
 ad/97-08-08

Object Constraint
Language Specification

version 1.1
1 September 1997

Rational Software ■ Microsoft ■ Hewlett-Packard ■ Oracle
Sterling Software ■ MCI Systemhouse ■ Unisys ■ ICON Computing

IntelliCorp ■ i-Logix ■ IBM ■ ObjecTime ■ Platinum Technology ■ Ptech
Taskon ■ Reich Technologies ■ Softeam

ii Object Constraint Language Specification, v 1.1

Copyright © 1997 IBM Corporation.
Copyright © 1997 Rational Software Corporation.
Copyright © 1997 Microsoft Corporation.
Copyright © 1997 Hewlett-Packard Company.
Copyright © 1997 Oracle Corporation.
Copyright © 1997 Sterling Software.
Copyright © 1997 MCI Systemhouse Corporation.
Copyright © 1997 Unisys Corporation.
Copyright © 1997 ICON Computing.
Copyright © 1997 IntelliCorp.
Copyright © 1997 i-Logix.
Copyright © 1997 ObjecTime Limited.
Copyright © 1997 Platinum Technology Inc.
Copyright © 1997 Ptech Inc.
Copyright © 1997 Taskon A/S.
Copyright © 1997 Reich Technologies.
Copyright © 1997 Softeam.

Photocopying, electronic distribution, or foreign-language translation of this document is
permitted, provided this document is reproduced in its entirety and accompanied with this entire
notice, including the following statements:

The most recent updates on the Unified Modeling Language are available via the
worldwide web: http://www.rational.com/uml.

A free OCL Parser and the most recent information on the Object Constraint Language
are available via the worldwide web: http://www.software.ibm.com/ad/ocl.

The UML logo is a trademark of Rational Software Corp.

Object Constraint Language Specification, v 1.1 iii

Contents
1. OVERVIEW 1

1.1 Why OCL? .. 1
1.2 Where to Use OCL.. 2

2. INTRODUCTION 2
2.1 Legend... 2
2.2 Example Class Diagram .. 2

3. CONNECTION WITH THE UML METAMODEL 3
3.1 Self .. 3
3.2 Invariants... 3
3.3 Pre- and Postconditions... 4
3.4 Guards ... 4
3.5 General Expressions.. 4

4. BASIC VALUES AND TYPES 4
4.1 Types from the UML Model ... 5
4.2 Enumeration Types ... 5
4.3 Type Conformance.. 5
4.4 Re-typing or Casting ... 6
4.5 Precedence Rules .. 6
4.6 Comment ... 7
4.7 Undefined Values.. 7

5. OBJECTS AND PROPERTIES 7
5.1 Properties .. 7
5.2 Properties: Attributes .. 8
5.3 Properties: Operations... 8
5.4 Properties: Association Ends and Navigation ... 8
5.5 Navigation to Association Types... 10
5.6 Navigation from Association Classes.. 10
5.7 Navigation through Qualified Associations... 11
5.8 Using Pathnames for Packages and Properties.. 11
5.9 Predefined Features on all Objects.. 12
5.10 Features on Types Themselves.. 12
5.11 Collections .. 12
5.12 Collections of Collections ... 13
5.13 Collection Type Hierarchy and Type Conformance Rules.. 14
5.14 Previous Values in Postconditions .. 14

6. COLLECTION OPERATIONS 15
6.1 Select and Reject Operations... 15
6.2 Collect Operation .. 17
6.3 ForAll Operation ... 18
6.4 Exists Operation .. 18
6.5 Iterate Operation ... 19

7. PREDEFINED OCL TYPES 19
7.1 Basic Types ... 19
7.2 Collection-Related Types .. 25

8. GRAMMAR FOR OCL 31

Object Constraint Language Specification, v 1.1 1

1. OVERVIEW
This document introduces and defines the Object Constraint Language (OCL), a formal language
to express side effect-free constraints. Users of the Unified Modeling Language and other
languages can use OCL to specify constraints and other expressions attached to their models.

OCL was used in the UML Semantics document to specify the well-formedness rules of the UML
metamodel. Each well-formedness rule in the static semantics sections in the UML Semantics
document contains an OCL expression, which is an invariant for the involved class. The grammar
for OCL is specified at the end of this document. A parser generated from this grammar has
correctly parsed all the constraints in the UML Semantics document, a process which improved
the correctness of the specifications for OCL and UML.

1.1 WHY OCL?
In object-oriented modeling a graphical model, like a class model, is not enough for a precise and
unambiguous specification. There is a need to describe additional constraints about the objects in
the model. Such constraints are often described in natural language. Practice has shown that this
will always result in ambiguities. In order to write unambiguous constraints, so-called formal
languages have been developed. The disadvantage of traditional formal languages is that they are
useable to persons with a string mathematical background, but difficult for the average business
or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that remains easy to read and
write. It has been developed as a business modeling language within the IBM Insurance division,
and has its roots in the Syntropy method.

OCL is a pure expression language. Therefore, an OCL expression is guaranteed to be without
side effect; it cannot change anything in the model. This means that the state of the system will
never change because of an OCL expression, even though an OCL expression can be used to
specify a state change, e.g. in a post-condition. All values for all objects, including all links, will
not change. Whenever an OCL expression is evaluated, it simply delivers a value.

OCL is not a programming language, so it is not possible to write program logic or flow control
in OCL. You cannot invoke processes or activate non-query operations within OCL. Because
OCL is a modeling language in the first place, not everything in it is promised to be directly
executable.

OCL is a typed language, so each OCL expression has a type. In a correct OCL expression all
types used must be type conformant. For example, you cannot compare an Integer with a String.
Types within OCL can be any kind of Classifier within UML.

As a modeling language, all implementation issues are out of scope and cannot be expressed in
OCL. Each OCL expression is conceptually atomic. The state of the objects in the system cannot
change during evaluation.

2 Object Constraint Language Specification, v 1.1

1.2 WHERE TO USE OCL
OCL can be used for a number of different purposes:

• To specify invariants on classes and types in the class model.
• To specify type invariant for Stereotypes.
• To describe pre- and post conditions on Operations and Methods
• To describe Guards
• As a navigation language
• To specify constraints on operations:

operation = expression

Where operation is the name of the operation and expression the constraint. Because
operations may have parameters, the constraint may also have one or more parameters as
in one of the following:
operation(a, b) = expression
operation(a : Type1, b : Type2) = expression

The parameters of the operation, in this example a and b, can be used in the expression at
the right-hand side of the equals sign. Operations can also be described by a recursive
expression. It is the modeler’s task to make sure that the recursion is well defined. An
operation constraint can also be read as a definition of the operation, where the right-
hand side of the equals sign determines the value the operation will return.

Within the UML Semantics document, OCL is used in the well-formedness rules as invariants on
the meta-classes in the abstract syntax. At several places it is also used to define ‘additional’
operations, which are used in the well-formedness rules.

2. INTRODUCTION

2.1 LEGEND
Text written in the courier typeface like below is an OCL expression:

'This is an OCL expression'

The underlined word before an OCL expression determines the context for the expression:
TypeName
'this is an OCL expression in the context of TypeName'

Keywords of OCL are written in boldface within the OCL expression in this document. The
boldface has no formal meaning, but is used to make the expressions more readable in this
document. OCL expressions are written using only ASCII characters.

Words in Italics within the main text of the paragraphs refer to parts of OCL expressions.

