

Class Cohesion Revisited: An Empirical Study on Industrial Systems

Hind Kabaili, Rudolf K. Keller, François Lustman and Guy Saint-Denis

Département IRO

Université de Montréal

C.P. 6128, succursale Centre-ville

Montréal, Québec H3C 3J7, Canada

E-mail: {kabaili | keller | lustman | stdenisg}@iro.umontreal.ca

Abstract

The assessment of the changeability of
software systems is of major concern for buyers
of the large systems found in fast-moving
domains such as telecommunications. One way
of approaching this problem is to investigate the
dependency between the changeability of the
software and its design, with the goal of finding
design properties that can be used as
changeability indicators. In the realm of object-
oriented systems, experiments have been
conducted showing that coupling between
classes is such an indicator. However, class
cohesion has not been quantitatively studied in
respect to changeability. In this research, we set
out to investigate whether low cohesion is
correlated to high coupling and thus is a
changeability indicator, too. As cohesion
metrics, LCC and LCOM were adopted, and for
measuring coupling, the Chidamber and
Kemerer coupling metrics and variants thereof
were used. The data collected from three test
systems of industrial size indicate no such
correlation. Suspecting that the cohesion metrics
adopted for the experiment do not adequately
capture the cohesion property, we analyzed
manually the classes with lowest cohesion
values. We found various reasons why these

classes, despite of their low cohesion values,
should not be broken into smaller classes. We
conclude that cohesion metrics should not only
be based on common attribute usage between
methods and on method invocation, but also on
patterns of interaction between class members
and, ultimately, on the functionality of methods
and attributes.

Keywords : changeability, design metrics,
object-oriented, cohesion, coupling, empirical
validation.

This research was supported by the SPOOL project organized by CSER
(Consortium for Software Engineering Research) which is funded by
Bell Canada, NSERC (National Sciences and Research Council of
Canada), and NRC (National Research Council of Canada).

- 2 -

1 Introduction

The use of object-oriented (OO) technology for
developing software has become quite widespread.
Researchers assert that OO practice assures good
quality software. By quality software, they mean
maintainable, reusable, and easily extensible
software. Industrial buyers want to be sure of the
product quality they acquire. For this, they need OO
measures, to evaluate the software they want to buy.

For various reasons, Bell Canada, the industrial
partner in this project, is interested in buying large-
scale software rather than developing it. It needs to be
sure of the quality of the systems it acquires. The
SPOOL project (Spreading desirable Properties into
the design of Object-Oriented, Large-scale software
systems), is a joint industry/university research
project between the Quality Engineering and
Research team of Bell Canada and the GELO group
at the Université de Montréal. As part of the project,
design properties are investigated as changeability
indicators.

Cohesion is an important quality property of OO
designs. Several metrics have been proposed to
quantify and measure this design property. In this
paper, we try to assess cohesion as an indicator of
changeability. In some previous works, coupling has
been validated as a quality indicator. By showing a
correlation between cohesion and coupling, we will
be able to assert that cohesion is quality indicator,
too. The paper is organized as follows. Section 2
presents an overview of cohesion as a quality
indicator and describes a potential relationship
between cohesion and coupling. This relationship was
tested empirically, as reported in Section 3. The
negative result of the test led us to investigate the
reasons behind this lack of relationship. This
investigation is described in Section 4. Section 5,
finally, summarizes the work and provides an outlook
into future work.

2 Cohesion and design quality

Building quality OO systems relies on good design.
To assess with some objectivity the quality of a
design, we need to quantify design properties. Several
software metrics have been developed to assess and
control the design phase and its products. One of the
most important criteria in OO design is cohesion.
Module cohesion was introduced by Yourdon and
Constantine as “how tightly bound or related the
internal elements of a module are to one another”
[YC79]. A module has a strong cohesion if it

represents exactly one task of the problem domain,
and all its elements contribute to this single task.
They describe cohesion as an attribute of design,
rather than code, and an attribute that can be used to
predict reusability, maintainability, and changeability.
However, these assumptions have never been
supported by experimentation.

