
Visualisation and Analysis of Software Quantitative

Data

Guillaume Langelier, Houari A. Sahraoui, and Pierre Poulin

Université de Montréal, CP 6128 succ Centre-Ville, Montréal QC H3C 3J7, Québec, Canada
{langelig, poulin, sahraouh}@iro.umontreal.ca

Position. In this position paper, we claim that automatic techniques are limited

in the context of quality analysis. We present a semi-automatic approach for

quality analysis based on visualization.

1 Introduction

We propose an approach for complex software analysis based on visualization. Our

work is motivated by the fact that in spite of years of research and practice, software

development and maintenance are still time and resource-consuming and high-risk

activities [1, 5].

Object-oriented and related technologies have improved significantly the ease of

development and maintenance. Indeed, OO has considerably reduced the gap between

user requirements and their implementation in software. In practice however, the cost

and the risk remain high compared to the development and the maintenance of other

manufactured products. Many reasons can explain these facts. The most important

one in our opinion is that many phenomena related to software such as its evolution

and its reliability are complex. There is very little theory explaining them. Having a

good understanding and modeling of these phenomena are essential conditions to

increase our control on the development and maintenance activities.

In other scientific fields, similar situations are addressed using empirical research

based on the classical cycle “observations, laws, validation, theory”. Today, we have

a unique opportunity to empirically study these phenomena. Indeed, large sets of

software data are available through open source programs and open repositories [4].

In fact, the idea of empirically studying phenomena related to software in not new.

Many studies were conducted especially by the community of software measurement

and quality. However, in spite of the many quality estimation/prediction models

published in the literature, concrete applications in industrial contexts are very rare.

The success of the analysis of software data sets depends on the used analysis

techniques. Automatic analysis techniques (such as statistic techniques and machine

learning algorithms) are usually limited when studying phenomena with unknown or

poorly-understood influence factors. This is the case of software evolution and

reliability for example. We claim that hybrid techniques that combine automatic

analysis with expertise are excellent alternatives to them.

A powerful example of hybrid techniques is visualization. It allows automatic

preprocessing and presentation of the data in such way that a human expert can

identify complex regularities and discontinuities that are usually synonyms of

phenomena occurrences. Preprocessing and presentation are very important to control

the size of the studied data. Indeed, expertise cannot be effective when large scale

systems are observed. For example, if we look to a UML class diagram containing

hundreds of classes, it is very hard to have an effective analysis.

In this context, we propose a visualization-based approach for complex system

analysis that circumvents the size problem by using perception capability of human

visual system.

2 Visualization framework

Visualizing large-scale software to understand both local and global software

properties is a very challenging task. Therefore, the more convivial, efficient, flexible

our framework is, the more suitable it should become to analyze, understand, and

explain, software properties.

Our visualization framework is organized into two levels: software element (class

in for example) and program levels. As our goal is to deal with large-size systems, we

decided to focus on macro analysis (i.e. class as basic element). Many previous visual

systems have concentrated on detailing classes into methods and variables. They offer

a fine granularity view of software that is important. These view can be connected to

our framework in order complete the analyses.

A crucial decision when building visualization environments is to determine which

data to visualize and how. Too much data looses structural understanding and too

little hides potentially important information. An image of cluttered data suffers from

occlusions, and a badly distributed/organized data possibly hinders existing links.

Finally, a visualization environment must exploit the natural skills of the human

visual system to be successful.

More concretely, because of the intangible character of software [8], we choose to

use abstract information derived from it such as its size, cohesion, coupling, etc. This

data is mapped into graphical data such as color, shape, size, orientation, etc. that can

be easily perceived by the human visual system.

2.1 Class representation

Visualizing a program is not an easy task because of the intangibility of code. In fact,

code is intended to be understood by humans and machines, and has no concrete

reality outside of these purposes. Medical imagery and mechanical simulation are two

examples that have real and precise objects to represent them in three dimensions.

Similarly, people comparing data associated with geographical areas in terms of any

given variable can directly map their natural coordinates to a support for their

visualization. Unfortunately, it is impossible to represent software in its original form

because it does not have any.

