CBO+1) value is 0, in this case.

algorithm will consider interfaces when performing coupling
computations. However, because call graphs resolve polymor-
phic calls to interfaces, the other algorithms will not include
interfaces in their CBO computations. In some cases, this can
lead to extreme variations in CBO values. For example, class
NSUMLModelFacade from ArgoUML has a CBO value of
4 with the DT algorithm because it is never called directly
using its static type, but rather invoke through a more generic
Facade interface. As a result, its computed CBO value with
VTAd is 576!

F. Polymorphism

Changes in call graph building algorithms can affect the
CBO measure of a classC in two ways: they can vary
the set of classes used byincoming calls (i.e., calls using
methods fromC) and by outgoing calls (i.e., calls from C

to methods in other classes). Therefore, changes in thePIM

set of a methodm in class C due to a variation in call
graph building algorithms most often has an impact on the
CBO value ofC but also on the CBO values of all classes
declaring the potential target method. In order to gain a better
understanding of the impact of different algorithms on CBO
values, we measured the coupling due to incoming calls (CBO-
In) as well as for outgoing calls (CBO-Out). Figure 6 shows
the results for ArgoUML. The DT algorithm can once again
be seen to underapproximate the coupling for both CBO-
In and CBO-Out as compared to VTAd. More interestingly,
Figure 6a clearly shows that the overapproximations from
CHA mainly stem from CBO-In rather than CBO-Out. This
can be explained by the fact that certain classes can be
seen as potentially called from a number of program lo-
cations based on their inheritance hierarchy, but in reality
calls are concentrated towards a small number of specific
classes rather than distributed across all potential targets. For
example, the classActionAddMessagePredecessor in
ArgoUML inherits fromUMLAction. All calls that use the
genericUMLAction as a target will contribute to the CBO-In
of ActionAddMessagePredecessor according to CHA,
resulting in a total CBO-In value of 252. VTAd, on the other
hand, can determine that very few of these calls actually
reachActionAddMessagePredecessor, and as a result
assigns a CBO-In value of only 3 to it. In both cases, the
CBO-Out value forActionAddMessagePredecessor is
7. Also note that while the incoming calls account for the
majority of the differences between algorithms, there is a
significant number of classes for which CHA computes a much
higher CBO-Out with CHA than other algorithms. This is also
due to the inherent imprecision of the CHA algorithm. For
these classes, CHA is not able to compute a precise set of
targets for some of their call sites.

The results for Azureus (not shown) indicate marginal
differences across the various algorithms for both CBO-In and
CBO-Out. This is again due to the fact that most calls in this
application are non-polymorphic and can be resolved statically.

0.0 0.5 1.0 1.5 2.0 2.5

0
10

0
20

0
30

0
40

0
50

0

log(used by + 1)

N
um

be
r

of
 c

la
ss

es

dt
cha
rta
vta
vtad

(a) Incoming calls (“used by”)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

0
20

0
30

0
40

0
50

0

log(uses + 1)

N
um

be
r

of
 c

la
ss

es

dt
cha
rta
vta
vtad

(b) Outgoing calls (“uses”)

Fig. 6. Breakdown of CBO results for ArgoUML

G. Dynamic class loading

Dynamic class loading is one of the reflection mechanisms
supported by modern programming languages such as Java,
that are rapidly gaining popularity. Table IV shows the statis-
tics for the usage of reflective features in both ArgoUML and
Azureus. The results of our investigation show that both appli-
cations make a non-trivial use of reflection, and in particular
use it to load additional application classes during execution
(the forName column). In light of this information, it is
clear that proper care must be taken in order to account for
such behavior when computing coupling measures. Comparing
the CBO and RFC values for VTA and VTAd in Figure 4
indicates that the difference in CBO values for ArgoUML
due to dynamic loading is very significant; failure to account
for such features would artificially distort the distribution of
CBO values and render their usage difficult. This is due to the
“pluggable” architecture of ArgoUML. In ArgoUML, the en-
tire org.argouml.uml.cognitive.critics package
uses of this plug-in architecture. Consequently, a significant
number of classes are disconnected from the call graph when
we do not consider reflection.

