
Département d'informatique et de recherche 
opérationnelle

Deep Learning 
Summer School 2015

by  Pascal Vincent

On manifolds
and autoencoders

Montreal Institute for Learning Algorithms August 5, 2015

mercredi 5 août 2015



Part I: Leveraging the manifold hypothesis 
Part II: Regularizing Auto-Encoders 

2

PLAN

Will be largely about 
unsupervised learning

mercredi 5 août 2015



An unsupervised learning task: 
dimensionality reduction

(3.5,  -1.7,  2.8,  -3, 5,  -1.4,   2.4,   2.7,   7.5)

x ∈ RD

(0.32,   -1.3,   1.2)

M < D What is it useful for?

fθ

h ∈ RM

mercredi 5 août 2015



An unsupervised learning task: 
dimensionality reduction

(3.5,  -1.7,  2.8,  -3, 5,  -1.4,   2.4,   2.7,   7.5)

x ∈ RD

(0.32,   -1.3,   1.2)

M < D

✤ Data compression 
(lossy)

✤ Dataset visualisation 
(in 2D or 3D)

✤ Discovering 
«most important» 
features. 

What is it useful for?

fθ

h ∈ RM

mercredi 5 août 2015



A classic algorithm [ Pearson 1901 ] [ Hotelling 1933 ]

Principal Component Analysis  

4

✤ Finds (learns) k directions (a subspace) 
in which data has highest variance
=> principal directions (eigenvetors) W

✤ Projecting inputs x on these vetors 
yields reduced dimension 
representation (&decorrelated)
=> principal components
h =  fθ(x) = W(x-μ) with θ={W,μ}
 

w1

w2

x1

x3

x2

mercredi 5 août 2015



A classic algorithm [ Pearson 1901 ] [ Hotelling 1933 ]

Principal Component Analysis  

4

✤ Finds (learns) k directions (a subspace) 
in which data has highest variance
=> principal directions (eigenvetors) W

✤ Projecting inputs x on these vetors 
yields reduced dimension 
representation (&decorrelated)
=> principal components
h =  fθ(x) = W(x-μ) with θ={W,μ}
 

Why mention PCA?
➡Prototypical unsupervised 

representation learning algorithm.

➡Related to autoencoders

➡Prototypical manifold  modeling 
algorithm

w1

w2

x1

x3

x2

mercredi 5 août 2015



w1

w2

x1

x3

x2

5

Lower-dimensional manifolds
embedded in high dimensional space

Linear 2D manidold in 3D space
(ex: subspace found by PCA)

Non-linear 2D manidold 
in 3D input space

Principal components are coordinates 
in a coordinate-system on the manifold
mercredi 5 août 2015



The manifold 
hypothesis 

(assumption)

6

Natural data in high dimensional spaces 
concentrates 

close to lower dimensional manifolds.

Probability density decreases very rapidly when 
moving away from the supporting manifold. 

 

mercredi 5 août 2015



The curse of 
dimensionality
There are 1096329 possible 
200x200 RGB images.

7

mercredi 5 août 2015



mercredi 5 août 2015



mercredi 5 août 2015



The manifold 
hypothesis

• Natural images occupy a tiny 
fraction of that space
=> suggests peaked density

• Realistic smooth transformations 
from one image to another 
=> continuous path along manifold

mercredi 5 août 2015



The manifold 
hypothesis

• Natural images occupy a tiny 
fraction of that space
=> suggests peaked density

• Realistic smooth transformations 
from one image to another 
=> continuous path along manifold

Data density contentrates near 
a lower dimensional manifold

Can shift the curse 
from high d  to dM<< d

The manifold hypothesis

mercredi 5 août 2015



Manifold follows naturally from
continuous underlying factors

(≈ intrinsic manifold coordinates)

9

Ex: pose parameters of a face  Ex: rotation, size of digits (+ line thickness, ...)

Image borrowed from University of  Dayton Vision Lab website.

Such continuous factors are 
(part of) a meaningful represetation!

d

mercredi 5 août 2015

file://localhost/Volumes/grieg.iro.umontreal.ca/Desktop/images/manifold.png
file://localhost/Volumes/grieg.iro.umontreal.ca/Desktop/images/manifold.png


Modeling local tangent spaces

10

A non-linear manifold

✤ Can be represented by 
patchwork of tangent spaces

✤ Yields local linear coordinate 
systems (chart -> atlas)

mercredi 5 août 2015



Non-parametric density estimation

11

mercredi 5 août 2015



Non-parametric density estimation

11

p̂(x) =
1

n

n�

i=1

N (x;xi, Ci)
x1 x2

Classical Parzen Windows 
density estimator

mercredi 5 août 2015



Non-parametric density estimation

11

p̂(x) =
1

n

n�

i=1

N (x;xi, Ci)
x1 x2

Classical Parzen Windows 
density estimator

- Archetypal «non-parametric»
kernel density estimator

- Isotropic Gaussian centered on 
each training point

- No sense of manifold direction

- Probability mass allocated away 
from  manifold

mercredi 5 août 2015



Non-parametric density estimation

11

p̂(x) =
1

n

n�

i=1

N (x;xi, Ci)
x1 x2

Classical Parzen Windows 
density estimator

- Archetypal «non-parametric»
kernel density estimator

- Isotropic Gaussian centered on 
each training point

- No sense of manifold direction

- Probability mass allocated away 
from  manifold

(Vincent and Bengio, NIPS 2003)

Manifold Parzen Windows
density estimator

- Oriented Gaussian «pancake» centered 
on each training point

- Uses low-rank parametrization of Ci, 
learned from nearest neighbors (local PCA)

- «Parametric» cousins:
Mixtures of Gaussian pancakes (Hinton et al. 95)
Mixtures of Factor Analysers (Gharamani + Hinton 96)

Mixtures of Probabilistic PCA (Tipping + Bishop 99)

mercredi 5 août 2015



12

p̂(x) =
1

n

n�

i=1

N (x;xi,σ
2I)

isotropic

{

Isotropic Parzen:

Non-local manifold Parzen windows
(Bengio, Larochelle, Vincent, NIPS 2006)

mercredi 5 août 2015



12

p̂(x) =
1

n

n�

i=1

N (x;xi,σ
2I)

isotropic

{

Isotropic Parzen:

p̂(x) =
1

n

n�

i=1

N (x;xi, Ci)

{

dM high variance directions from PCA on k nearest neighbors

Manifold Parzen:
(Vincent and Bengio, NIPS 2003)

Non-local manifold Parzen windows
(Bengio, Larochelle, Vincent, NIPS 2006)

mercredi 5 août 2015



12

p̂(x) =
1

n

n�

i=1

N (x;xi,σ
2I)

isotropic

{

Isotropic Parzen:

p̂(x) =
1

n

n�

i=1

N (x;µ(xi), C(xi)){
dM high variance directions output by neural network

Non-local manifold Parzen:

trained to maximize likelihood of k nearest neighbors

(Bengio, Larochelle, Vincent, NIPS 2006)

p̂(x) =
1

n

n�

i=1

N (x;xi, Ci)

{

dM high variance directions from PCA on k nearest neighbors

Manifold Parzen:
(Vincent and Bengio, NIPS 2003)

Non-local manifold Parzen windows
(Bengio, Larochelle, Vincent, NIPS 2006)

mercredi 5 août 2015



13

Algorithm sinus spiral
Non-Local MP 1.144 -1.346
Manifold Parzen 1.345 -0.914
Gauss Mix Full 1.567 -0.857
Parzen Windows 1.841 -0.487

Table 1: Average out-of-sample negative log-
likelihood on two toy problems, for Non-Local
Manifold Parzen, a Gaussian mixture with full
covariance, Manifold Parzen, and Parzen Win-
dows. The non-local algorithm dominates all
the others.

Algorithm Valid. Test
Non-Local MP -73.10 -76.03
Manifold Parzen 65.21 58.33
Parzen Windows 77.87 65.94

Table 2: Average Negative Log-Likelihood on
the digit rotation experiment, when testing on
a digit class (1’s) not used during training, for
Non-Local Manifold Parzen, Manifold Parzen,
and Parzen Windows. The non-local algorithm
is clearly superior.

across the whole training set.