31 G. Langelier, H.A. Sahraoui, and P. Poulin

It is therefore necessary to represent code with some arbitrary figures. We decided

to represent a class with a geometrical 3D box. The box has a number of interesting

features, its simplicity being an important one. Indeed, a box can be rendered very

efficiently, thus allowing us to display a very large number of such entities. This

simplicity is also crucial for human perception. Our brain analyzes a scene mainly

through quick pattern matching, allowing us to better recognize common forms. The

straight, regular, and familiar lines of the box are therefore processed very quickly.

This efficiency saves more time for the analysis of other box characteristics such as

color, size, and twist.

Our framework currently uses only these three characteristics. Although we

experimented with other box characteristics, the results were not significant. The

more graphical attributes we introduced, the more bias they created on each other, or

the more difficult it became to efficiently distinguish differences when a large number

of stimuli interacted on the display. Nevertheless, choosing the right amount of

information to display is a difficult task, and we are still investigating adding

significant dimensions to our graphical representation.

Representing a class with a 3D box is not very useful if no mapping exist between

this box and the class as a piece of software. Metrics formidably links those two

entities because they provide an interesting way to conceptually represent a class. The

first reason that explains this fact is that metrics have quantitative values so they are

easy to manipulate. Consequently it is possible to use more powerful statistics on

them and, as the next section will point out, trans- formations of their values are

straightforward. Secondly, the metric model is ideal for the primary goal of our

research: the evaluation and comprehension of software quality.

In order to accurately represent a class we chose four characteristics that we

thought were relevant to the study of software quality: coupling, cohesion,

inheritance, and size-complexity. Many implicit or explicit software design principle

involve these characteristics. For example, it is well accepted amongst the software

engineering community that software should demonstrate a low coupling and a high

cohesion. Size and complexity are also relevant to quickly spot important classes or to

analyze whether or not a class is too complex and needs refactoring.

The chosen characteristics are captured throughout metrics. Many of them were

proposed in the literature. For example, coupling can be measured using CBO,

cohesion with LCOM5, inheritance by DIT and size-complexity by WMC [3]. In the

remaining of this paper, we will use some of these metrics to illustrate our framework.

Now that we have determined what characteristics we want to represent and chosen

the most interesting graphical features, we need to determine a correspondence

function between the two sets. Hence, color twist and size can be respectively

matched to CBO, LCOM5 and WMC metrics for example.

The mapping must take into account the adequacy between the features. Indeed, the

color feature is a continuous linear scale in hue from blue to red. This means that

classes with low CBO will have a blue color while those very coupled will show a

flashy red color; an average CBO will result in some variant of purple. The twist takes

values between 0 and 90 degrees of angle. Classes with a low LCOM5 (i.e., very

cohesive) will be presented as very straight boxes while classes with a high LCOM5

will be lying horizontally. Finally, classes with high WMC will be presented as tall

boxes and classes with low WMC will be presented as small boxes. Size and twist are

Visualisation and Analysis of Software 32

also continuous and linear. Three examples of class representations can be seen on

Figure 1.

Figure 1. Three class representations. All three metrics; CBO, LCOM5 and WMC are

increasing from left to right

In addition of providing good perception qualities, it also has some sort of semantic

meaning. Indeed, a high coupling is considered bad in software development and it is

generally accepted that the color red means danger. So the presence of red in an area

of the visualization can be interpreted as the possible danger represented by that

portion of code. Also, the twist is well suited for cohesion representation. Again, in

collective imagination, the fact of being straight represents coherence and correctness.

A twisted box would seem disoriented, which is very similar to the behavior of a non-

cohesive class. The match between size and WMC is rather obvious because the

concept of code size and box size are naturally related in everyone’s mind.

2.2 Program representation

There is no natural way to place all the elements of a system on a plan instead of pure

random. GIS (geographical information systems) use maps to represent certain

variables concerning a given territory [10] (see for example Figure 2). We were

inspired by this domain and realized that we should find a map representation for a

program. The architectural information provides a good way to construct separations

equivalent to country borders. Moreover it represents valuable information on the

quality and comprehension of software.

Classes are included in packages that may also be included in other packages. It is

possible to use these grouping of elements to separate areas and therefore, simulating

a geographical map. This way, it becomes possible to tell what part of the code shows

an abnormal amount of a given characteristic. We have currently developed two

different types of class placement: the Treemap and the Sunburst.