2.2 EXAMPLE CLASS DIAGRAM
The diagram below is used in the examples in this document.

Object Constraint Language Specification, v 1.1 3

P e rs o n
is M a rr ie d : B o o le a n
is U n e m p lo y e d : B o o le a n
b ir th D a te : D a te
a g e : In te g e r
firs tN a m e : S tr in g
la s tN a m e : S tr in g
s e x : e n u m { m a le , fe m a le }

in c o m e (D a te) : In te g e r

J o b
title : S tr in g
s ta r tD a te : D a te
s a la ry : In te g e r

M a rr ia g e
p la c e : S T r in g
d a te : D a te

m a n a g e d C o m p a n ie s
0 ..*m a n a g e r

e m p lo y e r

0 ..*

C o m p a n y
n a m e : S tr in g
n u m b e rO fE m p lo y e e s : In te g e r

s to c k P r ic e ()
e m p lo y e e

0 ..*

w ife
0 ..1

h u s b a n d 0 ..1

B a n k

0 ..*

0 ..*0 ..*

0 ..1

0 ..1

a c c o u n tN u m b e r : In te g e r

0 ..1

a c c o u n tN u m b e r : In te g e r

0 ..1

c u s to m e r

3. CONNECTION WITH THE UML METAMODEL

3.1 SELF
Each OCL expression is written in the context of an instance of a specific type. In an OCL
expression the name self is used to refer to the contextual instance.

3.2 INVARIANTS
The OCL expression can be part of an Invariant, which is a Constraint stereotyped with
«invariant». When the Invariant is associated with a Classifier, this is called the type in this
document. The expression then is an invariant of the type and must be true for all instances of
that type at any time. If the context is Company, then self refers to an instance of Company. In
the expression

self.numberOfEmployees

self is an instance of type Company. We can see the self as the object from where we start the
expression.

In this document, the type of the contextual instance of an OCL expression, which is part of an
Invariant, is written with the name of the type underlined as follows:

Company
self.numberOfEmployees

In most cases, self can be left out, because the context is clear, as in the above examples.

As an alternative for self, a different name can be defined playing the part of self:

4 Object Constraint Language Specification, v 1.1

c : Company
c.numberOfEmployees

This is identical to the previous example using self.

3.3 PRE- AND POSTCONDITIONS
The OCL expression can be part of a Precondition or Postcondition, which are Constraints
stereotyped with respectively «precondition» and «postcondition». The Precondition or
Postcondition on Operation or Method. In this case, the expression is a pre- or postcondition on
the Operation or Method. The contextual instance self then is of the type which owns the
operation as a feature. The notation used in this document is to underline the type and operation
declaration, and put labels ‘pre:’ and ‘post:’ before Preconditions and Postconditions

Typename::operationName(parameter1 : Type1, ...): ReturnType
pre : parameter1 > …
post: result = ...

The name self can be used in the expression referring to the object on which the operation was
called, and the name result is the name of the returned object, if there is any. The names of the
parameters (parametert1,) can also be used in the OCL expression. In the example diagram we
can write:

Person::income(d : Date) : Integer
post: result = ...some function of self and parameter1 ...

3.4 GUARDS
The OCL expression can be part of a Guard. In this case self refers to the enclosing Classifier.
No examples of guards are given in this document.

3.5 GENERAL EXPRESSIONS
Any OCL expression can be used as the value for an attribute of the UML class Expression or
one of its subtypes. In this case, the semantics document describes the meaning of the expression.

4. BASIC VALUES AND TYPES
In OCL, a number of basic types are predefined and available to the modeler at all time. These
predefined value types are independent of any object model and part of the definition of OCL.

The most basic value in OCL is a value of one of the basic types. Some basic types used in the
examples in this document, with corresponding examples of their values, are:

type values
Boolean true, false
Integer 1, 2, 34, 26524, ...
Real 1.5, 3.14, ...
String 'To be or not to be...'

Object Constraint Language Specification, v 1.1 5

OCL defines a number of operations on the predefined types. The next table gives some
examples of the operations on the predefined types. In section 7 the complete list of all
operations is given.

type operations
Integer *, +, -, /, abs
Real *, +, -, /, floor
Boolean and, or, xor, not, implies, if-then-else
String toUpper, concat

At the end of this document the complete list of operations provided for each type is described.
Collection, Set, Bag and Sequence are basic types as well; their specifics will be described in the
upcoming sections.

4.1 TYPES FROM THE UML MODEL
Each OCL expression is written in the context of a UML model, a number of types/classes their
features and associations and their generalizations. All types/classes from the UML model are
types in OCL that is attached to the model.

4.2 ENUMERATION TYPES
As shown in the example diagram, new enumeration types can be defined in a model by using:

enum{ value1, value2, value3 }

The values of the enumeration (value1, ...) can be used within expressions.

As there might be a name conflict with attribute names being equal to enumeration values, the
usage of an enumeration value is syntactically expressed with an additional # symbol in front of
the value:

#value1

The type of an enumeration attribute is Enumeration, with restrictions on the values for the
attribute.

4.3 TYPE CONFORMANCE
OCL is a typed language and the basic value types are organized in a type hierarchy. This
hierarchy determines conformance of the different types to each other. You cannot, for example,
compare an Integer with a Boolean or a String.

An OCL expression in which all the types conform is a valid expression. An OCL expression in
which the types don’t conform is an invalid expression. It contains a type conformance error. A
type type1 conforms to a type type2 when an instance of type1 can be substituted at each place
where an instance of type2 is expected. The type conformance rules for types in the class
diagrams are simple.

• Each type conforms to its supertype
• Type conformance is transitive: if type1 conforms to type2, and type2 conforms to type3,

then type1 conforms to type3.

6 Object Constraint Language Specification, v 1.1

The effect of this is that a type conforms to its supertype, and all the supertypes above.

The type conformance rules for the value types are:

Type Conforms to/
Is subtype of

Set Collection
Sequence Collection
Bag Collection
Integer Real

The conformance relation between the collection types only holds if they are collections of
element types that conform to each other. See 5.13 for the complete conformance rules for
collections.

In the next table some examples of valid and invalid expressions are shown:

OCL expression valid? error
1 + 2 * 34 yes
1 + 'motorcycle' no type Integer does not conform to type

String
23 * false no type Integer does not conform to Boolean
12 + 13.5 yes

4.4 RE-TYPING OR CASTING
In some circumstances it is desirable to use a property of an object that is defined on a subtype of
the current known type of the object. Because the property is not defined on the current known
type this results in a type conformance error.

When it is certain that the actual type of the object is the subtype, the object can be re-typed
using the operation oclAsType(OclType). This operation results in the same object, but the known
type is the argument OclType. When there is an object object of type Type1 and Type2 is another
type, it is allowed to write:

object.oclAsType(Type2) --- evaluates to object with type Type2

An object can only be re-typed to one of its subtype; therefore, in the example, Type2 must be a
subtype of Type1.

If the actual type of the object is not equal to the type to which it is re-typed, the expression is
undefined (see 4.7).

4.5 PRECEDENCE RULES
The precedence order for the operations in OCL is:

• dot and arrow operations have highest precedence
• unary ‘not’ and unary minus ‘-’
• ‘*’ and ‘/’

Object Constraint Language Specification, v 1.1 7

• ‘+’ and binary ‘-’
• ‘and’, ‘or’ and ‘xor’
• ‘implies’
• ‘if-then-else-endif’
• ‘<’, ‘>’, ‘<=’, ‘>=’ and ‘=’

Parenthesis ‘(’ and ‘)’ can be used to change precedence.

4.6 COMMENT
Comments in OCL are written after two dashes. Everything after the two dashes up to and
including the end of line is comment. For example:

-- this is a comment

4.7 UNDEFINED VALUES
Whenever an OCL expression is being evaluated, there is a possibility that one or more of the
queries in the expression are undefined. If this is the case, then the complete expression will be
undefined.