Figure 2: Illustration of the learned densities (sinus on top, spiral on bottom) for four com-
pared models. From left to right: Non-Local Manifold Parzen, Gaussian mixture, Parzen
Windows, Manifold Parzen. Parzen Windows wastes probability mass in the spheres around
each point, while leaving many holes. Gaussian mixtures tend to choose too few compo-
nents to avoid overfitting. The Non-LocalManifold Parzen exploits global structure to yield
the best estimator.

Experiments on rotated digits. The next experiment is meant to show both qualitatively
and quantitatively the power of non-local learning, by using 9 classes of rotated digit images
(from 729 first examples of the USPS training set) to learn about the rotation manifold and
testing on the left-out class (digit 1), not used for training. Each training digit was rotated
by 0.1 and 0.2 radians and all these images were used as training data. We used NLMP
for training, and for testing we formed an augmented mixture with Gaussians centered not
only on the training examples, but also on the original unrotated 1 digits. We tested our
estimator on the rotated versions of each of the 1 digits. We compared this to Manifold
Parzen trained on the training data containing both the original and rotated images of the
training class digits and the unrotated 1 digits. The objective of the experiment was to see
if the model was able to infer the density correctly around the original unrotated images,
i.e., to predict a high probability for the rotated versions of these images. In table 2 we see
quantitatively that the non-local estimator predicts the rotated images much better.

As qualitative evidence, we used small steps in the principal direction predicted by Test-
centric NLMP to rotate an image of the digit 1. To make this task even more illustrative of
the generalization potential of non-local learning, we followed the tangent in the direction
opposite to the rotations of the training set. It can be seen in figure 3 that the rotated

Algorithm sinus spiral
Non-Local MP 1.144 -1.346
Manifold Parzen 1.345 -0.914
Gauss Mix Full 1.567 -0.857
Parzen Windows 1.841 -0.487

Table 1: Average out-of-sample negative log-
likelihood on two toy problems, for Non-Local
Manifold Parzen, a Gaussian mixture with full
covariance, Manifold Parzen, and Parzen Win-
dows. The non-local algorithm dominates all
the others.

Algorithm Valid. Test
Non-Local MP -73.10 -76.03
Manifold Parzen 65.21 58.33
Parzen Windows 77.87 65.94

Table 2: Average Negative Log-Likelihood on
the digit rotation experiment, when testing on
a digit class (1’s) not used during training, for
Non-Local Manifold Parzen, Manifold Parzen,
and Parzen Windows. The non-local algorithm
is clearly superior.

across the whole training set.

Figure 2: Illustration of the learned densities (sinus on top, spiral on bottom) for four com-
pared models. From left to right: Non-Local Manifold Parzen, Gaussian mixture, Parzen
Windows, Manifold Parzen. Parzen Windows wastes probability mass in the spheres around
each point, while leaving many holes. Gaussian mixtures tend to choose too few compo-
nents to avoid overfitting. The Non-LocalManifold Parzen exploits global structure to yield
the best estimator.

Experiments on rotated digits. The next experiment is meant to show both qualitatively
and quantitatively the power of non-local learning, by using 9 classes of rotated digit images
(from 729 first examples of the USPS training set) to learn about the rotation manifold and
testing on the left-out class (digit 1), not used for training. Each training digit was rotated
by 0.1 and 0.2 radians and all these images were used as training data. We used NLMP
for training, and for testing we formed an augmented mixture with Gaussians centered not
only on the training examples, but also on the original unrotated 1 digits. We tested our
estimator on the rotated versions of each of the 1 digits. We compared this to Manifold
Parzen trained on the training data containing both the original and rotated images of the
training class digits and the unrotated 1 digits. The objective of the experiment was to see
if the model was able to infer the density correctly around the original unrotated images,
i.e., to predict a high probability for the rotated versions of these images. In table 2 we see
quantitatively that the non-local estimator predicts the rotated images much better.

As qualitative evidence, we used small steps in the principal direction predicted by Test-
centric NLMP to rotate an image of the digit 1. To make this task even more illustrative of
the generalization potential of non-local learning, we followed the tangent in the direction
opposite to the rotations of the training set. It can be seen in figure 3 that the rotated

Algorithm sinus spiral
Non-Local MP 1.144 -1.346
Manifold Parzen 1.345 -0.914
Gauss Mix Full 1.567 -0.857
Parzen Windows 1.841 -0.487

Table 1: Average out-of-sample negative log-
likelihood on two toy problems, for Non-Local
Manifold Parzen, a Gaussian mixture with full
covariance, Manifold Parzen, and Parzen Win-
dows. The non-local algorithm dominates all
the others.

Algorithm Valid. Test
Non-Local MP -73.10 -76.03
Manifold Parzen 65.21 58.33
Parzen Windows 77.87 65.94

Table 2: Average Negative Log-Likelihood on
the digit rotation experiment, when testing on
a digit class (1’s) not used during training, for
Non-Local Manifold Parzen, Manifold Parzen,
and Parzen Windows. The non-local algorithm
is clearly superior.

across the whole training set.

Figure 2: Illustration of the learned densities (sinus on top, spiral on bottom) for four com-
pared models. From left to right: Non-Local Manifold Parzen, Gaussian mixture, Parzen
Windows, Manifold Parzen. Parzen Windows wastes probability mass in the spheres around
each point, while leaving many holes. Gaussian mixtures tend to choose too few compo-
nents to avoid overfitting. The Non-LocalManifold Parzen exploits global structure to yield
the best estimator.

Experiments on rotated digits. The next experiment is meant to show both qualitatively
and quantitatively the power of non-local learning, by using 9 classes of rotated digit images
(from 729 first examples of the USPS training set) to learn about the rotation manifold and
testing on the left-out class (digit 1), not used for training. Each training digit was rotated
by 0.1 and 0.2 radians and all these images were used as training data. We used NLMP
for training, and for testing we formed an augmented mixture with Gaussians centered not
only on the training examples, but also on the original unrotated 1 digits. We tested our
estimator on the rotated versions of each of the 1 digits. We compared this to Manifold
Parzen trained on the training data containing both the original and rotated images of the
training class digits and the unrotated 1 digits. The objective of the experiment was to see
if the model was able to infer the density correctly around the original unrotated images,
i.e., to predict a high probability for the rotated versions of these images. In table 2 we see
quantitatively that the non-local estimator predicts the rotated images much better.

As qualitative evidence, we used small steps in the principal direction predicted by Test-
centric NLMP to rotate an image of the digit 1. To make this task even more illustrative of
the generalization potential of non-local learning, we followed the tangent in the direction
opposite to the rotations of the training set. It can be seen in figure 3 that the rotated

Algorithm sinus spiral
Non-Local MP 1.144 -1.346
Manifold Parzen 1.345 -0.914
Gauss Mix Full 1.567 -0.857
Parzen Windows 1.841 -0.487

Table 1: Average out-of-sample negative log-
likelihood on two toy problems, for Non-Local
Manifold Parzen, a Gaussian mixture with full
covariance, Manifold Parzen, and Parzen Win-
dows. The non-local algorithm dominates all
the others.

Algorithm Valid. Test
Non-Local MP -73.10 -76.03
Manifold Parzen 65.21 58.33
Parzen Windows 77.87 65.94

Table 2: Average Negative Log-Likelihood on
the digit rotation experiment, when testing on
a digit class (1’s) not used during training, for
Non-Local Manifold Parzen, Manifold Parzen,
and Parzen Windows. The non-local algorithm
is clearly superior.

across the whole training set.

Figure 2: Illustration of the learned densities (sinus on top, spiral on bottom) for four com-
pared models. From left to right: Non-Local Manifold Parzen, Gaussian mixture, Parzen
Windows, Manifold Parzen. Parzen Windows wastes probability mass in the spheres around
each point, while leaving many holes. Gaussian mixtures tend to choose too few compo-
nents to avoid overfitting. The Non-LocalManifold Parzen exploits global structure to yield
the best estimator.