2.1 Cohesion and cohesion metrics

There is a consensus in the literature on the concept
of class cohesion. A class is cohesive if it cannot be
partitioned into two or more sets defined as follows.
Each set contains instance variables and methods.
Methods of one set do not access directly or indirectly
variables of another set. Many authors have implicitly
defined class cohesion by defining cohesion metrics.
In the OO paradigm, most of the cohesion metrics are
inspired from the LCOM metric defined by
Chidamber and Kemerer (C&K) [CDK94].
According to these authors “if an object class has
different methods performing different operations on
the same set of instance variables, the class is
cohesive”. As a metric for assessing cohesion, they
define LCOM (Lack of Cohesion in Methods) as the
number of pairs of methods in a class, having no
common attributes, minus the number of pairs of
methods sharing at least one attribute. The metric is
set to zero when the value is negative.

Li and Henry [LH93] redefine LCOM as the number
of disjoint sets of methods accessing similar instance
variables.

Hitz and Montazeri [HM95] restate Li’s definition of
LCOM based on graph theory. LCOM is defined as
the number of connected components of a graph. A
graph consists of vertices and edges. Vertices
represent methods. There is an edge between 2
vertices if the corresponding methods access the same
instance variable. Hitz and Montazeri propose to split
a class into smaller, more cohesive classes, if LCOM
> 1.

Bieman and Kang [BK95] propose TCC (Tight Class
Cohesion) and LCC (Loose Class Cohesion) as
cohesion metrics, based on Chidamber and Kemerer’s
approach. They too consider pairs of methods using
common instance variables. However, the way in
which they define attribute usage is different. An
instance variable can be used directly or indirectly by
methods. An instance variable is directly used by a
method M, if the instance variable appears in the
body of the method M. The instance variable is
indirectly used, if it is directly used by another
method M’ which is called directly or indirectly by

- 3 -

M. Two methods are directly connected if they use
directly or indirectly a common attribute. TCC is
defined as the percentage of pairs of methods that are
directly connected. LCC counts the pairs of methods
that are directly or indirectly connected. We recall
that constructors and destructors are not taken into
account for computing LCC and TCC. The range of
TCC and LCC is always in the [0,1] interval. They
propose three ways to calculate TCC and LCC: (1)
include inherited methods and inherited instance
variables in the analysis, (2) exclude inherited
methods and inherited instance variables from the
analysis, or (3) exclude inherited methods but include
inherited instance variables. In respect to the three
ways of calculating their metrics, Bieman and Kang
do not express any preference. We opted for
evaluating them according to the first way,
considering inheritance as an intrinsic facet of OO
systems. LCC is an extension of TCC in that
additional features are taken into account. LCC being
more comprehensive than TCC, we adopted LCC,
together with LCOM, as the prime cohesion metrics
of our experimentation.

2.2 Relationship between cohesion and
coupling

As a principle of good OO design, the components of
a class should contribute to one specific task. A non-
cohesive class means that its components tend to
support different tasks. According to common
wisdom, this kind of class has more interactions with
the rest of the system than classes encapsulating one
single functionality. Thus, the coupling of this class
with the rest of the system will be higher than the
average coupling of the classes of the system. This
relationship between cohesion and coupling means
that a non-cohesive class should have a high coupling
value. But in spite of the widely-held belief in this
relationship, it has never been thoroughly
investigated. However, the coupling property has
extensively been studied. Class coupling is usually
defined as class interaction.

Many metrics that capture interactions between
classes have been defined. Chidamber and Kemerer
proposed two coupling metrics [CDK94] that have
been validated as fault prone indicators [BBM96]:

CBO (Coupling between Object Classes): A class is
coupled to another one if it uses its member
functions and/or instance variables, and vice
versa. CBO provides the number of classes to
which a given class is coupled.

RFC (Response for a Class): This is the number of
methods that can potentially be executed in
response to a message received by an object of
that class.

Briand et al. describe coupling as the degree of
interdependence among the components of a software
system. They defined 18 coupling metrics. This suite
takes into account the different OO design
mechanisms provided by the C++ language
[BDM97].

While the relationship between cohesion and quality
has not been quantitatively assessed, several coupling
metrics have been shown to be good quality
indicators with respect to some specifics quality
aspect. We decided to investigate the potential of
cohesion metrics as changeability indicators by
looking for relationships between cohesion and
coupling.

3 Empirical validation of cohesion-coupling
relationship

3.1 Objectives

Most large-scale software systems have a long life
span. Over the years, they require changes to improve
performance, to address new needs, or to adapt the
system to a changing environment. Since our
industrial partner has a vested interest in software
changeability, we conducted our experiment with
respect to changeability. One way to assess the
changeability of a software system is to find some
design properties that can be used as changeability
indicators.