There are two exceptions to this for the boolean operators:

• True OR-ed with anything is True
• False AND-ed with anything is False

The above two rules are valid irrespective of the order of the arguments and the above rules are
valid whether or not the value of the other sub-expression is known.

5. OBJECTS AND PROPERTIES
OCL expressions can refer to types, classes, interfaces, associations (acting as types) and
datatypes. Also all attributes, association-ends, methods and operations without side-effects that
are defined on these types etc. can be used. In a class model, an operation or method is defined to
be side effect free if the isQuery attribute of the operations is true. For the purpose of this
document, we will refer to attributes, association-ends, and side-effect-free methods and
operations as being properties. A property therefore is one of:

• an Attribute,
• an AssociationEnd,
• an Operation with isQuery being true,
• a Method with isQuery being true

5.1 PROPERTIES
The value of a property on an object that is defined in a class diagram is specified by a dot
followed by the name of the property:

AType
self.property

8 Object Constraint Language Specification, v 1.1

If self is a reference to an object, then self.property is the value of the property property on self.

5.2 PROPERTIES: ATTRIBUTES
For example, the age of a Person is written as

Person
self.age

The value of this expression is the value of the age attribute on the Person self. The type of this
expression is the type of the attribute age, which is the basic type Integer.

With of attributes, and the operations defined on the basic value types we can express
calculations etc. over the class model. For example, a business rule might be “the age of a Person
is always greater or equal to zero.” This can be stated as the invariant:

Person
self.age >= 0

5.3 PROPERTIES: OPERATIONS
Operations may have parameters. For example, in the example diagram shown earlier, a Person
object has an income expressed as a function of the date. This operation would be accessed as
follows, for a Person aPerson and a date aDate:

aPerson.income(aDate)

The operation itself could be defined by a postcondition constraint. This is a constraint that is
stereotyped as «postcondition». The object that is returned by the operation can be referred to by
result. It takes the following form:

Person::income (d: Date) : Integer
post: result = -- some function of d and other properties of person

The right-hand-side of this definition may refer to the operation being defined; i.e. the definition
may be recursive, as long as the recursion is well defined. The type of result is the return type of
the operation, which is Integer in the above example.

To refer to an operation or a method that doesn’t take a parameter, parenthesis with an empty
argument list are used:

Company
self.stockPrice()

5.4 PROPERTIES: ASSOCIATION ENDS AND NAVIGATION
Starting from a specific object, we can navigate an association on the class diagram to refer to
other objects and their properties. To do so, we navigate the association by using the opposite
association-end:

object.rolename

The value of this expression is the set of objects on the other side of the rolename association. If
the multiplicity of the association-end has a maximum of one (“0..1” or “1”), then the value of
this expression is an object. In the example class diagram, when we start in the context of a
Company (i.e. self is an instance of Company), we can write:

Company

Object Constraint Language Specification, v 1.1 9

self.manager -- is of type Person
self.employee -- is of type Set(Person)

The evaluation of the first expression will result in an object of type Person, because the
multiplicity of the association is one. The evaluation of the second expression will result in a Set
of Persons. By default, navigation will result in a Set. When the association on the Class
Diagram is adorned with {ordered}, the navigation results in a Sequence.

Collections, like Sets, Bags and Sequences, are predefined types in OCL. They have a large
number of predefined operations on them. A property of the collection itself is accessed by using
an arrow ‘->’ followed by the name of the property. The following example is in the context of a
person:

Person
self.employer->size

This applies the size property on the Set self.employer, which results in the number of employers
of the Person self.

Person
self.employer->isEmpty

This applies the isEmpty property on the Set self.employer. This evaluates to true if the set of
employers is empty, and false otherwise.

5.4.1 Missing Rolenames
Whenever a rolename is missing at one of the ends of an association, the name of the type at the
association end, starting with a lowercase character is used as the rolename. If this results in an
ambiguity the rolename is mandatory. This is the case with unnamed rolenames in on reflexive
associations. If the rolename is ambiguous, then it cannot be used in OCL.

5.4.2 Navigation over Associations with Multiplicity Zero or One
Because the multiplicity of the role manager is one, self.manager is an object of type Person.
Such a single object can be used as a Set as well. It then behaves as if it is a Set containing the
single object. The usage as a set is done through the arrow, followed by a property of Set. This is
shown in the following example:

Company
self.manager->size -- ‘self.manager’ is used as Set, because the

-- arrow
-- is used to access the ‘size’ property on Set
-- This expresin result in 1

self.manager->foo -- ‘self.manager’ is used as Set, because the
-- arrow is used to access the ‘foo’ property on
-- Set. This expresion is incorrect, since ‘foo’
-- is not a defined property of Set.

self.manager.age -- ‘self.manager’ is used as Person, because the
-- dot
-- is used to access the ‘age’ property of Person

In the case of an optional (0..1 multiplicity) association, this is especially useful to check whether
there is an object or not when navigating the association. In the example we can write:

10 Object Constraint Language Specification, v 1.1

Company
self.wife->notEmpty implies self.wife.sex = female

5.4.3 Combining Properties
Properties can be combined to make more complicated expressions. An important rule is that an
OCL expression always evaluates to a specific object of a specific type. Upon this result, one can
always apply another property. Therefore, each OCL expression can be read and evaluated left-
to-right.

Following are some invariants that use combined properties on the example class diagram:

[1] Married people are of age >= 18
self.wife->notEmpty implies self.wife.age >= 18 and
self.husband->notEmpty implies self.husband.age >= 18

[2] a company has at most 50 employees
self.employee->size <= 50

[3] A marriage is between a female (wife) and male (husband)
self.wife.sex = #female and
self.husband.sex = #male

[4] A person can not both have a wife and a husband
not ((self.wife->size = 1) and (self.husband->size = 1))

5.5 NAVIGATION TO ASSOCIATION TYPES
To specify navigation to association classes (Job and Marriage in the example), OCL uses a dot
and the name of the association class starting with a lowercase character:

Person
self.job

This evaluates to a Set of all the jobs a person has with the companies that are his/her employer.
In the case of an association class there is no explicit rolename in the class diagram. The name
job used in this navigation is the name of the association class starting with a lowercase
character, similar to the way described in the section “Missing Rolenames” above.

5.6 NAVIGATION FROM ASSOCIATION CLASSES
We can navigate from the association class itself to the objects that participate in the association.
This is done using the dot-notation and the role-names at the association-ends.

Job
self.employer
self.employee

Navigation from an association class to one of the objects on the association will always deliver
exactly one object. This is a result of the definition of AssociationClass. Therefore the result of
this navigation is exactly one object, although it can be used as a Set using the arrow (->).

Object Constraint Language Specification, v 1.1 11

5.7 NAVIGATION THROUGH QUALIFIED ASSOCIATIONS
Qualified associations use one or more qualifier attributes to select the objects at the other end of
the association. To navigate them, we can add the values for the qualifiers to the navigation. This
is done using square brackets, following the role-name. It is permissible to leave out the qualifier
values, in which case the result will be all objects at the other end of the association.

Bank
self.customer -- results in a Set(Person) containing

-- all customers of the Bank
self.customer[8764423] -- results in one Person, having account

-- number 8764423

If there is more than one qualifier attribute, the values are separated by commas. It is not
permissible to partially specify the qualifier attribute values.

5.8 USING PATHNAMES FOR PACKAGES AND PROPERTIES
Within UML, different types are organized in packages. OCL provides a way of explicitly
referring to types in other packages by using a package-pathname prefix. The syntax is a package
name, followed by a double colon:

Packagename::Typename

This usage of pathnames is transitive and can also be used for packages within packages:
Packagename1::Packagename2::Typename

Whenever properties are redefined within a type, the property of the supertypes can be accessed
using the same path syntax. Whenever we have a class B, as a subtype of class A, and a property
p1 of both A and B. We can write:

B
self.A::p1 -- accesses the p1 property defined in A
self.B::p1 -- accesses the p1 property defined in B

The following shows an example where such a pathname is needed:

....