For Azureus, we observed that the distribution of CBO
calculated by VTA and VTAd are virtually indistinguishable
even though the application uses reflective features in source
code. Consequently, we believe that dynamic class loading
does not play a major role in practice for Azureus. In fact,
a manual inspection of the source code reveals that Azureus
often performs dynamic loading of a predetermined class by
using a fixed string constant that contains its name.

TABLE IV
USE OF DYNAMIC CLASS-LOADING

forName newInstance invoke
ArgoUML 14 23 6
Azureus 6 7 1

H. General discussion

The results indicate that for programs that feature a non-
trivial class hierarchy and a significant use of polymorphism,
such as ArgoUML, the choice of call graph building algorithm
used to compute coupling metrics can have an important
impact on the computed values. Contrary to our expectations,
the DT algorithm seems to produce CBO and RFC results that
are much closer to those obtained by VTAd than we originally
believed. Given the very low execution time associated with
this algorithm and the low complexity of its implementation,
it is not surprising to see that it is widely used in commercial
and open-source tools alike. The other algorithms, however,
offer sufficient precision improvements to justify their costs
in certain cases.

When deciding how to implement a metric tool, one needs to
consider how the metrics will be used. Tool builders and users
interested in measuring coupling from a structural perspective
will prefer to use the DT approach; others interested in the
behavioral aspect of coupling will want to consider alternative
algorithms. For example, users focusing on program under-
standing tasks might want an abstract view of the code to
avoid inspecting all executable implementations of an interface
or a class; in this case, DT might be the prefered approach.
However, when using CBO in the context of change impact
or error propagation, it is important to be able to resolve calls

as precisely as possible in order to avoid false negatives when
estimating the impact set of a class. For such cases, basing
coupling on a call graph would be important, and the different
in precision between CHA and VTAd would almost always be
worth the extra cost in analysis time.

An another aspect a tool developer needs to consider
whether or not the whole program needs to be analysed to
build a call graph. Sophisticated algorithms like VTA need an
entry point from which they start and explore the dataflow
through the whole program. Consequently, they need to have
access to the whole code base and cannot be applied to
partial programs like libraries, unlike CHA. We believe that
RTA could be an interesting alternative to more sophisticated
algorithms as its precision is comparable to VTA and VTAd.
Furthermore, it should be possible to write an optimized
implementation of RTA to achieve performance comparable
to that of CHA.

V. CONCLUSION

Software structural metrics are powerful tools that are used
in many software development and maintenance activities such
as effort estimation, quality assessment, and test planning. The
precision with which the structural attributes are quantified
has a considerable impact on the accuracy of these activities.
Coupling is among software attributes that are difficult to
measure precisely. Indeed, coupling is determined in part by
dynamic features that are difficult to analyze statically.

We investigated the tradeoff between cost and precision of
coupling metric computation. Starting from formal definitions
of some coupling metrics, we reformulated the computation
algorithms in terms of call graph analysis. Then, we showed
that the metric computation precision depends on the ability of
the call graphs to capture accurately the dependencies between
program elements. To produce the call graphs corresponding
to different accuracies, we used four type-analysis algorithms,
each having a computation cost. For comparison purposes,
we also implemented an algorithm that extracts the coupling
metrics without considering dynamic features.

To evaluate the different possibilities, we applied the com-
putation algorithms on two large scale systems (more than
1200 classes each). One important finding is that sophisticated
computation methods are necessary when capturing coupling
for system where dynamic features are used. In such situations,
coupling could be under- or overestimated by the classical
computation methods.

Our results provide compelling evidence for the precise
quantification of coupling via type-analysis. However, many
open issues are still to address. The most important one is that
we did not assess whether the observed variations in precision
among the computation algorithms impact the accuracy of
analyses that use the metrics. Future work should therefore
examine whether some empirical results, established on the
basis of these metrics (e.g., [4]), could be challenged.

ACKNOWLEDGMENT

This work has been partly funded by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling measure-
ment for object-oriented software,”IEEE Trans. Softw. Eng., vol. 30,
no. 8, pp. 491–506, 2004.