Experiments on rotated digits. The next experiment is meant to show both qualitatively
and quantitatively the power of non-local learning, by using 9 classes of rotated digit images
(from 729 first examples of the USPS training set) to learn about the rotation manifold and
testing on the left-out class (digit 1), not used for training. Each training digit was rotated
by 0.1 and 0.2 radians and all these images were used as training data. We used NLMP
for training, and for testing we formed an augmented mixture with Gaussians centered not
only on the training examples, but also on the original unrotated 1 digits. We tested our
estimator on the rotated versions of each of the 1 digits. We compared this to Manifold
Parzen trained on the training data containing both the original and rotated images of the
training class digits and the unrotated 1 digits. The objective of the experiment was to see
if the model was able to infer the density correctly around the original unrotated images,
i.e., to predict a high probability for the rotated versions of these images. In table 2 we see
quantitatively that the non-local estimator predicts the rotated images much better.

As qualitative evidence, we used small steps in the principal direction predicted by Test-
centric NLMP to rotate an image of the digit 1. To make this task even more illustrative of
the generalization potential of non-local learning, we followed the tangent in the direction
opposite to the rotations of the training set. It can be seen in figure 3 that the rotated

Mixture of k 
Gaussians

Parzen 
Windows

Manifold 
Parzen

Non-local 
Manifold 

Parzen

Use in Bayes classifier on USPS

Figure 3: From left to right: original image of a digit 1; rotated analytically by −0.2
radians; Rotation predicted using Non-Local MP; rotation predicted using MP. Rotations
are obtained by following the tangent vector in small steps.

digit obtained is quite similar to the same digit analytically rotated. For comparison, we
tried to apply the same rotation technique to that digit, but by using the principal direction,
computed byManifold Parzen, of its nearest neighbor’s Gaussian component in the training
set. This clearly did not work, and hence shows how crucial non-local learning is for this
task.

In this experiment, to make sure that NLMP focusses on the tangent plane of the rotation
manifold, we fixed the number of principal directions d = 1 and the number of nearest
neighbors k = 1, and also imposed µ(·) = 0. The same was done for Manifold Parzen.

Experiments on Classification by Density Estimation. The USPS data set was used
to perform a classification experiment. The original training set (7291) was split into a
training (first 6291) and validation set (last 1000), used to tune hyper-parameters. One
density estimator for each of the 10 digit classes is estimated. For comparison we also
show the results obtained with a Gaussian kernel Support Vector Machine (already used
in (Vincent and Bengio, 2003)). Non-localMP* refers to the variation described in (Bengio
and Larochelle, 2005), which attemps to train faster the components with larger variance.
The t-test statistic for the null hypothesis of no difference in the average classification
error on the test set of 2007 examples between Non-local MP and the strongest competitor
(Manifold Parzen) is shown in parenthesis. Figure 4 also shows some of the invariant
transformations learned by Non-local MP for this task.

Note that better SVM results (about 3% error) can be obtained using prior knowledge about
image invariances, e.g. with virtual support vectors (Decoste and Scholkopf, 2002). How-
ever, as far as we know the NLMP performance is the best on the original USPS dataset
among algorithms that do not use prior knowledge about images.

Algorithm Valid. Test Hyper-Parameters
SVM 1.2% 4.68% C = 100, σ = 8

Parzen Windows 1.8% 5.08% σ = 0.8
Manifold Parzen 0.9% 4.08% d = 11, k = 11, σ2

0 = 0.1
Non-local MP 0.6% 3.64% (-1.5218) d = 7, k = 10, kµ = 10,

σ2
0 = 0.05, nhid = 70

Non-local MP* 0.6% 3.54% (-1.9771) d = 7, k = 10, kµ = 4,
σ2

0 = 0.05, nhid = 30

Table 3: Classification error obtained on USPS with SVM, Parzen Windows and Local and
Non-Local Manifold Parzen Windows classifiers. The hyper-parameters shown are those
selected with the validation set.

7 Conclusion

We have proposed a non-parametric density estimator that, unlike its predecessors, is able
to generalize far from the training examples by capturing global structural features of the

mercredi 5 août 2015



Manifold learning 
is a rich subfield

14

Purely non-parametric:
•Manifold Parzen, LLE, Isomap, Laplacian eigenmaps, t-SNE, ...

Learned parametrized function:
•Parametric t-SNE, semi-supervised embedding, 
non-local manifold Parzen, ...

?What do all these approaches 
have in common

mercredi 5 août 2015



Neighborhood-based training!

✤ They explicitly use distance-
based neighborhoods.

✤ Training with k-nearest 
neighbors, or pairs of points.

✤ Typically Euclidean neighbors

✤ But in high d, your nearest 
Euclidean neighbor can be 
very different from you...

15

mercredi 5 août 2015



Neighborhood-based training!

✤ They explicitly use distance-
based neighborhoods.

✤ Training with k-nearest 
neighbors, or pairs of points.

✤ Typically Euclidean neighbors

✤ But in high d, your nearest 
Euclidean neighbor can be 
very different from you...

15

mercredi 5 août 2015



Neighborhood-based training!

✤ They explicitly use distance-
based neighborhoods.

✤ Training with k-nearest 
neighbors, or pairs of points.

✤ Typically Euclidean neighbors

✤ But in high d, your nearest 
Euclidean neighbor can be 
very different from you...

15

Unr
eli

ab
le 

!

mercredi 5 août 2015



16

PART  II

On Auto-Encoders
and

their regularization,

mercredi 5 août 2015



7

Réseaux de neurones

• La puissance expressive des réseaux de neurones

x1 x2

x1

x2

...

x1 x2

R1

R2

R1

R2

R2

R1

x2

x1

deux couches

trois couches

θ = {Whidden,bhidden,w, b}
d� × d

{
{ {

Functional form (parametric):

Parameters:

Optimizing parameters on training set (training the network):{
regularization term

(weight decay)empirical risk

θ� = arg min
θ

R̂λ(fθ, Dn)
{ {

d� × 1

Multi-Layer Perceptron (MLP)
with one hidden layer of size d’ neurons

y = fθ(x) = sigmoid (�w,h�+ b)

h = sigmoid(Whiddenx+ bhidden)

JMLP(θ) =




�

(x,t)∈D

L(t, fθ(x))



+ λΩ(θ)

mercredi 5 août 2015



• Autoencoders

• Auto-associators

• Diabolo networks

• Sandglass-shaped net

r

Learning deep networks
Layer-wise initialization

fθ

xx

1 Learn first mapping fθ by training as a denoising autoencoder.
2 Remove scaffolding. Use fθ directly on input yielding higher level

representation.

3 Learn next level mapping f (2)
θ by training denoising autoencoder on

current level representation.
4 Iterate to initialize subsequent layers.

Pascal Vincent Autoencoders, denoising autoencoders, and learning deep networks

hidden

decoding

Learning deep networks
Layer-wise initialization

fθ

xx

1 Learn first mapping fθ by training as a denoising autoencoder.
2 Remove scaffolding. Use fθ directly on input yielding higher level

representation.

3 Learn next level mapping f (2)
θ by training denoising autoencoder on

current level representation.
4 Iterate to initialize subsequent layers.

Pascal Vincent Autoencoders, denoising autoencoders, and learning deep networks

xinput

Learning deep networks
Layer-wise initialization

fθ

xx

1 Learn first mapping fθ by training as a denoising autoencoder.
2 Remove scaffolding. Use fθ directly on input yielding higher level

representation.

3 Learn next level mapping f (2)
θ by training denoising autoencoder on

current level representation.
4 Iterate to initialize subsequent layers.

Pascal Vincent Autoencoders, denoising autoencoders, and learning deep networks

reconstruction

encoding

lower-dimensional

bottleneck

The Diabolo

Autoencoders are also called

h

✤ Make output layer 
same size as input layer

✤ Have target = input
✤ Loss encourages output 

(reonstruction) to be close to 
input.