The TreeMap has been introduced by Ben Shneiderman in 1991 [7]. At the time its

purpose was to represent a file sys- tem. This was useful to solve the recurrent

problem of disk space shortage common at that time. The initial Treemap starts with a

rectangle that represents the root of a hierarchy. Then the root rectangle is split

vertically in a number of slices equal to the number of its children. Each slice receives

33 G. Langelier, H.A. Sahraoui, and P. Poulin

a width proportional to the size of its node. These new rectangles are then split the

same way by switching the separators to horizontal and so on (see Figure 3). This

algorithm is called slice and dice.

Figure 2. GIS representation: Typhoon conditions across Southeast Asia during the summer of

1997 [6]

Figure 3. Original 2D Treemap algorithm representing census data

In order, to keep our box-based representation of the classes, we adapted the

TreeMap algorithm by introducing the third dimension (3-D) and by splitting the

space on the basis of the number of boxes to represent. Figure 4 shows an example of

the application of the modified algorithm to PCGEN program (1129 classes).

We also developed another placement algorithm that reflects the architectural

properties of a program. The principle is the same as for the TreeMap. The space-

filling algorithm is highly inspired from the Sunburst algorithm introduced by John

Stasko [11] (see Figure 5). This algorithm is a circular view of a hierarchy and its

primary purpose is again the visualization of large file system in two dimensions. It

uses angle to separate sibling nodes and length to represent the level in the hierarchy.

Visualisation and Analysis of Software 34

A navigation system with interactive zooming has also been developed for the

original tool.

Figure 4. Modified Treemap representing PCGEN program (1129 classes)

This algorithm also has been adapted to our discrete needs and to the 3 dimensional

world. We represent packages and sub-packages with arc portion but instead of

coloring arc portions of a circle, we fill them with class representations discussed in

Section 3 (see Figure 6).

Figure 5. Original 2D Sunburst algorithm representing of a file structure

35 G. Langelier, H.A. Sahraoui, and P. Poulin

Figure 6. Modified Sunburst algorithm representing PCGEN program.

2.3 Navigation

Although, our system is designed for immediate detection of patterns and structures,

navigation is useful to look on some details and to prevent occlusion since we operate

in a 3 dimensional world.

Our navigation system gives the expert as much freedom as possible. The camera

is constantly directed to the plan where the classes are drawn. It is possible to move

the camera in any direction over the plan, to change the field of view angle by raising

or lowering the camera and by zooming in and zooming out. It is also possible to

move the camera on a semi-sphere around a view point. These commands seemed to

be the best compromise between freedom and directed visualization.

2.4 Filters

For some analysis tasks, it is important to focus on a subset of elements when keeping

the global context. We will see an example of such kind of analysis in the following

section. In this perspective, we use filters that hide elements that are not useful.

Two different kinds of filters are implemented. The first one deals with the

distribution of the metric values. For example, we can focus on classes that have

extreme values for a particular metric by making the other classes transparent.

Extreme values are detected using classical statistical techniques such as plot boxes.

The second category of filters exploits structural information. Indeed, in addition to

Visualisation and Analysis of Software 36

metrics, our environment allows to extract UML relations such as associations,

aggregations and generalizations. For a particular class, the expert can view only

classes that are related to it by a particular type of link (see Figure 7).

Figure 7. An example of the result of application of link-based filter to a class (big purple class

in the center)

Filters can be combined into sequences that allow to perform complex analysis

tasks.

3 Applications

We experimented our framework for three types of software analysis tasks. We will

present each type briefly in the following sub-sections.

3.1 Design principle violation detection

As stated before, one of the most well-known and important principle in quality

analysis is the fact that code should always exhibit low coupling and high cohesion.

However, this fundamental principle is very hard to verify because of the difficulty of

finding threshold values and tradeoffs between coupling and cohesion. Using our

framework, an expert can judge whether or not a portion of the code violates this

37 G. Langelier, H.A. Sahraoui, and P. Poulin

principle by taking into account the global context of the program. The violation can

be detected at the class, package and program level without a need for aggregating the

data (averages, median, etc.) Figure 8 shows an example of how the framework can

be used in that particular case.

Figure 8. An example of program having a large proportion of coupled classes: ArtOfIllusion

(513 classes).