Dependency

target

source
*

*

ModelElement

Note
value: Uninterpreted

In this model fragment there is an ambiguity with the OCL expression on Dependency:
Dependency

self.source

12 Object Constraint Language Specification, v 1.1

This can either mean normal association navigation, which is inherited from ModelElement. It
might also mean navigation through the dotted line as an association class. Both possible
navigations use the same role-name, so this is always ambiguous. Using the pathname we can
distinguish between them with:

Dependency
self.Dependency::source
self.ModelElement::source

5.9 PREDEFINED FEATURES ON ALL OBJECTS
There are several features that apply to all objects, and are predefined in OCL. These are:

oclType : OclType
oclIsTypeOf(t : OclType) : boolean
oclIsKindOf(t : OclType) : boolean

The feature oclType results in the type of an object. For example, the expression
Person
self.oclType

results in Person. The type of this is OclType, a predefined type within the OCL language. (NB:
not Person, which is the type of self)

The operation isTypeOf results in true if the type of self and t are the same. For example:
Person
self.oclIsTypeOf(Person) -- is true
self.oclIsTypeOf(Company) -- is false

The above feature deals with the direct type of an object. The oclIsKindOf feature determines
whether t is either the direct type or one of the supertypes of an object.

5.10 FEATURES ON TYPES THEMSELVES
All properties discussed until now in OCL are properties on instances of classes. The types are
either predefined in OCL or defined in the class model. In OCL, it is also possible to use features
defined on the types/classes themselves. These are, for example, the class-scoped features
defined in the class model. Furthermore, several features are predefined on each type.

The most important predefined feature on each type is allInstances, which results in the Set of all
instances of the type. If we want to make sure that all instances of Person have unique names we
can write:

Person.allInstances->forAll(p1, p2 | p1 <> p2 implies p1.name <> p2.name)

The Person.allInstances is the set of all persons and is of type Set(Person).

5.11 COLLECTIONS
Navigation will most often result in a collection; therefore, the collection types play an important
role in OCL expressions.

The type Collection is predefined in OCL. The Collection type defines a large number of
predefined operations to enable the OCL expression author (the modeler) to manipulate

Object Constraint Language Specification, v 1.1 13

collections. Consistent with the definition of OCL as an expression language, collection
operations never change collections; isQuery is always true. They may result in a collection, but
rather than changing the original collection they project the result into a new one.

Collection is an abstract type, with the concrete collection types as its subtypes. OCL
distinguishes three different collection types: Set, Sequence, and Bag. A Set is the mathematical
set. It does not contain duplicate elements. A Bag is like a set, which may contain duplicates, i.e.
the same element may be in a bag twice or more. A Sequence is like a Bag in which the elements
are ordered. Both Bags and Sets have no order defined on them. Sets, Sequences and Bags can be
specified by a literal in OCL. Curly brackets surround the elements of the collection, elements in
the collection are written within, separated by commas. The type of the collection is written
before the curly brackets:

Set { 1 , 2 , 5 , 88 }
Set { 'apple' , 'orange', 'strawberry' }

A Sequence:
Sequence { 1, 3, 45, 2, 3 }
Sequence { 'ape', 'nut' }

A bag:
Bag {1 , 3 , 4, 3, 5 }

Because of the usefulness of a Sequence of consecutive Integers, there is a separate literal to
create them. The elements inside the curly brackets can be replaced by an interval specification,
which consists of two expression of type Integer, Int-expr1 and Int-expr2, separated by ‘..’. This
denotes all the Integers between the values of Int-expr1 and Int-expr2, including the values of
Int-expr1 and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }
Sequence{ 1..10 }
-- are both identical to
Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

The complete list of Collection operations is described at the end of this document.

Collections can be specified by a literal, as described above. The only other way to get a
collection is by navigation. To be more precise, the only way of getting a Set, Sequence, or Bag
is:

• a literal, this will result in a Set, Sequence or Bag:
Set {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
Sequence {1 , 2, 3 , 5 , 7 , 11, 13, 17 }
Bag {1, 2, 3, 2, 1}

• a navigation starting from a single object can result in a collection e.g.:
Company

self.employee

• operations on collections may result in new collections. E.g.:
collection1->union(collection2)

5.12 COLLECTIONS OF COLLECTIONS
Within OCL, all Collections of Collections are automatically flattened. Therefore the following
two expressions have the same value:

14 Object Constraint Language Specification, v 1.1

Set{ Set{1, 2}, Set{3, 4}, Set{5, 6} }

Set{ 1, 2, 3, 4, 5, 6 }

5.13 COLLECTION TYPE HIERARCHY AND TYPE CONFORMANCE
RULES

In addition to the type conformance rules in section 4.3 the following rules hold for all types,
including the collection types:

• Every type Collection (X) is a subtype of OclAny. The types Set (X), Bag (X) and
Sequence (X) are all subtypes of Collection (X).

Type conformance rules are as follows for the collection types:

• Type1 conforms to Type2 when they are identical (standard rule for all types).
• Type1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).
• Collection(Type1) conforms to Collection(Type2), when Type1 conforms to Type2.
• Type conformance is transitive: if Type1 conforms to Type2, and Type2 conforms to Type3,

then Type1 conforms to Type3 (standard rule for all types).

For example, if Bicycle and Car are two separate subtypes of Transport:
Set(Bicycle) conforms to Set(Transport)
Set(Bicycle) conforms to Collection(Bicycle)
Set(Bicycle) conforms to Collection(Transport)

Note that Set(Bicycle) does not conform to Bag(Bicycle), nor the other way around. They are
both subtypes of Collection(Bicycle) at the same level in the hierarchy.

5.14 PREVIOUS VALUES IN POSTCONDITIONS
As stated in section 3.3, OCL can be used to specify pre- and post-conditions on Operations and
Methods in UML. In a postcondition, the expression can refer to two sets of values for each
property of an object:

• the value of a property at the start of the operation or method
• the value of a property upon completion of the operation or method

The value of a property in a postcondition is the values upon completion of the operation. To
refer to the value of a property at the start of the operation, one has to postfix the property-name
with the commercial at sign ‘@’, followed by the keyword ‘pre’:

Person::birthdayHappens()

post: age = age@pre + 1

The property age refers to the property of the instance of Person on which executes the
operation. The property age@pre refers to the value of the property age of the Person that
executes the operation, at the start of the operation.

If the property has parameters, the ‘@pre’ is postfixed to the propertyname, before the
parameters.

Company::hireEmployee(p : Person)

post: employees = employees@pre->including(p) and

Object Constraint Language Specification, v 1.1 15

stockprice() = stockprice@pre() + 10

The above operation can also be specified by a post and pre condition together
Company::hireEmployee(p : Person)

pre : not employee->includes(p)
post: employees->includes(p) and

stockprice() = stockprice@pre() + 10

When the pre-value of a property is takes and this evaluates to an object, all further properties
that are accessed of this object are the new values (upon completion of the operation) of this
object. So:

a.b@pre.c -- takes the old value of property b of a, say x
-- and then the new value of c of x.

a.b@pre.c@pre -- takes the old value of property b of a, say x
-- and then the old value of c of x.

The ‘@pre’ postfix is only allowed in OCL expressions that are part of a Postcondition. Asking
for a current property of an object that has been destroyed during execution of the operation
results in Undefined. Also, referring to the previous value of an object that has been created
during execution of the operation results in Undefined.