In the realm of OO systems, experiments have been
conducted showing that coupling between classes is
an indicator of changeability. Chaumun et al. defined
a model of software changes and change impacts at
the conceptual level. They observed a high
correlation between changeability and some coupling
metrics, across different industrial systems and across
various types of changes [CKKL99].

However, class cohesion has not been studied
quantitatively with respect to changeability. Weak
class cohesion leads to high coupling with the rest of
the system, and thus to high change impact. Weak
class cohesion is therefore expected to result in poor
changeability. One way to investigate cohesion as a
changeability indicator, is to prove whether low
cohesion is indeed correlated to high coupling.

- 4 -

Such a proof would confirm our intuition that there is
a correlation between cohesion and changeability. We
are aware that this latter hypothesis would require a
study in its own right, which is beyond the scope of
this paper.

3.2 Selection of metrics

To test our hypothesis “low cohesion is correlated
with high coupling”, we adopted some well-known
cohesion and coupling metrics found in the literature.
As cohesion metrics, we chose LCC and LCOM (see
Section 2.1). For measuring coupling, we adopted
CBO and RFC, since these two metrics have been
proven to be good indicators of quality [BBM96] and
changeability [CKKL99, CKK+99]. To assess our
hypothesis empirically, the following correlation
hypotheses must be tested statistically:

• For the test system, there is a relationship
between the LCC and CBO metrics.

• For the test system, there is a relationship
between the LCC and RFC metrics.

• For the test system, there is a relationship
between the LCOM and CBO metrics.

• For the test system, there is a relationship
between the LCOM and RFC metrics.

Thus, in our experiment, we attempted to correlate
the LCC and LCOM metrics with the C&K coupling
metrics (CBO, RFC) and extend the scope of the LCC
and LCOM metrics to the changeability property.
During experimentation, we decided to include in our
study the NOC (number of children) metric which is
usually considered as a coupling metric. Furthermore,
we considered four metrics that we derived from the
NOC and CBO metrics. Recall that CBO is
“approximately equal to the number of coupling with
other classes (where calling a method or instance
variable from another class constitutes coupling)”
[CDK98]. Below, we present the four metrics,
together with the rationale for their consideration.

NOC* (Number Of Children in subtree): when
some component of a class is changed, it may
affect not only its children but also the whole
subtree of which the changed class is the root.

CBO_NA (CBO No Ancestors: same as CBO, but
the coupling between the target class and its
ancestors is not taken into consideration): the
coupling between the class and its ancestors,
taken into consideration by CBO, is irrelevant
for change impact, since the ancestors of the
target class will never be impacted. To

eliminate such “noise”, ancestors are excluded
in CBO_NA.

CBO_IUB (CBO Is Used By: the part of CBO that
consists of the classes using the target class):
the definition of CBO merges two coupling
directions: classes using the target class and
classes used by the class. For changeability
purposes, the former seems mo re relevant than
the latter one, hence the split.

CBO_U (CBO Using: the part of CBO that consists
of the classes used by the target class):
introduced as a consequence of CBO_IUB, to
cover the part of CBO not considered by
CBO_IUB.

In summary, seven metrics were considered: the two
C&K coupling metrics (CBO, RFC), one other C&K
design metric (NOC) and four changeability-oriented
refinements of the C&K metrics suite (NOC*,
CBO_NA, CBO_IUB, CBO_U).

To achieve significant and general results, the data
used to test the correlation between cohesion and
coupling were collected from three different
industrial OO systems, as described below.

3.3 Experimentation set up

In this section, we first present the three test systems
of the experiment. Then, the environment in which
the experiment was conducted is described. Finally,
we discuss the experimental procedure that was
adopted.

Three industrial systems were considered. They vary
in class size and application domain. The first test
system is XForms, which can be freely downloaded
from the web [Xfo97]. It is a graphical user interface
toolkit for X window systems. It is the smallest of the
test systems (see Table 1). ET++, the second test
system, is a well-known application framework
[WGM98]. The version used in the experiment is the
one included in the SNiFF+ development
environment [Tak99]. The third and largest test
system was provided by Bell Canada, and is called,
for confidentiality reasons, System-B. It is used for
decision making in telecommunications. Table 1
provides some size metrics for these systems. Note
that header files from the compiler are included in the
numbers shown in the lower part of the table (last six
rows), whereas the numbers in the upper part (first
four rows) represent the system that was effectively
investigated in the study.