Another interesting analysis in this category is the detection of anti-patterns. Anti-

patterns are known to be bad coding practices that may result in problems in the

subsequent phases of the development. An example that our framework is able to

detect is the Blob anti-pattern [2]. The Blob is the enormous accumulation of code in

very few classes containing a lot of complex methods. This anti-pattern is often

caused by object-oriented code used in the context of procedural needs or when

developers are inexperienced. In the context of the mapping proposed in section 2.1, a

Blob can easily be spotted in our framework. It’s a very red, twisted and tall box

linked to small boxes.

Blob can be detected by first applying a filter that reveals classes that have an

abnormal value for size-complexity. Then, when one of these classes is selected, we

apply for it a filter that shows the classes that are related to it. If these later classes are

small, there is a high probability that we are in a situation of a Blob.

3.3 Functional architecture understanding

A graphical representation of a system represents a good cognitive support to the

comprehension of programs. Indeed, the role of each class in the system has an impact

on it metrics. For example, kernel packages contain a large proportion of complex

classes with high coupling. In the mapping of section 2.1, these classes are big and

red. Similarly, most of utility packages contain a large proportion of complex classes

Visualisation and Analysis of Software 38

with medium-to-low coupling (big purple). Without any additional (semantic)

information to code, the expert can have a first idea on the vocations of the packages

which will ease the comprehension (see Figure 9).

Figure 9. An example of the correspondence between visual patterns and package types

3.4 Evolution analysis

One important contribution of our framework is the software evolution analysis. We

can analyze single class evolution as proposed by [9] or package/program evolution.

In the first case, we can observe the evolution pattern of a class and deduce its next

evolution stages. For example, some evolution patterns can be synonyms of dead-

code classes.

In the case of package/program evolution, we can observe the representation of

multiple versions of the same package/program (see for example Figure 10). The

evolution can reveal bad quality packages and determine when a major refactoring is

needed.

PcGen.core

Gmgen.plugin

gmgr.messages

Pcgen.Gui.Edit

PcGen.core.

39 G. Langelier, H.A. Sahraoui, and P. Poulin

Figure 10. An example of a package evolution

4 Conclusions

In this position paper, we claim that for complex tasks of quality analysis, automated

methods are limited and semi-automatic approaches are more appropriate. To

illustrate our position, we have presented a visualization framework for large scale

system using object-oriented metrics. It uses perception capabilities of an expert to

evaluate the quality of a program. We briefly introduced some analysis tasks that can

be performed using our framework.

Our semi-automatic approach is a good compromise between fully automatic

algorithm that are efficient but loose track of context and the pure human analysis that

is in ideal cases slow and in practice for large-scale programs inappropriate.

References

1. D. Bell. “Software Engineering, A Programming Approach”, Addison-Wesley, 2000.

2. W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mowbray. AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis. John Wiley Press, 1998.

3. S. R. Chidamber and C. F. Kemerer. A metric suite for object oriented design. In IEEE

Transactions on Software Engineering, 20(6):293–318, 1994.

4. A. Endres et D. Rombach. “A Handbook of Software and Systems Engineering”, Addison-

Wesley, 2003.

5. D. Hamlet et J. Maybee. “The Engineering of Software”, Addison-Wesley, 2001.

6. C. G. Healey and J. T. Enns. Large datasets at a glance: Combining textures and colors in

scientific visualization. IEEE Transactions on Visualization and Computer Graphics,

5(2):145–167, 1999.

7. B. Johnson and B. Shneiderman. Treemaps: A space-filling approach to the visualization

of hierarchical information structures. In IEEE Visualization Conference, October 1991.

v1 v2 v3 v4 …. v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23

Visualisation and Analysis of Software 40

8. C. Knight and M. Munro. Virtual but visible software. In Proceedings of the International

Conference on Information Visualisation, 2000.

9. M. Lanza and S. Ducasse. A categorization of classes based on the visualization of their

internal structure: the class blueprint. In Proceedings of 16th International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, 2001.

10. A. M. MacEachren. How Maps Work: Representation, Visualization and Design. Guilford

Press, New York, 1995.

11. J. Stasko and E. Zhang. Focus+context display and navigation techniques for enhancing

radial, space-filling hierarchy visualizations. In Proceedings of the IEEE Symposium on

Information Vizualization, 2000.

41 G. Langelier, H.A. Sahraoui, and P. Poulin