6. COLLECTION OPERATIONS
OCL defines many operations on the collection types. These operations are specifically meant to
enable a flexible and powerful way of projecting new collections from existing ones. The
different constructs are described in the following sections.

6.1 SELECT AND REJECT OPERATIONS
Sometimes an expression using operations and navigations delivers a collection, while we are
interested only in a special subset of the collection. OCL has special constructs to specify a
selection from a specific collection. These are the select and reject operations. The select
specifies a subset of a collection. A select is an operation on a collection and is specified using
the arrow-syntax:

collection->select(...)

The parameter of select has a special syntax that enables one to specify which elements of the
collection we want to select. There are three different forms, of which the simplest one is:

collection->select(boolean-expression)

This results in a collection that contains all the elements from collection for which the boolean-
expression evaluates to true. To find the result of this expression, for each element in collection
the expression boolean-expression is evaluated. If this evaluates to true, the element is included
in the result collection, otherwise not. As an example, the next OCL expression specifies all the
employees older than 50 years:

Company
self.employee->select(age > 50)

The self.employee is of type Set(Person). The select takes each person from self.employee and
evaluates age > 50 for this person. If this results in true, than the person is in the result Set.

16 Object Constraint Language Specification, v 1.1

As shown in the previous example, the context for the expression in the select argument is the
element of the collection on which the select is invoked. Thus the age property is taken in the
context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you can only
refer to properties of them. To enable to refer to the persons themselves there is a more general
syntax for the select expression:

Collection->select(v | boolean-expression-with-v)

The variable v is called the iterator. When the select is evaluated, v iterates over the collection
and the boolean-expression-with-v is evaluated for each v. The v is a reference to the object from
the collection and can be used to refer to the objects themselves from the collection. The two
examples below are identical:

Company
self.employee->select(age > 50)

Company
self.employee->select(p | p.age > 50)

The result of the complete select is the collection of persons p for which the p.age > 50 evaluates
to True. This amounts to a subset of self.employee.

As a final extension to the select syntax the expected type of the variable v can be given. The
select now is written as:

Collection->select(v : Type | boolean-expression-with-v)

The meaning of this is that the objects in collection must be of type Type. The next example is
identical to the previous examples:

Company
self.employee.select(p : Person | p.age > 50)

The compete select syntax now looks like one of:
collection->select(v : Type | boolean-expression-with-v)
collection->select(v | boolean-expression-with-v)
collection->select(boolean-expression)

The Reject operation is identical to the select operation, but with reject we get the subset of all
the elements of the collection for which the expression evaluates to False. The reject syntax is
identical to the select syntax:

Collection->reject(v : Type | boolean-expression-with-v)
Collection->reject(v | boolean-expression-with-v)
Collection->reject(boolean-expression)

As an example, specify all the employees who are not married:
Company
self.employee->reject(isMarried)

The reject operation is available in OCL for convenience, because each reject can be restated as a
select with the negated expression. Therefore the following two expressions are identical:

Collection->reject(v : Type | boolean-expression-with-v)
collection->select(v : Type | not (boolean-expression-with-v))

Object Constraint Language Specification, v 1.1 17

6.2 COLLECT OPERATION
As shown in the previous section, the select and reject operation always result in a sub-collection
of the original collection. When we want to specify a collection which is derived from some
other collection, but which contains different objects from the original collection (i.e. it is not a
sub-collection), we can use a collect operation. The collect operation uses the same syntax as the
select and reject and is written as one of:

collection->collect(v : Type | expression-with-v)
collection->collect(v | expression-with-v)
collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of
expression-with-v.

An example: specify the collection of birthDates for all employees in the context of a company.
This can be written as one of:

Company
self.employee->collect(birthDate)
self.employee->collect(person | person.birthDate)
self.employee->collect(person : Person | person.birthDate)

An important issue here is that the resulting collection is not a Set, but a Bag. When more than
one employee has the same value for birthDate, this value will be an element of the resulting Bag
more than once. The Bag resulting from the collect operation always has the same size as the
original collection.

It is possible to make a Set from the Bag, by using the asSet property on the Bag. The following
expression results in the Set of different birthDates from all employees of a Company:

Company
self.employee->collect(birthDate)->asSet

6.2.1 Shorthand for Collect
Because navigation through many objects is very common, there is a shorthand notation for the
collect that makes the OCL expressions more readable. Instead of

self.employee->collect(birthdate)

we can also write:
self.employee.birthdate

In general, when we apply a property to a Collection of Objects, then it will automatically be
interpreted as a collect over the members of the Collection with the specified property.

Therefore, for any propertyname that is defined as a property on the objects in a collection, the
following two expressions are identical:

collection.propertyname
collection->collect(propertyname)

and so are those if the property is parameterized.
collection.propertyname(par1, par2, …)
collection->collect(propertyname(par1, par2, …)

18 Object Constraint Language Specification, v 1.1

6.3 FORALL OPERATION
Many times a constraint is needed on all elements of a collection. The forAll operation in OCL
allows specifying a Boolean expression, which must hold for all objects in a collection:

collection->forAll(v : Type | boolean-expression-with-v)
collection->forAll(v | boolean-expression-with-v)
collection->forAll(boolean-expression)

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v is
true for all elements of collection. If the boolean-expression-with-v is false for one or more v in
collection, then the complete expression evaluates to false. For example, in the context of a
company:

Company
self.employee->forAll(forename = 'Jack')
self.employee->forAll(p | p.forename = 'Jack')
self.employee->forAll(Person p | p.forename = 'Jack')

These expressions evaluate to true if the forename feature of each employee equals to ‘Jack’.

The forAll operation has an extended variant in which more then one iterator is used. Both
iterators will iterate over the complete collection. Effectively this is a forAll on the Cartesian
product of the collection with itself.

Company
self.employee->forAll(e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)
self.employee->forAll(Person e1, e2 |

e1 <> e2 implies e1.forename <> e2.forename)

This expression evaluates to true if the forenames of all employees are different.

It is semantically equivalent to:
Company

self.employee->forAll(e1 | self.employee->forAll (e2 |
e1 <> e2 implies e1.forename <> e2.forename)))

6.4 EXISTS OPERATION
Many times one needs to know whether there is at least one element in a collection for which a
constraint holds. The exists operation in OCL allows to specify a boolean expression which must
hold for at least one object in a collection:

collection->exists(v : Type | boolean-expression-with-v)
collection->exists(v | boolean-expression-with-v)
collection->exists(boolean-expression)

This forAll operation results in a Boolean. The result is true if the boolean-expression-with-v is
true for at least one element of collection. If the boolean-expression-with-v is false for all v in
collection, then the complete expression evaluates to false. For example, in the context of a
company:

Company
self.employee->exists(forename = 'Jack')
self.employee->exists(p | p.forename = 'Jack')
self.employee->exists(p : Person | p.forename = 'Jack')

These expressions evaluate to true if the forename feature of at least one employee equals to
‘Jack’.

Object Constraint Language Specification, v 1.1 19

6.5 ITERATE OPERATION
The iterate operation is slightly more complicated, but is a very generic. The operations reject,
select, forAll, exists, collect, elect can all be described n terms of iterate.

An accumulation build one value by iterating over a collection.
collection->iterate(elem : Type; acc : Type = <expression> |

expression-with-elem-and-acc)

The variable elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the
accumulator. The accumulator gets an initial value <expression>.