- 5 -

Table 1: Size metrics of test systems

 XForms ET++ System-B

Lines of code 7 117 70 796 291 619

Lines of pure comments 764 3 494 71 209

Blank lines 1 009 12 892 90 426

of effective classes 83 584 1 226

of classes 221 722 1 420

of files (.C/.h) 143 485 1 153

of generalizations 75 466 941

of methods 450 6 255 8 594

of variables 1 928 4 460 13 624

Size in repository 2.9 MB 19.3 MB 41.0 MB

To calculate the metrics involved in the
experimentation, we used the SPOOL environment
(see Figure 1). This environment is being developed
for the entire SPOOL project and comprises various
analysis and visualization capabilities to cope with
large-scale software systems [KSRP99].

Figure 1: Environment for metrics calculation

The environment provides a repository-based
solution. A parsing tool, e.g., a compiler front-end,
parses the test system source code. GEN++, the C++
implementation of GENOA [Dev92], was used in this
extraction process. The parsed information contains
data about all classes and links in the system. This

information is captured and fed into a design
repository. The schema of the design repository is
based on our extended UML (Unified Model
Language) metamodel [RJB99]. The OO database
management system POET 5.1 [Poe99] serves as the
repository backend, with the schema being
represented as a Java 1.1 class hierarchy. Metrics
requests are batch-processed using a flexible report
generator mechanism. They typically contain
information on the metrics as well as on the target
class, methods, and variables. This triggers a set of
queries corresponding to the specified metrics. The
code in these queries uses the metrics request
information as parameters to interrogate the
repository. Raw results are fetched and processed into
ASCII files that obey a specific format and can
readily be transferred into spreadsheet programs such
as Excel for further statistical processing.

We collected cohesion metrics values from the three
test systems. Furthermore, we gathered the values for
all seven metrics explained in Section 3.2. For each
metric involved in the experimentation, we calculated
some descriptive statistics (minimum, maximum,
mean, median, and standard deviation; see tables 2
and 3). To test the four correlation hypotheses, we
calculated for the two cohesion metrics the Pearson
coefficient of correlation in respect to the seven
metrics of Section 3.2 (see Appendix C).

3.4 Results

Descriptive statistics of the three test systems are
summarized in Appendix A. NOC and NOC* have
the same median value for the three systems; 0 for
NOC and NOC*. A median of 0 for number of
children (NOC) and for NOC* means that for the
three systems, half the classes are leaves. Based on
this and on the mean value of NOC, it can be stated
that classes that do have children have on the average
less than two children. These results were found in
software systems of different size and application
domain, and we conclude that in general inheritance
is not strongly used in OO development. Thus, the
class trees of such systems will generally be flat.

Appendix B shows descriptive statistics of the
cohesion metrics of the three test systems. Based on
these values, and referring to the definition of both
LCOM and LCC, we early concluded that the three
test systems are not strongly cohesive.

The Pearson correlation coefficients are presented in
Appendix C. We found no correlation between the
LCC and LCOM metrics and CBO and RFC (we also
checked for outliers). Moreover, no correlation was

Test system
source code

(C++)

Raw
results

Result in
ASCII

file

Parse-and-
capture

Set of
queries

Result
processing

Design
repository

Change
request

- 6 -

found between the tested cohesion metrics and the
seven other metrics of the study. No general
conclusion was drawn at this stage. However, these
negative results were found for two cohesion metrics
and seven coupling metrics (CBO, RFC, NOC,
NOC*, CBO_NA, CBO_IUB, CBO_U), across three
industrial systems of different size and origin.
Therefore, we put forward the following hypothesis:
in general, there is no relationship between these
cohesion metrics and coupling metrics.

4 Class cohesion and methods coupling

The goal of our study was to find a correlation
between cohesion and coupling, but the result was
negative. Consequently, we set out to reason about
this absence of correlation, especially with respect to
the two genuine coupling metrics CBO and RFC.

4.1 Reasoning about results

Given negative results reported above, we came up
with the following two explanations:

(1) The cohesion metrics or the coupling metrics
chosen for the experimentation are not the
right ones.

(2) There is no relationship between cohesion and
coupling whatsoever.

Hypothesis (2), being counter to a widely-held belief
in the design community, was discarded. We then
focused our investigation on hypothesis (1).