Autoencoders: MLPs used for 
«unsupervised» representation learning

L(x,r)

mercredi 5 août 2015



h = h(x)

h g

19

Encoder: Decoder:

input reconstruction r = g(h(x))

L(x, r)reconstruction error

x

Minimize

hidden representation

JAE =
�

x∈D

L(x, g(h(x))

∈ Rd

∈ Rdh

Auto-Encoders (AE) 
for learning representations

mercredi 5 août 2015



h = h(x)

h g

19

Encoder: Decoder:

input reconstruction r = g(h(x))

L(x, r)reconstruction error

x

Minimize

hidden representation

Typical form

JAE =
�

x∈D

L(x, g(h(x))

∈ Rd

∈ Rdh

Auto-Encoders (AE) 
for learning representations

mercredi 5 août 2015



h = h(x)

h g

19

Encoder: Decoder:

input reconstruction r = g(h(x))

L(x, r)reconstruction error

x

= s(Wx+ b)

Minimize

hidden representation

Typical form

JAE =
�

x∈D

L(x, g(h(x))

∈ Rd

∈ Rdh

Auto-Encoders (AE) 
for learning representations

mercredi 5 août 2015



h = h(x)

h g

19

Encoder: Decoder:

input reconstruction r = g(h(x))

L(x, r)reconstruction error

x

= s(Wx+ b)

= sd(W
�h+ bd)

Minimize

hidden representation

Typical form

JAE =
�

x∈D

L(x, g(h(x))

∈ Rd

∈ Rdh

Auto-Encoders (AE) 
for learning representations

mercredi 5 août 2015



h = h(x)

h g

19

Encoder: Decoder:

input reconstruction r = g(h(x))

L(x, r)reconstruction error

x

= s(Wx+ b)

= sd(W
�h+ bd)

�x− r�2squared error:
or Bernoulli cross-entropy

Minimize

hidden representation

Typical form

JAE =
�

x∈D

L(x, g(h(x))

∈ Rd

∈ Rdh

Auto-Encoders (AE) 
for learning representations

mercredi 5 août 2015



h = h(x)

h g

19

Encoder: Decoder:

input reconstruction r = g(h(x))

L(x, r)reconstruction error

x

= s(Wx+ b)

= sd(W
�h+ bd)

�x− r�2squared error:
or Bernoulli cross-entropy

Minimize

hidden representation

Typical form

JAE =
�

x∈D

L(x, g(h(x))

∈ Rd

∈ Rdh

Auto-Encoders (AE) 
for learning representations

s is typically sigmoid

mercredi 5 août 2015



• With linear neurons and squared loss
➠ autoencoder learns same suspace as PCA

• Also true with a single sigmoidal hidden layer, 
if using linear output neurons with squared loss
[Baldi& Hornik 89] and untied weights.

• Won’t learn the exact same basis as PCA, 
but W will span the same subspace.

conection between 
Linear auto-encoders and PCA

dh<d (bottleneck, undercomplete representation):

mercredi 5 août 2015



Consider an auto-encoder MLP 

• with a single hidden layer with sigmoid non-linearity

• and sigmoid output non-linerity.

• Tie encoder and decoder weights: W’= WT.

similarity between

Auto-encoders and RBM

Autoencoder: RBM:

hi = s(Wi x +bi) P(hi=1 | v) = s(Wi v+ci) 

rj = s(WjTh+bdj) P(vj=1 | h) = s(WjTh+bj) 

Differences: deterministic mapping
h is a function of x.

stochastic mapping
h is a random variable

mercredi 5 août 2015



Greedy Layer-Wise Pre-training with RBMs

Stacking Restricted Boltzmann Machines (RBM) 
                  ➪ Deep Belief Network (DBN)  [ Hinton et al. 2006 ]

mercredi 5 août 2015



Greedy Layer-Wise Pre-training with Auto-Encoders

Stacking basic Auto-Encoders [Bengio et al. 2007]

                           

mercredi 5 août 2015



Supervised fine-tuning
Learning deep networks
Supervised fine-tuning

Initial deep mapping was learnt in

an unsupervised way.

→ initialization for a supervised

task.

Output layer gets added.

Global fine tuning by gradient

descent on supervised criterion.

Target

supervised cost

fθ

x

f (2)
θ

f (3)
θ

f sup
θ

Pascal Vincent Neural Networks: promises of current researchmercredi 5 août 2015



Supervised Fine-Tuning is Important

¡Greedy layer-wise unsupervised 
pre-training phase with RBMs 
or auto-encoders on MNIST

¡Supervised phase with or 
without unsupervised updates, 
with or without fine-tuning of 
hidden layers

Classiffication performance on benchmarks:

• Pre-training basic auto-encoder stack better than no pre-training

• Basic auto-encoder stack almost matched RBM stack...

mercredi 5 août 2015



Basic auto-encoders not as good 
feature learners as RBMs...

✤ Traditional autoencoders were for dimensionality 
reduction (  dh < dx  )  

✤ Deep learning success seems to depend on ability to 
learn overcomplete representations (  dh > dx  )

✤ Overcomplete basic autoencoder 
yields trivial useless solutions: identity mapping!

✤ Need for alternative regularization/
constraining

26

input

reconstruction

hidden

What’s the problem?

mercredi 5 août 2015



Denoising auto-encoders: motivation

✤ Simple idea «destroying information» of randomly 
selected input features; train to restore it.
=> 0-masking noise (now called «dropout» noise)  

✤ Denoising corrupted input is a vastly more 
challenging task than mere reconcstruction.

✤ Even in widely over-complete case... 
it must learn intelligent encoding/decoding.

✤ Will encourage representation that is robust to small 
perturbations of the input.

27

(Vincent, Larochelle, Bengio, Manzagol, ICML 2008)

mercredi 5 août 2015



h = h(x)

h g
Encoder: Decoder:

input
reconstruction r = g(h(x))

L(x, r)

reconstruction 
error

x

(hidden representation)

corrupted input

x̃
q(x̃|x)

~ ~ ~

features:

noise

Denoising auto-encoder (DAE)

28

mercredi 5 août 2015



h = h(x)

h g
Encoder: Decoder:

input
reconstruction r = g(h(x))

L(x, r)

reconstruction 
error

x

(hidden representation)

corrupted input

x̃
q(x̃|x)

~ ~ ~

features:

noise

Denoising auto-encoder (DAE)

28

JDAE(θ) =
�

x∈D

Eq(x̃|x) [L(x, g(h(x̃))]

Minimize:

mercredi 5 août 2015



h = h(x)

h g
Encoder: Decoder:

input
reconstruction r = g(h(x))

L(x, r)

reconstruction 
error

x

(hidden representation)

corrupted input

x̃
q(x̃|x)

~ ~ ~

features:

noise

Denoising auto-encoder (DAE)

28

JDAE(θ) =
�

x∈D

Eq(x̃|x) [L(x, g(h(x̃))]

Minimize:➡ learns robust & useful features
➡ easier to train than RBM features
➡ yield similar or better classification 

performance (as deep net pre-training)
mercredi 5 août 2015



✤ Autoencoder training minimizes:

✤ Denoising autoencoder training minimizes

Cannot compute expectation exactly
➪ use stochastic gradient descent, 
     sampling corrupted inputs

29

Denoising auto-encoder (DAE)

x̃|x

JDAE(θ) =
�

x∈D

Eq(x̃|x) [L(x, g(h(x̃))]

JAE(θ) =
�

x∈D

L(x, g(h(x̃))

mercredi 5 août 2015



✤ Autoencoder training minimizes:

✤ Denoising autoencoder training minimizes

Cannot compute expectation exactly
➪ use stochastic gradient descent, 
     sampling corrupted inputs

29

Denoising auto-encoder (DAE)

x̃|x

JDAE(θ) =
�

x∈D

Eq(x̃|x) [L(x, g(h(x̃))]

JAE(θ) =
�

x∈D

L(x, g(h(x̃))

Possible corruptions q:
•  zeroing pixels at random
     (now called «dropout» noise)
• additive Gaussian noise
• salt-and-pepper noise
•...

mercredi 5 août 2015



✤ Autoencoder training minimizes:

✤ Denoising autoencoder training minimizes

Cannot compute expectation exactly
➪ use stochastic gradient descent, 
     sampling corrupted inputs

29

Denoising auto-encoder (DAE)

x̃|x

JDAE(θ) =
�

x∈D

Eq(x̃|x) [L(x, g(h(x̃))]

JAE(θ) =
�

x∈D

L(x, g(h(x̃))

Possible corruptions q:
•  zeroing pixels at random
     (now called «dropout» noise)
• additive Gaussian noise
• salt-and-pepper noise
•...

Stochastic 

perturbation

mercredi 5 août 2015



30

STACKED DENOISING AUTOENCODERS

stochastic gradient descent to perform 500000 weight updates with a fixed learning rate of 0.05. All
filters shown were from experiments with tied weights, but untied weights yielded similar results.