When the iterate is evaluated, elem iterates over the collection and the expression-with-elem-and-
acc is evaluated for each elem. After each evaluation of expression-with-elem-and-acc, its value
is assigned to acc. In this way the value of acc is build up during the iteration of the collection.
The collect operation described in terms of iterate will look like:

collection->collect(x : T | x.property)
-- is identical to:
collection->iterate(x : T; acc : T2 = Bag{} |

acc->including(x.property))

Or written in Java-like pseudocode the result of the iterate can be calculated as:
iterate(elem : T; acc : T2 = value)
{

acc = value;

for(Enumeration e = collection.elements() ; e.hasMoreElements();){
elem = e.nextElement();
acc = <expression-with-elem-and-acc>

}
}

7. PREDEFINED OCL TYPES
This section contains all standard types defined within OCL, including all the features defined on
those types. Its signature and a description of its semantics define each feature. Within the
description the name ‘result’ is used to refer to the value that results from evaluating the feature.
In several places post conditions are used to describe properties of the result. When there is more
than one postcondition, all postconditions must be true.

7.1 BASIC TYPES
The basic types used are Integer, Real, String and Boolean. They are supplemented with
OclExpression, OclType and OclAny.

7.1.1 OclType
All types defined in an UML model, or pre-defined within OCL have a type. This type is an
instance of the OCL type called OclType. Access to this type allows the modeler access to the
meta-level of the model. This can be useful for advanced modelers.

20 Object Constraint Language Specification, v 1.1

Features of OclType, the instance of OclType is called type.

type.name : String

The name of type.

type.attributes : Set(String)

The set of names of the attributes of type, as they are defined in the model.

type.associationEnds : Set(String)

The set of names of the navigable associationEnds of type, as they are defined in the
model.

type.operations : Set(String)

The set of names of the operations of type, as they are defined in the model.

type.supertypes : Set(OclType)

The set of all direct supertypes of type.
post: type.allSupertypes->includesAll(result)

type.allSupertypes : Set(OclType)

The transitive closure of the set of all supertypes of type.

type.allInstances : Set(type)

The set of all instances of type and all its subtypes.

7.1.2 OclAny
Within the OCL context, the type OclAny is the supertype of all types in the model. Features on
OclAny are available on each object in all OCL expressions.

All classes in a UML model inherit all features defined on OclAny. To avoid name conflicts
between features in the model and the features inherited from OclAny all names on the features
of OclAny start with ‘ocl’. Although theoretically there may still be name conflicts, they can be
avoided. One can also use the pathname construct to explicitly refer to the OclAny properties.

Features of OclAny, the instance of OclAny is called object.

object = (object2 : OclAny) : Boolean

True if object is the same object as object2.

object <> (object2 : OclAny) : Boolean

True if object is a different object as object2.
post: result = not (object = object2)

object.oclType : OclType

The type of the object

object.oclIsKindOf(type : OclType) : Boolean

True if type is a supertype (transitive) of the type of object.

Object Constraint Language Specification, v 1.1 21

post: result = type.allSuperTypes->includes(object.oclType) or
type = object->oclType

object.oclIsTypeOf(type : OclType) : Boolean

True if type is equal to the type of object.
post: result = (object.oclType = type)

object.oclAsType(type : OclType) : type

Results in object, but of known type type.
Results in Undefined if the actual type of object is not type or one of its subtypes
pre : object.oclIsKindOf(type)

post: result = object
post: result.oclIsKindOf(type)

7.1.3 OclExpression
Each OCL expression itself is an object in the context of OCL. The type of the expression is
OclExpression. This type and its features are used to define the semantics of features that take an
expression as one of their parameters: select, collect, forAll, etc.

An OclExpression includes the optional iterator variable and type and the optional accumulator
variable and type.

Features of OclExpression, the instance of OclExpression is called expression.

expression.evaluationType : OclType

The type of the object that results from evaluating expression.

7.1.4 Real
The OCL type Real represents the mathematical concept of real. Note that Integer is a subclass of
Real, so for each parameter of type Real, on can use an integer as the actual parameter.

Features of Real, the instance of Real is called r.

r = (r2 : Real) : Boolean

True if r is equal to r2.

r + (r1 : Real) : Real

The value of the addition of r and r1.

r - (r1 : Real) : Real

The value of the subtraction of r1 from r..

r * (r1 : Real) : Real

The value of the multiplication of r and r1.

r / (r1 : Real) : Real

The value of r divided by r1.

22 Object Constraint Language Specification, v 1.1

r.abs : Real

The absolute value of r
post: if r < 0 then result = - r else result = r endif

r.floor : Integer

The largest integer which is less than or equal to r.
post: (result <= r) and (result + 1 > r)

r.max(r2 : Real) : Real

The maximum of r an r2.
post: if r >= r2 then result = r else result = r2 endif

r.min(r2 : Real) : Real

The minimum of r an r2.
post: if r <= r2 then result = r else result = r2 endif

r < (r2 : Real) : Boolean

True if r1 is less than r2.

r > (r2 : Real) : Boolean

True if r1 is greater than r2.
post: result = not (r <= r2)

r <= (r2 : Real) : Boolean

True if r1 is less than or equal to r2.
post: result = (r = r2) or (r < r2)

r >= (r2 : Real) : Boolean

True if r1 is greater than or equal to r2.
post: result = (r = r2) or (r > r2)

7.1.5 Integer
The OCL type Integer represents the mathematical concept of integer.

Features of Integer, the instance of Integer is called i.

i = (i2 : Integer) : Boolean

True if i is equal to i2.

i + (i2 : Integer) : Integer

The value of the addition of i and i2.

i + (r1 : Real) : Real

The value of the addition of i and r1.

i - (i2 : Integer) : Integer

The value of the subtraction of i2 from i.

Object Constraint Language Specification, v 1.1 23

i - (r1 : Real) : Real

The value of the subtraction of r1 from i..

i * (i2 : Integer) : Integer

The value of the multiplication of i and i2.

i * (r1 : Real) : Real

The value of the multiplication of i and r1.

i / (i2 : Integer) : Real

The value of i divided by i2.

i / (r1 : Real) : Real

The value of i divided by r1.

i.abs : Integer

The absolute value of i
post: if i < 0 then result = - i else result = i endif

i.div(i2 : Integer) : Integer

The number of times that i2 fits completely within i.
post: result * i2 <= i
post: result * (i2 + 1) > i

i.mod(i2 : Integer) : Integer

The result is i modulo i2.
post: result = i - (i.div(i2) * i2)

i.max(i2 : Integer) : Integer

The maximum of i an i2.
post: if i >= i2 then result = i else result = i2 endif

i.min(i2 : Integer) : Integer

The minimum of i an i2.
post: if i <= i2 then result = i else result = i2 endif

7.1.6 String
The OCL type String represents ASCII strings.

Features of String, the instance of String is called string.

string = (string2 : String) : Boolean

True if string and string2 contain the same characters, in the same order.

string.size : Integer

The number of characters in string.

string.concat(string2 : String) : String

24 Object Constraint Language Specification, v 1.1

The concatenation of string and string2.
post: result.size = string.size + string2.size
post: result.substring(1, string.size) = string
post: result.substring(string.size + 1, string2.size) = string2

string.toUpper : String

The value of string with all lowercase characters converted to uppercase characters.
post: result.size = string.size

string.toLower : String

The value of string with all uppercase characters converted to lowercase characters.
post: result.size = string.size

string.substring(lower : Integer, upper : Integer) : String

The sub-string of string starting at character number lower, up to and including character
number upper.