From hypothesis (1) we derived the following two
sub-hypotheses:

(1A) The LCC and LCOM metrics do not
correctly measure cohesion.

(1B) CBO and RFC do not measure the coupling
property of a class as s tated by Yourdon and
Constantine.

Sub-hypothesis (1B) was rejected on the grounds that
the coupling metrics adopted in the study are quite
well understood and validated. Basili et al., for
instance, validated CBO and RFC as quality
indicators [BBM96]. Another example of validation
is the work of Chaumun et al., who experimented
with extended C&K design metrics as changeability
indicators [CKK+99].

On the other hand, we question the quality of the
investigated cohesion metrics (sub-hypothesis (1A)).
Intuitively, when they show a high class cohesion
(LCC =1 or LCOM = 0), the classes are probably

quite cohesive. However, we are doubtful about the
expressiveness of LCOM and LCC in the presence of
weak class cohesion. Thus, we set out to study
manually various weakly cohesive classes occurring
in the three test systems.

4.2 Study of weakly cohesive classes

According to the cohesion concept, a weakly
cohesive class is designed in an ad hoc manner, and
unrelated components are included in the class. The
class represents several disparate concepts and may
be split into classes that model only one single
concept. Based on anecdotal evidence, we suspected
that, although LCC and LCOM indicate weak
cohesion, it might not necessarily be true that the
classes at hand must be broken into smaller
components. To consolidate this idea, we decided to
manually inspect weakly cohesive classes.

We chose from each of the three test systems classes
that exhibit weak cohesion (LCC < 0.5 and/or LCOM
> 0), to verify if they are real candidates for splitting.
After studying these classes, we found that many of
them should not be split. Appendix D lists, for
illustration, some of these classes. We came up with
four major reasons for not splitting them.

First, some classes had no variables (such as the class
Glob in ET++; see Appendix D) or only abstract
methods (such as class App in XForms), yielding low
LCC values (and positive LCOM values).

Second, we noticed that for some classes, the LCC
value is reduced by counting inherited variables or
inherited values. For these cases, we calculated LCC
without taking into account inherited components,
and not surprisingly, we obtained LCC values
indicating stronger class cohesion. The
PeCollectClients class in ET++ is such an example. It
contains three methods sharing the same instance
variables. LCC should be equal to 1, but inherited
methods reduce LCC to 0.3 (see Appendix D). Note
that in this and several other examples, the three ways
of calculating LCC led to widely different cohesion
results.

Third, some classes have multiple methods that share
no variables but perform related functionality.
Consider for example the class RevObjListIter in
ET++ (Appendix D) which is used to manage lists of
objects. Its methods carry out different list
management operations on lists that are passed to the
class as parameters. Putting each method in a
different class would be counter to good OO design
and the very idea of cohesiveness.

- 7 -

Fourth, we identified several classes that have
numerous attributes for describing internal states,
together with an equally large number of methods for
individually manipulating these attributes. For
example, the class DRRequests in System-B contains
22 attributes together with pairs of get and set
methods for each of them. However, these attributes
belong together and should not be separated.

Based on this analysis, we notice that low values of
LCC and high values of LCOM do not assure a
weakly cohesive class. We conclude that as
measured, LCC and LCOM do in general not reflect
the cohesion property of a class.

4.3 Additional cohesion properties

The results obtained in our study call for a refinement
of the definition of cohesion metrics, in order to
better measure the cohesion property as stated by OO
design principles. It is our belief that a true cohesion
metrics will have to go beyond the simple sharing of
class variables and capture additional information.

Briand et al. provide a categorization of cohesion
metrics [BDPW98]. LCOM is counted as a cohesion
metrics based on common attribute usage in a class.
LCC belongs to the cohesion metrics category that is
based on both common attribute usage and method
invocations within a class.

Chae and Kwon, in their recent paper, reflect on the
weakness of current research on class cohesion
measures [CK98]. They observe that existing
approaches do not consider the special methods that
interact with only part of the instance variables and
thus reduce class cohesion. As examples, they
mention accessor methods, delegation methods,
constructors, and destructors. They propose that
special methods be treated such that they do not
compromise the value of the cohesion metrics.
Furthermore, Chae and Kwon suggest that cohesion
metrics take into account additional characteristics of
classes, for instance, the patterns of interaction among
the members of a class. Their reasoning about special
methods confirms the fourth reason we brought up in
the previous section.