Figure 5 displays filters learnt by a regular under-complete autoencoder that used a bottleneck
of 50 hidden units, as well as those learnt by an over-complete autoencoder using 200 hidden units.
Filters obtained in the under-complete case look like very local blob detectors. No clear structure is
apparent in the filters learnt in the over-complete case.

Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12× 12 image
patches used for training. Middle: filters learnt by a regular under-complete autoencoder
(50 hidden units) using tied weights and L2 reconstruction error. Right: filters learnt by a
regular over-complete autoencoder (200 hidden units). The under-complete autoencoder
appears to learn rather uninteresting local blob detectors. Filters obtained in the over-
complete case have no recognizable structure, looking entirely random.

We then trained 200 hidden units over-complete noiseless autoencoders regularized with L2
weight decay, as well as 200 hidden units denoising autoencoders with isotropic Gaussian noise
(but no weight decay). Resulting filters are shown in Figure 6. Note that a denoising autoencoder
with a noise level of 0 is identical to a regular autoencoder. So, naturally, filters learnt by a denoising
autoencoder at small noise levels (not shown) look like those obtained with a regular autoencoder
previously shown in Figure 5. With a sufficiently large noise level however (!= 0.5), the denoising
autoencoder learns Gabor-like local oriented edge detectors (see Figure 6). This is similar to what
is learnt by sparse coding (Olshausen and Field, 1996, 1997), or ICA (Bell and Sejnowski, 1997)
and resembles simple cell receptive fields from the primary visual cortex first studied by Hubel and
Wiesel (1959). The L2 regularized autoencoder on the other hand learnt nothing interesting beyond
restoring some of the local blob detectors found in the under-complete case. Note that we did try a
wide range of values for the regularization hyperparameter,10 but were never able to get Gabor-like
filters. From this experiment, we see clearly that training with sufficiently large noise yields a
qualitatively very different outcome than training with a weight decay regularization, which
confirms experimentally that the two are not equivalent for a non-linear autoencoder, as discussed
earlier in Section 4.2.

Figure 7 shows some of the results obtained with the other two noise types considered, that is,
salt-and-pepper noise, and masking-noise. We experimented with 3 corruption levels ": 10%,25%,55%.
The filters shown were obtained using 100 hidden units, but similar filters were found with 50 or
200 hidden units. Salt-and-pepper noise yielded Gabor-like edge detectors, whereas masking noise

10. Attempted weight decays values were the following: # ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5,
1.0}.

3387

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Figure 6: Weight decay vs. Gaussian noise. We show typical filters learnt from natural image
patches in the over-complete case (200 hidden units). Left: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learning rates: filters
never appeared to capture a more interesting structure than what is shown here. Note
that some local blob detectors are recovered compared to using no weight decay at all
(Figure 5 right). Right: a denoising autoencoder with additive Gaussian noise (! = 0.5)
learns Gabor-like local oriented edge detectors. Clearly the filters learnt are qualitatively
very different in the two cases.

yielded a mixture of edge detectors and grating filters. Clearly different corruption types and levels
can yield qualitatively different filters. But it is interesting to note that all three noise types we
experimented with were able to yield some potentially useful edge detectors.

5.2 Feature Detectors Learnt from Handwritten Digits

We also trained denoising autoencoders on the 28× 28 gray-scale images of handwritten digits
from the MNIST data set. For this experiment, we used denoising autoencoders with tied weights,
cross-entropy reconstruction error, and zero-masking noise. The goal was to better understand the
qualitative effect of the noise level. So we trained several denoising autoencoders, all starting from
the same initial random point in weight space, but with different noise levels. Figure 8 shows some
of the resulting filters learnt and how they are affected as we increase the level of corruption. With
0% corruption, the majority of the filters appear totally random, with only a few that specialize as
little ink blob detectors. With increased noise levels, a much larger proportion of interesting (visibly
non random and with a clear structure) feature detectors are learnt. These include local oriented
stroke detectors and detectors of digit parts such as loops. It was to be expected that denoising a
more corrupted input requires detecting bigger, less local structures: the denoising auto-encoder
must rely on longer range statistical dependencies and pool evidence from a larger subset of pixels.
Interestingly, filters that start from the same initial random weight vector often look like they “grow”
from random, to local blob detector, to slightly bigger structure detectors such as a stroke detector,
as we use increased noise levels. By “grow” we mean that the slightly larger structure learnt at a
higher noise level often appears related to the smaller structure obtained at lower noise levels, in
that they share about the same position and orientation.

3388

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Figure 6: Weight decay vs. Gaussian noise. We show typical filters learnt from natural image
patches in the over-complete case (200 hidden units). Left: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learning rates: filters
never appeared to capture a more interesting structure than what is shown here. Note
that some local blob detectors are recovered compared to using no weight decay at all
(Figure 5 right). Right: a denoising autoencoder with additive Gaussian noise (! = 0.5)
learns Gabor-like local oriented edge detectors. Clearly the filters learnt are qualitatively
very different in the two cases.

yielded a mixture of edge detectors and grating filters. Clearly different corruption types and levels
can yield qualitatively different filters. But it is interesting to note that all three noise types we
experimented with were able to yield some potentially useful edge detectors.

5.2 Feature Detectors Learnt from Handwritten Digits

We also trained denoising autoencoders on the 28× 28 gray-scale images of handwritten digits
from the MNIST data set. For this experiment, we used denoising autoencoders with tied weights,
cross-entropy reconstruction error, and zero-masking noise. The goal was to better understand the
qualitative effect of the noise level. So we trained several denoising autoencoders, all starting from
the same initial random point in weight space, but with different noise levels. Figure 8 shows some
of the resulting filters learnt and how they are affected as we increase the level of corruption. With
0% corruption, the majority of the filters appear totally random, with only a few that specialize as
little ink blob detectors. With increased noise levels, a much larger proportion of interesting (visibly
non random and with a clear structure) feature detectors are learnt. These include local oriented
stroke detectors and detectors of digit parts such as loops. It was to be expected that denoising a
more corrupted input requires detecting bigger, less local structures: the denoising auto-encoder
must rely on longer range statistical dependencies and pool evidence from a larger subset of pixels.
Interestingly, filters that start from the same initial random weight vector often look like they “grow”
from random, to local blob detector, to slightly bigger structure detectors such as a stroke detector,
as we use increased noise levels. By “grow” we mean that the slightly larger structure learnt at a
higher noise level often appears related to the smaller structure obtained at lower noise levels, in
that they share about the same position and orientation.

3388

STACKED DENOISING AUTOENCODERS

stochastic gradient descent to perform 500000 weight updates with a fixed learning rate of 0.05. All
filters shown were from experiments with tied weights, but untied weights yielded similar results.

Figure 5 displays filters learnt by a regular under-complete autoencoder that used a bottleneck
of 50 hidden units, as well as those learnt by an over-complete autoencoder using 200 hidden units.
Filters obtained in the under-complete case look like very local blob detectors. No clear structure is
apparent in the filters learnt in the over-complete case.

Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12× 12 image
patches used for training. Middle: filters learnt by a regular under-complete autoencoder
(50 hidden units) using tied weights and L2 reconstruction error. Right: filters learnt by a
regular over-complete autoencoder (200 hidden units). The under-complete autoencoder
appears to learn rather uninteresting local blob detectors. Filters obtained in the over-
complete case have no recognizable structure, looking entirely random.

We then trained 200 hidden units over-complete noiseless autoencoders regularized with L2
weight decay, as well as 200 hidden units denoising autoencoders with isotropic Gaussian noise
(but no weight decay). Resulting filters are shown in Figure 6. Note that a denoising autoencoder
with a noise level of 0 is identical to a regular autoencoder. So, naturally, filters learnt by a denoising
autoencoder at small noise levels (not shown) look like those obtained with a regular autoencoder
previously shown in Figure 5. With a sufficiently large noise level however (!= 0.5), the denoising
autoencoder learns Gabor-like local oriented edge detectors (see Figure 6). This is similar to what
is learnt by sparse coding (Olshausen and Field, 1996, 1997), or ICA (Bell and Sejnowski, 1997)
and resembles simple cell receptive fields from the primary visual cortex first studied by Hubel and
Wiesel (1959). The L2 regularized autoencoder on the other hand learnt nothing interesting beyond
restoring some of the local blob detectors found in the under-complete case. Note that we did try a
wide range of values for the regularization hyperparameter,10 but were never able to get Gabor-like
filters. From this experiment, we see clearly that training with sufficiently large noise yields a
qualitatively very different outcome than training with a weight decay regularization, which
confirms experimentally that the two are not equivalent for a non-linear autoencoder, as discussed
earlier in Section 4.2.