[2] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++virtual
function calls,” inOOPSLA ’96: Proceedings of the 11th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. New York, NY, USA: ACM, 1996, pp. 324–341.

[3] E. Bodden, A. Sewe, J. Sinschek, and M. Mezini, “Taming reflection:
Static analysis in the presence of reflection and custom class loaders,”
Mar. 2010.

[4] L. C. Briand and J. Ẅust, “Empirical studies of quality models in object-
oriented systems,”Advances in Computers, vol. 56, pp. 97–166, 2002.

[5] L. Briand, J. Daly, and J. Ẅust, “A unified framework for coupling
measurement in object-oriented systems,”IEEE Trans. on Soft. Eng.,
vol. 25, no. 1, pp. 91–121, jan/feb 1999.

[6] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. on Soft. Eng., vol. 20, no. 6, pp. 476–493, jun
1994.

[7] I. D. Coman, A. Sillitti, and G. Succi, “A case-study on using an auto-
mated in-process software engineering measurement and analysis system
in an industrial environment,” inProceedings of the 31st International
Conference on Software Engineering, 2009, pp. 89–99.

[8] D. P. Darcy and C. F. Kemerer, “Oo metrics in practice,”IEEE Software,
vol. 22, pp. 17–19, 2005.

[9] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” inECOOP ’95: Proceed-
ings of the 9th European Conference on Object-Oriented Programming.
London, UK: Springer-Verlag, 1995, pp. 77–101.

[10] A. Gopal, M. S. Krishnan, T. Mukhopadhyay, and D. R. Goldenson,
“Measurement programs in software development: Determinants of
success,”IEEE Trans. Softw. Eng., vol. 28, no. 9, pp. 863–875, 2002.

[11] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graphcon-
struction in object-oriented languages,” inProceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. New York, NY, USA: ACM, 1997, pp.
108–124.

[12] M. Harman, M. Okunlawon, B. Sivagurunathan, and S. Danicic, “Slice-
based measurement of coupling,” inIEEE/ACM ICSE workshop on
Process Modelling and Empirical Studies of Software Evolution, 1997,
pp. 28–32.

[13] T. M. Meyers and D. Binkley, “An empirical study of slice-based
cohesion and coupling metrics,”ACM Trans. Softw. Eng. Methodol.,
vol. 17, no. 1, pp. 1–27, 2007.

[14] H. Sahraoui, L. Briand, Y.-G. Gúeh́eneuc, and O. Beaurepaire, “Inves-
tigating the impact of a measurement program on software quality,”
Information and Software Technology Journal, 2010.

[15] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, “Practical virtual method call resolution for
java,” in Proceedings of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. New
York, NY, USA: ACM, 2000, pp. 264–280.

[16] F. Tip and J. Palsberg, “Scalable propagation-based call graph construc-
tion algorithms,” inProceedings of the 15th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications.
New York, NY, USA: ACM, 2000, pp. 281–293.

[17] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, “Optimizing Java bytecode using the Soot framework:
Is it feasible?” inInternational Conference on Compiler Construction
(CC), 2000, pp. 18–34.

[18] S. M. Yacoub and H. H. Ammar, “A methodology for architecture-level
reliability risk analysis,”IEEE Trans. Softw. Eng., vol. 28, no. 6, pp.
529–547, 2002.

[19] S. M. Yacoub, H. H. Ammar, and T. Robinson, “Dynamic metrics for
object oriented designs,” inIEEE International Symposium on Software
Metrics, 1999, pp. 50–61.

[20] A. Zaidman and S. Demeyer, “Automatic identification of keyclasses in
a software system using webmining techniques,”J. Softw. Maint. Evol.,
vol. 20, no. 6, pp. 387–417, 2008.

	Introduction
	Related Work
	Approach
	Classic coupling metrics
	Accounting for dynamic language features
	Polymorphism
	Dynamic class loading

	Extracting metrics using a call graph

	Case Study
	Experimental setting
	Execution times
	Distribution of coupling values
	Dead code
	Interfaces
	Polymorphism
	Dynamic class loading
	General discussion

	Conclusion
	References