We believe that this work clearly constitutes an
improvement in calculating class cohesion. However,
it is our contention that we must take into account not
only the patterns of interaction among class members,
but also the semantics of these interactions. Based on
our investigation results, we furthermore assert that
cohesion measures must take into account the
functionality of class methods as well as the unity of
the data that describe the entity modeled by the class.

5 Conclusion

In this paper, our major goal was to validate cohesion
metrics as changeability indicators. To this end, we
tried to correlate cohesion metrics with coupling
metrics that had been proven as quality indicators.
We chose LCC and LCOM as cohesion metrics, and
CBO and RFC were chosen as the primary coupling
metrics. We collected data about these metrics on
three different industrial systems. Our
experimentation showed no correlation between
cohesion and coupling metrics chosen.

According to OO design principles, a good design
exhibiting high class cohesion goes together with low
coupling between classes. A relationship should
therefore exist between cohesion and coupling. We
suspected that the cohesion metrics used in the
experimentation do not reflect the real cohesion of a
class. We decided to investigate manually classes
with low cohesion metric values. We found that
although some classes have low LCC and/or high
LCOM, these classes are actually cohesive.

A cohesion measure based on the variable sharing
aspect is a special way of capturing class cohesion.
This restricted definition led to cohesion measures
with misleading values in several situations. Such
situations occur, for instance, when classes have
abstract methods or when a class inherits a large
number of methods or instance variables from its
superclass. When taking into account these abstract
methods or inherited components, the cohesion value
of a class is reduced, resulting in misleading class
cohesion values. In our belief, class cohesion metrics
should not exclusively be based on common attribute
usage and method invocation, but also on patterns of
interaction between class members, on the
functionality of class methods, and on the conceptual
unity of its instance variables.

6 Reference

[BBM96] Victor R. Basili, Lionel C. Briand,
and Walcelio L. Melo. A validation of
object-oriented design metrics as quality
indicators. In IEEE Transactions on
Software Engineering, 22(10): 751-761,
October 1996.
[BDM97] Lionel Briand, Prem Devanbu,
and Walcelio Melo. An investigation into
coupling measures for C++. In Proceedings
of the International Conference on Software

- 8 -

Engineering (ICSE’97), pages 412-421,
Boston, MA, May 1997.
[BDPW98] Lionel C. Briand, John Daly, and
Jurgen Wust. A unified framework for
cohesion measurement in object-oriented
systems. In Empirical Software Engineering
- An International Journal, 3(1), pages 67-
117, 1998.
[BK95] James M. Bieman and Byung-Kyoo
Kang. Cohesion and reuse in an object-
oriented system. In Proceedings of the
Symposium on Software Reusability
(SSR'95), pages 259-262, Seattle, WA, April
1995.
[CKKL99] M. Ajmal Chaumun, Hind
Kabaili, Rudolf K. Keller, and Francois
Lustman. A change impact model for
changeability assessment in object-oriented
systems. In Proceedings of the Third
Euromicro Working Conference on Software
Maintenance and Reengineering, pages 130-
138, Amsterdam, The Netherlands, March
1999.
[CKK+99] M. Ajmal Chaumun, Hind
Kabaili, Rudolf K. Keller, Francois
Lustman, and Guy St-Denis. Design
properties and object-oriented software
changeability. Technical Report GELO-92,
Universite de Montreal, Montreal, Quebec,
Canada, March 1999. Submitted for
publication.
[CDK94]S. R. Chidamber and C. F.
Kemerer. A Metrics Suite for Object
Oriented Design. In IEEE Transactions on
Software Engineering, Vol. 20, No. 6, pages
476-493, June 1994.
[CDK98] Shyam R. Chidamber, David P.
Darcy, and Chris F. Kemerer. Managerial
use of metrics for object-oriented software:
An exploratory analysis. In IEEE
Transactions on Software Engineering,
24(8):629-639, August 1998.
[CK98] Heung Seok Chae and Yong Rae
Kwon. A cohesion measure for classes in
object-oriented systems, In Proceedings of