7.1.7 Boolean
The OCL type Boolean represents the common true/false values.

Features of Boolean, the instance of Boolean is called b.

b = (b2 : Boolean) : Boolean

Equal if b is the same as b2.

b or (b2 : Boolean) : Boolean

True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean

True if either b or b2 is true, but not both.
post: (b or b2) and not (b = b2)

b and (b2 : Boolean) : Boolean

True if both b1 and b2 are true.

not b : Boolean

True if b is false
post: if b then result = false else result = true endif

b implies (b2 : Boolean) : Boolean

True if b is false, or if b is true and b2 is true.
post: (not b) or (b and b2)

if b then (expression1 : OclExpression)

else (expression2 : OclExpression) endif : expression1.evaluationType

If b is true the result is the value of evaluating expression1 otherwise result is the value
of evaluating expression2.

Object Constraint Language Specification, v 1.1 25

7.1.8 Enumeration
The OCL type Enumeration represents the enumerations defined in an UML model.

Features of Enumeration, the instance of Enumeration is called enumeration.

enumeration = (enumeration2 : Boolean) : Boolean

Equal if enumeration is the same as enumeration2.

enumeration <> (enumeration2 : Boolean) : Boolean

Equal if enumeration is not the same as enumeration2.
post: result = not (enumeration = enumeration2)

7.2 COLLECTION-RELATED TYPES
The following sections define the features on collections. I.e. these features are available on Set,
Bag and Sequence. As defined in this section, each collection type is actually a template with one
parameter. ‘T’ denotes the parameter. A real collection type is created by substituting a type for
the T. So Set (Integer) and Bag (Person) are collection types.

7.2.1 Collection
Collection is the abstract supertype of all collection types in OCL. Each occurrence of an object
in a collection is called an element. If an object occurs twice in a collection, there are two
elements. In this section the operations on Collections are defined that have identical semantics
for all collection subtypes. Some operations may be defined with the subtype as well, which
means that there is an additional postcondition or a more specialized return value.

The definition of several common operations is different for each subtype. These operations are
not mentioned in this section.

Features of Collection, the instance of Collection is called collection.

collection->size : Integer

The number of elements in the collection collection
post: result = collection->iterate(elem; acc : Integer = 0 | acc + 1)

collection->includes(object : OclAny) : Boolean

True if object is an element of collection, false otherwise.
post: result = (collection->count(object) > 0)

collection->count(object : OclAny) : Integer

The number of times that object occurs in the collection collection
post: result = collection->iterate(elem; acc : Integer = 0 |

if elem = object then acc + 1 else acc endif)

collection->includesAll(c2 : Collection(T)) : Boolean

Does collection contain all the elements of c2 ?
post: result = c2->forAll(elem | collection->includes(elem))

26 Object Constraint Language Specification, v 1.1

collection->isEmpty : Boolean

Is collection the empty collection?
post: result = (collection->size = 0)

collection->notEmpty : Boolean

Is collection not the empty collection?
post: result = (collection->size <> 0)

collection->sum : T

The addition of all elements in collection. Elements must be of a type supporting
addition (Integer and Real)
post: result = collection->iterate(elem; acc : T = 0 |

acc + elem)

collection->exists(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for at least one element in collection.
post: result = collection->iterate(elem; acc : Boolean = false |

acc or expr)

collection->forAll(expr : OclExpression) : Boolean

Results in true if expr evaluates to true for each element in collection.
Otherwise result in false.
post: result = collection->iterate(elem; acc : Boolean = true |

acc and expr)

collection->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the collection. See section 6.5 for a complete description. This is the basic
collection operation with which the other collection operations can be described.

7.2.2 Set
The Set is the mathematical set. It contains elements without duplicates.

Features of Set, the instance of Set is called set.

set->union(set2 : Set(T)) : Set(T)

The union of set and set2
post: T.allInstances->forAll(elem |

result->includes(elem) =
set->includes(elem) or set2->includes(elem))

set->union(bag : Bag(T)) : Bag(T)

The union of set and bag.
post: T.allInstances->forAll(elem |

result->count(elem) =
set->count(elem) + bag->count(elem))

set = (set2 : Set) : Boolean

Evaluates to true if set and set2 contain the same elements.
post: result = T.allInstances->forAll(elem |

set->includes(elem) = set2->includes(elem))

Object Constraint Language Specification, v 1.1 27

set->intersection(set2 : Set(T)) : Set(T)

The intersection of set and set2. I.e. the set of all elements that are in both set and set2.
post: T.allInstances->forAll(elem |

result->includes(elem) =
set->includes(elem) and set2->includes(elem))

set->intersection(bag : Bag(T)) : Set(T)

The intersection of set and bag
post: result = set->intersection(bag->asSet)

set – (set2 : Set(T)) : Set(T)

The elements of set, which are not in set2
post: T.allInstances->forAll(elem |

result->includes(elem) =
set->includes(elem) and not set2->includes(elem))

set->including(object : T) : Set(T)

The set containing all elements of set plus object
post: T.allInstances->forAll(elem |

result->includes(elem) =
set->includes(elem) or (elem = object))

set->excluding(object : T) : Set(T)

The set containing all elements of set without object
post: T.allInstances->forAll(elem |

result->includes(elem) =
set->includes(elem) and not(elem = object))

set->symmetricDifference(set2 : Set(T)) : Set(T)

The sets containing all the elements that are in set or in set2, but not in both
post: T.allInstances->forAll(elem |

result->includes(elem) =
set->includes(elem) xor set2->includes(elem))

set->select(expr : OclExpression) : Set(expr.type)

The subset of set for which expr is true
post: result = set->iterate(elem; acc : Set(T) = Set{} |

if expr then acc->including(elem) else acc endif)

set->reject(expr : OclExpression) : Set(expr.type)

The subset of set for which expr is false
post: result = set->select(not expr)

set->collect(expression : OclExpression) : Bag(expression.oclType)

The Bag of elements which results from applying expr to every member of set
post: result = set->iterate(elem; acc : Bag(T) = Bag{} |

acc->including(expr))

set->count(object : T) : Integer

The number of occurrences of object in set
post: result <= 1

set->asSequence : Sequence(T)

28 Object Constraint Language Specification, v 1.1

A Sequence that contains all the elements from set, in random order.
post: T.allInstances->forAll(elem |

result->count(elem) = set->count(elem))

set->asBag : Bag(T)

The Bag that contains all the elements from set.
post: T.allInstances->forAll(elem |

result->count(elem) = set->count(elem))

7.2.3 Bag
A bag is a collection with duplicates allowed. That is, one object can be an element of a bag
many times. There is no ordering defined on the elements in a bag.

Features of Bag, the instance of Bag is called bag.

bag = (bag2 : Bag) : Boolean

True if bag and bag2 contain the same elements, the same number of times.
post: result = T.allInstances->forAll(elem |

bag->count(elem) = bag2->count(elem))

bag->union(bag2 : Bag) : Bag(T)

The union of bag and bag2
post: T.allInstances->forAll(elem |

result->count(elem) =
bag->count(elem) + bag2->count(elem))

bag->union(set : Set) : Bag(T)

The union of bag and set
post: T.allInstances->forAll(elem |

result->count(elem) =
bag->count(elem) + set->count(elem))

bag->intersection(bag2 : Bag) : Bag(T)

The intersection of bag and bag2
post: T.allInstances->forAll(elem |

result->count(elem) =
bag->count(elem).min(bag2->count(elem)))

bag->intersection(set : Set) : Set(T)

The intersection of bag and set
post: T.allInstances->forAll(elem |

result->count(elem) =
bag->count(elem).min(set->count(elem)))

bag->including(object : T) : Bag(T)

The bag containing all elements of bag plus object
post: T.allInstances->forAll(elem |

if elem = object then
result->count(elem) = bag->count(elem) + 1

else
result->count(elem) = bag->count(elem)

endif)

Object Constraint Language Specification, v 1.1 29

bag->excluding(object : T) : Bag(T)