Figure 7 shows some of the results obtained with the other two noise types considered, that is,
salt-and-pepper noise, and masking-noise. We experimented with 3 corruption levels ": 10%,25%,55%.
The filters shown were obtained using 100 hidden units, but similar filters were found with 50 or
200 hidden units. Salt-and-pepper noise yielded Gabor-like edge detectors, whereas masking noise

10. Attempted weight decays values were the following: # ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5,
1.0}.

3387

AE with weight decay

a) Natural image patches

Learned filters

AE DAE

e.g.:

mercredi 5 août 2015



31

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, using zero-masking noise. (a-c)
show some of the filters learnt by denoising autoencoders trained with various corruption
levels !. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization point in parameter
space. (d) and (e) zoom in on the filters obtained for two of the neurons. As can be seen,
with no noise, many filters remain similarly uninteresting (undistinctive almost uniform
random grey patches). As we increase the noise level, denoising training forces the filters
to differentiate more, and capture more distinctive features. Higher noise levels tend to
induce less local filters, as expected. One can distinguish different kinds of filters, from
local blob detectors, to stroke detectors, and character parts detectors at the higher noise
levels.

was represented by 592 Mel Phon Coefficient (MPC) features. These are a simplified for-
mulation of the Mel-frequency cepstral coefficients (MFCCs) that were shown to yield better
classification performance (Bergstra, 2006).

All problems except tzanetakis had their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (2007). The training set is used
for both pretraining and fine tuning of the models. Classification performance on the validation set is
used for choosing the best configuration of hyperparameters (model selection). The corresponding
classification performance on the test set is then reported together with a 95% confidence interval.

For tzanetakis we used a slightly different procedure, since there was no predefined standard
split and fewer examples. We used 10-fold cross validation, where each fold consisted of 8000
training examples, 1000 test and 1000 validation examples. For each fold, hyperparameters were
chosen based on the performance on the validation set, and the retained model was used for com-
puting the corresponding test error. We report the average test error and standard deviation across
the 10 folds.

We were thus able to compare the classification performance of deep neural networks using
different unsupervised initialization strategies for their parameters:

3390

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, using zero-masking noise. (a-c)
show some of the filters learnt by denoising autoencoders trained with various corruption
levels !. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization point in parameter
space. (d) and (e) zoom in on the filters obtained for two of the neurons. As can be seen,
with no noise, many filters remain similarly uninteresting (undistinctive almost uniform
random grey patches). As we increase the noise level, denoising training forces the filters
to differentiate more, and capture more distinctive features. Higher noise levels tend to
induce less local filters, as expected. One can distinguish different kinds of filters, from
local blob detectors, to stroke detectors, and character parts detectors at the higher noise
levels.

was represented by 592 Mel Phon Coefficient (MPC) features. These are a simplified for-
mulation of the Mel-frequency cepstral coefficients (MFCCs) that were shown to yield better
classification performance (Bergstra, 2006).

All problems except tzanetakis had their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (2007). The training set is used
for both pretraining and fine tuning of the models. Classification performance on the validation set is
used for choosing the best configuration of hyperparameters (model selection). The corresponding
classification performance on the test set is then reported together with a 95% confidence interval.

For tzanetakis we used a slightly different procedure, since there was no predefined standard
split and fewer examples. We used 10-fold cross validation, where each fold consisted of 8000
training examples, 1000 test and 1000 validation examples. For each fold, hyperparameters were
chosen based on the performance on the validation set, and the retained model was used for com-
puting the corresponding test error. We report the average test error and standard deviation across
the 10 folds.

We were thus able to compare the classification performance of deep neural networks using
different unsupervised initialization strategies for their parameters:

3390

STACKED DENOISING AUTOENCODERS

(a) SAE (b) SDAE

(c) DBN

Figure 15: Variability of the samples generated with 3-hidden-layer SAE, SDAE and DBN pre-
trained models. Each sub-figure is to be read row-wise: the leftmost pattern in each row
is a training set pattern. Following the sample generation depicted in Figure 14, it was
provided as input to the network and its top-layer representation was computed by de-
terministic bottom up encoding. Patterns to its right were then generated independently
given that top level representation. Clearly, SDAE trained networks, like DBNs, are able
to regenerate high quality samples from their high level representation, contrary to SAE.
SDAE and DBNs also appear to give rise to a similar level of variability in the bottom-up
generated patterns (DBN patterns tending to be somewhat fatter). Note how SDAE puts
back the missing hole in the loop of the regenerated 6, and sometimes straightens up
the upper stroke of the last 7, suggesting that it did indeed capture meaningful specific
characteristics. DBN and SDAE generated patterns can easily pass for samples from the
unknown input distribution being modeled, unlike patterns generated by SAE.

3403

STACKED DENOISING AUTOENCODERS

(a) SAE (b) SDAE

(c) DBN

Figure 15: Variability of the samples generated with 3-hidden-layer SAE, SDAE and DBN pre-
trained models. Each sub-figure is to be read row-wise: the leftmost pattern in each row
is a training set pattern. Following the sample generation depicted in Figure 14, it was
provided as input to the network and its top-layer representation was computed by de-
terministic bottom up encoding. Patterns to its right were then generated independently
given that top level representation. Clearly, SDAE trained networks, like DBNs, are able
to regenerate high quality samples from their high level representation, contrary to SAE.
SDAE and DBNs also appear to give rise to a similar level of variability in the bottom-up
generated patterns (DBN patterns tending to be somewhat fatter). Note how SDAE puts
back the missing hole in the loop of the regenerated 6, and sometimes straightens up
the upper stroke of the last 7, suggesting that it did indeed capture meaningful specific
characteristics. DBN and SDAE generated patterns can easily pass for samples from the
unknown input distribution being modeled, unlike patterns generated by SAE.

3403

STACKED DENOISING AUTOENCODERS

(a) SAE (b) SDAE

(c) DBN

Figure 15: Variability of the samples generated with 3-hidden-layer SAE, SDAE and DBN pre-
trained models. Each sub-figure is to be read row-wise: the leftmost pattern in each row
is a training set pattern. Following the sample generation depicted in Figure 14, it was
provided as input to the network and its top-layer representation was computed by de-
terministic bottom up encoding. Patterns to its right were then generated independently
given that top level representation. Clearly, SDAE trained networks, like DBNs, are able
to regenerate high quality samples from their high level representation, contrary to SAE.
SDAE and DBNs also appear to give rise to a similar level of variability in the bottom-up
generated patterns (DBN patterns tending to be somewhat fatter). Note how SDAE puts
back the missing hole in the loop of the regenerated 6, and sometimes straightens up
the upper stroke of the last 7, suggesting that it did indeed capture meaningful specific
characteristics. DBN and SDAE generated patterns can easily pass for samples from the
unknown input distribution being modeled, unlike patterns generated by SAE.

3403

STACKED DENOISING AUTOENCODERS

(a) SAE (b) SDAE

(c) DBN

Figure 15: Variability of the samples generated with 3-hidden-layer SAE, SDAE and DBN pre-
trained models. Each sub-figure is to be read row-wise: the leftmost pattern in each row
is a training set pattern. Following the sample generation depicted in Figure 14, it was
provided as input to the network and its top-layer representation was computed by de-
terministic bottom up encoding. Patterns to its right were then generated independently
given that top level representation. Clearly, SDAE trained networks, like DBNs, are able
to regenerate high quality samples from their high level representation, contrary to SAE.
SDAE and DBNs also appear to give rise to a similar level of variability in the bottom-up
generated patterns (DBN patterns tending to be somewhat fatter). Note how SDAE puts
back the missing hole in the loop of the regenerated 6, and sometimes straightens up
the upper stroke of the last 7, suggesting that it did indeed capture meaningful specific
characteristics. DBN and SDAE generated patterns can easily pass for samples from the
unknown input distribution being modeled, unlike patterns generated by SAE.