the Fifth international Software Metrics
Symposium, pages 158-166, Bethesda, MD,
November 1998.
[Dev92] Premkumar T. Devanbu. GENOA -
a customizable, language- and front-end
independent code analyzer, In Proceedings
of the 14th International Conference on
Software Engineering (ICSE’92, pages 307-
317, Melbourne, Australia, 1992.
[HM95] Martin Hitz and Behzad Montazeri.
Measuring coupling and cohesion in object-
oriented systems. Proc. Int. Symposium on
Applied Corporate Computing, pages 25-27,
October, 1995.
[KSRP99] Rudolf K. Keller, Reinhard
Schauer, Sebastien Robitaille, and Patrick
Page. Pattern-based reverse engineering of
design components. In Proceedings of the
Twenty-First International Conference on
Software Engineering, Los Angeles, CA,
May 1999. IEEE. to appear.
[LH93] Wei Li and Sallie Henry. Object-
oriented metrics that predict maintainability.
In Journal of Systems and Software, 23:111-
122, February, 1993.
[Poe99] Poet Software Corporation, San
Mateo, CA. POET Java ODMG Binding.
Online documentation, 1999. Available
online at <http://www.poet.com/>.
[RJB99] James Rumbaugh, Ivar Jacobson,
and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-
Wesley, 1999.
[Tak99] TakeFive GmbH, Salzburg, Austria.
SNiFF+ Documentation Set, 1999. Available
online at: <http://www.takefive.com>.
[WGM89] Andre Weinand, Erich Gamma,
and Rudolf Marty. Design and
implementation of ET++, a seamless object-
oriented application framework. In
Structured Programming, 10(2): 63-87,
April-June, 1989.
[Xfo97] Xforms Library. Graphical user
interface for X. Documentation Set, 1997.

- 9 -

Available online at
<http://bragg.phys.uwm.edu/xforms>.

[YC79] Edward Yourdon and Larry L.
Constantine. Structured Design. Prentice
Hall, Englewood Cliffs, N.J., 1979.

- 10 -

Appendix A: Descriptive statistics of the three test systems

System

NOC NOC* CBO
CBO_

NA
CBO_

IUB
CBO_

U RFC

XForms Minimum 0 0 0 0 0 0 0

83 classes Maximum 14 60 20 20 19 9 45
 Mean 0.82 2.57 4.13 3.16 0.98 3.16 6.52
 Median 0 0 4 3 0 4 2

 Std. Dev. 2.34 9.57 3.16 3.16 3.05 1.95 9.85
ET++ Minimum 0 0 0 0 0 0 0

584 classes Maximum 56 361 301 301 293 76 746
 Mean 0.78 2.09 24.48 22.5 5.01 19.80 90.65
 Median 0 0 24 21.5 0 21 36.5

 Std. Dev. 3.45 17.05 25.40 24.63 21.28 15.89 128.98
System-B Minimum 0 0 0 0 0 0 0

1226 classes Maximum 29 266 707 707 707 93 2735
 Mean 0.88 3.42 32.49 29.36 7.06 25.77 171.02
 Median 0 0 21 18 1 17 47

 Std. Dev. 2.53 18.51 36.14 34.96 29.48 23.95 286.85

Appendix B: Metrics results for the three test systems

System

LCC LCOM

XForms Minimum 0 0

83 classes Maximum 1 208
 Mean 0.62 5.81
 Median 0.69 1

 Std. Dev. 0.27 25.40
ET++ Minimum 0 0

584 classes Maximum 1 4714
 Mean 0.42 89.07
 Median 0.33 6

 Std. Dev. 0.31 352.81
System-B Minimum 0 0

1226 classes Maximum 1 11706
 Mean 0.56 145.73
 Median 0.61 10

 Std. Dev. 0.31 695.72

- 11 -

Appendix C: Correlation coefficients for the three test systems

Cohesion
Metrics

System NOC NOC* CBO CBO_
NA

CBO_
UIB

CBO_
U

RFC

XForms -0.09 -0.15 -0.17 -0.10 -0.030 -0.22 -0.17
ET++ -0.10 -0.05 -0.11 -0.10 0.04 -0.23 -0.05 LCC

System-B -0.06 -0.08 -0.02 -0.01 -0.05 -0.03 -0.07
XForms 0.12 -0.01 0.06 0.11 0.17 -0.17 0.33
ET++ 0.30 0.31 0.44 0.45 0.39 0.21 0.38 LCOM

System-B 0.08 0.21 0.28 0.30 0.32 0.07 0.36

Appendix D: Example of weakly cohesive class that are not candidate
for splitting

Classes Systems LCC LCOM

Glob ET++ 0 3

PeCollectClients ET++ 0.3 0

App XForms 0 6

RevObjListIter ET++ 0.16 1

DRRequests System-B 0.023 858