The bag containing all elements of bag apart from all occurrences of object
post: T.allInstances->forAll(elem |

if elem = object then
result->count(elem) = 0

else
result->count(elem) = bag->count(elem)

endif)

bag->select(expression : OclExpression) : Bag(T)

The sub-bag of bag for which expression is true
post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |

if expr then acc->including(elem) else acc endif)

bag->reject(expression : OclExpression) : Bag(T)

The sub-bag of bag for which expression is false
post: result = bag->select(not expr)

bag->collect(expression: OclExpression) : Bag(expression.oclType)

The Bag of elements which results from applying expression to every member of bag
post: result = bag->iterate(elem; acc : Bag(T) = Bag{} |

acc->including(expr))

bag->count(object : T) : Integer

The number of occurrences of object in bag

bag->asSequence : Sequence(T)

A Sequence that contains all the elements from bag, in random order.
post: T.allInstances->forAll(elem |

bag->count(elem) = result->count(elem))

bag->asSet : Set(T)

The Set containing all the elements from bag, with duplicates removed.
post: T.allInstances(elem |

bag->includes(elem) = result->includes(elem))

7.2.4 Sequence
A sequence is a collection where the elements are ordered. An element may be part of a sequence
more than once.

Features of Sequence(T), the instance of Sequence is called sequence.

sequence->count(object : T) : Integer

The number of occurrences of object in sequence

sequence = (sequence2 : Sequence(T)) : Boolean

True if sequence contains the same elements as sequence2 in the same order.
post: result = Sequence{1..sequence->size}->forAll(index : Integer |

sequence->at(index) = sequence2->at(index))

30 Object Constraint Language Specification, v 1.1

and
sequence->size = sequence2->size

sequence->union (sequence2 : Sequence(T)) : Sequence(T)

The sequence consisting of all elements in sequence, followed by all elements in
sequence2
post: result->size = sequence->size + sequence2->size
post: Sequence{1..sequence->size}->forAll(index : Integer |

sequence->at(index) = result->at(index))
post: Sequence{1..sequence2->size}->forAll(index : Integer |

sequence2->at(index) =
result->at(index + sequence->size)))

sequence->append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of sequence, followed by object.
post: result->size = sequence->size + 1
post: result->at(result->size) = object
post: Sequence{1..sequence->size}->forAll(index : Integer |

result->at(index) = sequence ->at(index))

sequence->prepend(object : T) : Sequence(T)

The sequence consisting of all elements in sequence, followed by object
post: result->size = sequence->size + 1
post: result->at(1) = object
post: Sequence{1..sequence->size}->forAll(index : Integer |

sequence->at(index) = result->at(index + 1))

sequence->subSequence(lower : Integer, upper : Integer) : Sequence(T)

The sub-sequence of sequence starting at number lower, up to and including element
number upper.
post: if sequence->size < upper then

result = Undefined
else

result->size = upper - lower + 1 and
Sequence{lower..upper}->forAll(index |

result->at(index - lower + 1) =
sequence->at(lower + index - 1))

endif

sequence->at(i : Integer) : T

The i-th element of sequence.
post: i <= 0 or sequence->size < i implies result = Undefined

sequence->first : T

The first element in sequence
post: result = sequence->at(1)

sequence->last : T

The last element in sequence
post: result = sequence->at(sequence->size)

sequence->including(object : T) : Sequence(T)

The sequence containing all elements of sequence plus object added as the last element
post: result = sequence.append(object)

Object Constraint Language Specification, v 1.1 31

sequence->excluding(object : T) : Sequence(T)

The sequence containing all elements of sequence apart from all occurrences of object.
The order of the remaining elements is not changed.
post: result->includes(object) = false
post: result->size = sequence->size - sequence->count(object)
post: result = sequence->iterate(elem; acc : Sequence(T) = Sequence{}|

if elem = object then acc else acc->append(elem) endif)

sequence->select(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is true
post: result = sequence->iterate(elem; acc : Sequence(T) = Sequence{} |

if expr then acc->including(elem) else acc endif)

sequence->reject(expression : OclExpression) : Sequence(T)

The subsequence of sequence for which expression is false
post: result = sequence->select(not expr)

sequence->collect(expression : OclExpression) :

Sequence(expression.oclType)

The Sequence of elements which results from applying expression to every member of
sequence

sequence->iterate(expr : OclExpression) : expr.evaluationType

Iterates over the sequence. Iteration will be done from element at position 1 up until the
element at the last position following the order of the sequence.

sequence->asBag() : Bag(T)

The Bag containing all the elements from sequence, including duplicates
post: T.allInstances->forAll(elem |

result->count(elem) = sequence->count(elem))

sequence->asSet() : Set(T)

The Set containing all the elements from sequence, with duplicated removed
post: T.allInstances->forAll(elem |

result->includes(elem) = sequence->includes(elem))

8. GRAMMAR FOR OCL
This section describes the grammar for OCL expressions. An executable LL(1) version of this
grammar is available on the OCL web site mentioned at the start of this document.

The grammar description uses the EBNF syntax, where "|" means a choice , "?" optionality and
"*" means zero or more times. In the description of the name, typeName and string the syntax for
lexical tokens from the JavaCC parser generator is used. See http://www.suntest.com/JavaCC.

expression := logicalExpression
ifExpression := "if" expression

"then" expression
"else" expression
"endif"

logicalExpression := relationalExpression

32 Object Constraint Language Specification, v 1.1

(logicalOperator relationalExpression)*
relationalExpression := additiveExpression

(relationalOperator additiveExpression)?
additiveExpression := multiplicativeExpression

(addOperator multiplicativeExpression)*
multiplicativeExpression := unaryExpression

(multiplyOperator unaryExpression)*
unaryExpression := (unaryOperator postfixExpression)

| postfixExpression
postfixExpression := primaryExpression (("." | "->") featureCall)*
primaryExpression := literalCollection

| literal
| pathName timeExpression? qualifier?
featureCallParameters?

| "(" expression ")"
| ifExpression

featureCallParameters := "(" (declarator)? (actualParameterList)? ")"
literal := <STRING> | <number> | "#" <name>
enumerationType := "enum" "{" "#" <name> ("," "#" <name>)* "}"
simpleTypeSpecifier := pathTypeName

| enumerationType
literalCollection := collectionKind "{" expressionListOrRange? "}"
expressionListOrRange := expression

(("," expression)+
| (".." expression)

)?
featureCall := pathName timeExpression? qualifiers?

featureCallParameters?
qualifiers := "[" actualParameterList "]"
declarator := <name> ("," <name>)*

(":" simpleTypeSpecifier)? "|"
pathTypeName := <typeName> ("::" <typeName>)*
pathName := (<typeName> | <name>)

("::" (<typeName> | <name>))*
timeExpression := "@" <name>
actualParameterList := expression ("," expression)*
logicalOperator := "and" | "or" | "xor" | "implies"
collectionKind := "Set" | "Bag" | "Sequence" | "Collection"
relationalOperator := "=" | ">" | "<" | ">=" | "<=" | "<>"
addOperator := "+" | "-"
multiplyOperator := "*" | "/"
unaryOperator := "-" | "not"

typeName := "A"-"Z" ("a"-"z" | "0"-"9" | "A"-"Z" | "_")*
name := "a"-"z" ("a"-"z" | "0"-"9" | "A"-"Z" | "_")*
number := "0"-"9" ("0"-"9")*
string := "'" ((~["'","\\","\n","\r"])

| ("\\"
(["n","t","b","r","f","\\","'","\""]
| ["0"-"7"] (["0"-"7"])?
| ["0"-"3"] ["0"-"7"] ["0"-"7"]

)
)

)*
"'"