3403

Learned filters

b) MNIST digits e.g.:

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, using zero-masking noise. (a-c)
show some of the filters learnt by denoising autoencoders trained with various corruption
levels !. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization point in parameter
space. (d) and (e) zoom in on the filters obtained for two of the neurons. As can be seen,
with no noise, many filters remain similarly uninteresting (undistinctive almost uniform
random grey patches). As we increase the noise level, denoising training forces the filters
to differentiate more, and capture more distinctive features. Higher noise levels tend to
induce less local filters, as expected. One can distinguish different kinds of filters, from
local blob detectors, to stroke detectors, and character parts detectors at the higher noise
levels.

was represented by 592 Mel Phon Coefficient (MPC) features. These are a simplified for-
mulation of the Mel-frequency cepstral coefficients (MFCCs) that were shown to yield better
classification performance (Bergstra, 2006).

All problems except tzanetakis had their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (2007). The training set is used
for both pretraining and fine tuning of the models. Classification performance on the validation set is
used for choosing the best configuration of hyperparameters (model selection). The corresponding
classification performance on the test set is then reported together with a 95% confidence interval.

For tzanetakis we used a slightly different procedure, since there was no predefined standard
split and fewer examples. We used 10-fold cross validation, where each fold consisted of 8000
training examples, 1000 test and 1000 validation examples. For each fold, hyperparameters were
chosen based on the performance on the validation set, and the retained model was used for com-
puting the corresponding test error. We report the average test error and standard deviation across
the 10 folds.

We were thus able to compare the classification performance of deep neural networks using
different unsupervised initialization strategies for their parameters:

3390

AE

VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, using zero-masking noise. (a-c)
show some of the filters learnt by denoising autoencoders trained with various corruption
levels !. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization point in parameter
space. (d) and (e) zoom in on the filters obtained for two of the neurons. As can be seen,
with no noise, many filters remain similarly uninteresting (undistinctive almost uniform
random grey patches). As we increase the noise level, denoising training forces the filters
to differentiate more, and capture more distinctive features. Higher noise levels tend to
induce less local filters, as expected. One can distinguish different kinds of filters, from
local blob detectors, to stroke detectors, and character parts detectors at the higher noise
levels.

was represented by 592 Mel Phon Coefficient (MPC) features. These are a simplified for-
mulation of the Mel-frequency cepstral coefficients (MFCCs) that were shown to yield better
classification performance (Bergstra, 2006).

All problems except tzanetakis had their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (2007). The training set is used
for both pretraining and fine tuning of the models. Classification performance on the validation set is
used for choosing the best configuration of hyperparameters (model selection). The corresponding
classification performance on the test set is then reported together with a 95% confidence interval.

For tzanetakis we used a slightly different procedure, since there was no predefined standard
split and fewer examples. We used 10-fold cross validation, where each fold consisted of 8000
training examples, 1000 test and 1000 validation examples. For each fold, hyperparameters were
chosen based on the performance on the validation set, and the retained model was used for com-
puting the corresponding test error. We report the average test error and standard deviation across
the 10 folds.

We were thus able to compare the classification performance of deep neural networks using
different unsupervised initialization strategies for their parameters:

3390

DAE Increasing noise

mercredi 5 août 2015



Denoising auto-encoders:
manifold interpretation

✤ DAE learns to «project back» corrupted input onto manifold.
✤ Representation h ≈ location on the manifold 

32

Corrupted input 

Corrupted input 

!"#$"%&'()*!+',&-$.-'./")/'&
.')"&)&+$0'"&1#*'.,#$.)+&
2*).#3$+14&&

original  
input 

mercredi 5 août 2015



Stacked Denoising Auto-Encoders (SDAE)

¡No partition function, can 
measure training criterion

¡Very flexible: encoder & 
decoder can use 
any parametrization 
(more layers...)

¡Performs as well or better 
than stacking RBMs for 
usupervised pre-training Infinite MNIST

Advantages over stacking RBMs

x

h0

h1

y = f(x)

mercredi 5 août 2015



✤ DAE encourages reconstruction to be insensitive to input corruption
✤ Alternative: encourage representation to be insensitive

✤ Tied weights i.e. W’=WT  prevent W from collapsing h to 0.

Encouraging representation 
to be insensitive to corruption

34

Reconstruction error stochastic regularization term

JSCAE(θ) =
�

x∈D

L(x, g(h(x)) + λEq(x̃|x)
�
�h(x)− h(x̃)�2

�

mercredi 5 août 2015



✤ DAE encourages reconstruction to be insensitive to input corruption
✤ Alternative: encourage representation to be insensitive

✤ Tied weights i.e. W’=WT  prevent W from collapsing h to 0.

Encouraging representation 
to be insensitive to corruption

34

Reconstruction error stochastic regularization term

JSCAE(θ) =
�

x∈D

L(x, g(h(x)) + λEq(x̃|x)
�
�h(x)− h(x̃)�2

�Stochastic 

regularization

mercredi 5 août 2015



✤ SCAE stochastic regularization term:  

✤ For small additive noise

✤ Taylor series expansion yields

✤ It can be showed that 

From stochastic to analytic
penalty

35

x̃|x = x+ �, � ∼ N (0,σ2I)

h(x+ �) = h(x) +
∂h

∂x
�+ . . .

Eq(x̃|x)
�
�h(x)− h(x̃)�2

�

Eq(x̃|x)
�
�h(x)− h(x̃)�2

�
≈ σ2

����
∂h

∂x
(x)

����
2

F} }
stochastic
(SCAE)

analytic
(CAE)

mercredi 5 août 2015



Contractive Auto-Encoder (CAE)

36

✤ Minimize 

✤ For training examples, encourages both:
➡small reconstruction error
➡representation insensitive to small variations around example

JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction error analytic contractive term

(Rifai, Vincent, Muller, Glorot, Bengio, ICML 2011)

mercredi 5 août 2015



Contractive Auto-Encoder (CAE)

36

✤ Minimize 

✤ For training examples, encourages both:
➡small reconstruction error
➡representation insensitive to small variations around example

JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction error analytic contractive term

(Rifai, Vincent, Muller, Glorot, Bengio, ICML 2011)

Analytic 

regularization

mercredi 5 août 2015



Computational considerations
CAE for a simple encoder layer

37

h = h(x)We defined

Further suppose:   s is an elementwise non-linearity
                                 s’ its first derivative.

J(x) =
∂h

∂x
(x)

Jj = s�(b+ xTWj)Wj where Jj and Wj represent jth row

�J�2F =
dh�

j=1

s�(aj)
2�Wj�2

= s(Wx+ b� �� �
a

)

Let

CAE penalty is:

Compare to L2 weight decay: �W�2F =
dh�

j=1

�Wj�2
}Same complexity: 

O(dh d)

Gradient backprop 
wrt parameters:

O(dh d)

mercredi 5 août 2015



Higher order 
Contractive Auto-Encoder (CAE+H)

✤ CAE penalizes Jacobian norm
✤ We could also penalize higher order derivatives
✤ Computationally too expensive: second derivative is a 3-tensor, ...
✤ Stochastic approach for efficiency: 

Encourage Jacobian at x and at x+ε to be the same.

38

JCAE+H =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h

∂x
(x)

����
2

+γE�∼N (0,σ2)

�����
∂h

∂x
(x)− ∂h

∂x
(x+ �)

����
2
�

(Rifai, Mesnil, Vincent, Muller, Bengio, Dauphin, Glorot;  ECML 2011)

mercredi 5 août 2015



Higher order 
Contractive Auto-Encoder (CAE+H)

✤ CAE penalizes Jacobian norm
✤ We could also penalize higher order derivatives
✤ Computationally too expensive: second derivative is a 3-tensor, ...
✤ Stochastic approach for efficiency: 

Encourage Jacobian at x and at x+ε to be the same.

38

JCAE+H =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h

∂x
(x)

����
2

+γE�∼N (0,σ2)

�����
∂h

∂x
(x)− ∂h

∂x
(x+ �)

����
2
�

(Rifai, Mesnil, Vincent, Muller, Bengio, Dauphin, Glorot;  ECML 2011)

Stochastic 

& analytic 

regularization

mercredi 5 août 2015



39

✬

✫

✩

✪

References
[1] KRIZHEVSKY, A., AND HINTON, G. Learning multiple layers of features from tiny images. Tech. rep., University of Toronto, 2009.

[2] LAROCHELLE, H., ERHAN, D., COURVILLE, A., BERGSTRA, J., AND BENGIO, Y. An empirical evaluation of deep architectures on problems with
many factors of variation. In Proc. ICML 2007 (2007), pp. 473–480.

[3] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86,
11 (1998), 2278–2324.

[4] LEE, H., GROSSE, R., RANGANATH, R., AND NG, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical
representations. In Proc. ICML 2009. Montreal (Qc), Canada, 2009.

[5] RIFAI, S., VINCENT, P., MULLER, X., GLOROT, X., AND BENGIO, Y. Contracting auto-encoders: Explicit invariance during feature extraction. In
Proceedings of the Twenty-eight International Conference on Machine Learning (ICML’11) (June 2011).

[6] VINCENT, P., LAROCHELLE, H., BENGIO, Y., AND MANZAGOL, P.-A. Extracting and composing robust features with denoising autoencoders. In
ICML 2008 (2008).

[7] VINCENT, P., LAROCHELLE, H., LAJOIE, I., BENGIO, Y., AND MANZAGOL, P.-A. Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion. Journal of Machine Learning Research 11, 3371–3408 (Dec. 2010).

✬

✫

✩

✪

Conclusion and Future work
What makes a good representation?

• Partial answer: one that captures and separates the main factors of vari-
ation. In particular in the case of classification with separate manifolds
per class, if the representation is mostly sensitive to the within-class vari-
ations (as illustrated below), this can be taken advantage of to build a
better classifier (NIPS 2011 to appear)

• Tangents learned on CIFAR10 versus k-neighbors PCA-eigen vectors:

• Tangents learned on RCV1 and MNIST:

✬

✫

✩

✪

Features are more discriminant

0 500 1000 1500 20000

0.05

0.1

0.15

0.2

0.25

# units

M
ut

ua
l I

nf
or

m
at

io
n:

 c
la

ss
es

 / 
un

its

 

 

DAE
CAE
CAE+H

• Mutual information between class labels and individual hidden units

• Hidden units were binarized with a threshold of 0.5. CAE+H extracts
more discriminant features than others methods.

Model AE RBM DAE CAE CAE+H

LogReg 2.17±0.29 2.04±0.28 2.05±0.28 1.82±0.26 1.2±0.21

MLP 1.78±0.26 1.3±0.22 1.18±0.21 1.14±0.21 1.04±0.20

• CAE+H is clearly less dependent on the fine-tuning step and outper-
forms all other considered models by the quality of its representation.

✬

✫

✩

✪

Experiments with depth
Comparison with state-of-the-art results from [2]:

Data Set SVMrbf SAE-3 RBM-3 DAE-b-3 CAE-2 CAE+H-1 CAE+H-2

rot 11.11±0.28 10.30±0.27 10.30±0.27 9.53±0.26 9.66±0.26 10.9±0.27 9.2±0.25

bg-img 22.61±0.379 23.00±0.37 16.31±0.32 16.68±0.33 15.50±0.32 15.9±0.32 14.8±0.31

rect 2.15±0.13 2.41±0.13 2.60±0.14 1.99±0.12 1.21±0.10 0.7±0.07 0.45±0.06

• For stacked CAE+H, generalization also improves with depth.
• Beats state-of-the-art 3-layer models on most of the datasets.

✬

✫

✩

✪

Local contraction analysis

0 50 100 150 2000

0.5

1

1.5

2

2.5

# singular values

Ja
co

bi
an

 si
ng

ul
ar

 v
al

ue
s

 

 

AE
DAE
RBM
CAE
CAE+H

• What happens locally: looking at the singular values of the Jacobian.
• Principal singular vectors = directions of least contraction near a sample.
• Sharp and quick drop-off in the spectra with the CAE and CAE+H.

✬

✫

✩

✪

Contraction ratio

0 10 20 30 40

0.4

0.6

0.8

1

Min

Median
Max

Radius

C
on

tra
ct

io
n 

ra
tio

 

 

AE
DAE
RBM
CAE
CAE+H

• Invariance of the hidden representation implies a local contraction of
space near the samples.

• Points that are close in input space are closer in the hidden representa-
tion.

• We can measure this contraction by sampling examples and measuring
their distance in input and feature space.

• This gives an isotropic measure of contraction.
• Contraction with both CAE and CAE+H is not monotone wrt distance,

contrary to other models.
• Contraction using the Hessian approximation leads to a more pro-

nounced contraction that extends further into the input space

✬

✫

✩

✪

Analysis of CAE+H

• Efficiency of the approximation: Eq. 10 depends on the number of
corrupted inputs nc, and the standard deviation of the Gaussian noise σ.

• Difference between exact Hessian norm and our stochastic approxima-
tion as we vary nc (left, fixing σ) and σ (right, fixing nc)

• Penalization of higher order terms Eq. 9 is very effective at constrain-
ing the norm of the true Hessian.

✬

✫

✩

✪

Datasets
Benchmark of image classification problems:

MNIST [3]: 50k/10k/10k, 28× 28 digit images, 10 classes.

CIFAR-10 [1]: 40k/10k/10k, 32× 32 RGB images, 10 classes.

MNIST variations [2] : basic, rot, bg-img, 10k/2k/50k, 28× 28 digit
images, 10 classes.

Rectangles variations [2] : rect(1k/200/50k), rect-img(10k/2k/50k),
28× 28 rectangle images, 2 classes (tall and wide rectangles).

✬

✫

✩

✪

Higher Order Contractive Auto-encoder
• Computing the norm of kth order derivative of f is O(dhd

k
x).

• The gradient of such higher order terms becomes quickly prohibitive so
we use a stochastic approximation of the Hessian Frobenius norm:

�Hf (x)�2 = lim
σ→0

1

σ2
EE�∼N (0,σ2I)

�����Jf (x)− Jf (x + �)
����2

�
(9)

• It corresponds to a Taylor series expansion of Jf around x.
• For non-infinitesimal noise, it contains contributions from higher order

derivatives, but these vanish in the limit σ → 0.
• In practice, we generate a mini-batch of a corrupted samples x̃ = x + �

(all from the same x, but different �)

JCAE+H(θ) = JCAE(θ) +
�

x∈Dn

γEE�∼N (0,σ2I)

�����Jf (x)− Jf (x + �)
����2

�

(10)

✬

✫

✩

✪

First Order Contractive auto-encoder

• Explicitly penalize the Jacobian of the hidden representation h.
• Add a penalty term corresponding to the norm of this Jacobian [5].
• We are trying to force the hidden representation to be invariant to small

changes in the input.

JCAE(θ) =
�

x∈Dn

�
L(x, g(f (x))) + λ�Jf (x)�2F

�
(6)

�Jf (x)�2F =

�

ij

�
∂hj(x)

∂xi

�2

(7)

• In the case of a sigmoid activation function for the hidden layer h and
matrix W:

∂hj
∂xi

(x) = hj (x)
�
1− hj (x)

�
Wji (8)

✬

✫

✩

✪

Auto-encoder variants
Comparison of different auto-encoder variants:

h = f (x) = sf (Wx + bh) (1)

y = g(h) = sg(W
�h + by) (2)

• Basic auto-encoder: AE

JAE(θ) =
�

x∈Dn

L(x, g(f (x))) (3)

• Weight decay auto-encoder: AE+wd

JAE+wd(θ) =




�

x∈Dn

L(x, g(f (x)))



 + λ
�

ij

W 2
ij (4)

• Denoising auto-encoder [6, 7]: DAE

JDAE(θ) =
�

x∈Dn

EEx̃∼q(x̃|x)[L(x, g(f (x̃)))] (5)

L(x,y) is reconstruction error (squared error or cross-entropy)

✬

✫

✩

✪

Motivations
Algorithms for unsupervised learning of representation are popular. Many
algorithms are well understood: PCA, ICA. But much remains to be done
for algorithms used for deep learning: RBM, auto-encoder, sparse coding.

What defines a good representation?

Some empirical observations of deep learning:
• Generalization is improved with depth.
• Deeper levels capture more abstract features [4] that are generally more

invariant to some of the factors of variations of the input.
We propose to add a regularization term which encourages the intermedi-
ate representation to be robust to small changes of the input around the

training examples.
Hypothesis : Combined with a reconstruction error or likelihood criterion,
this regularization encourages variance in the directions that make sense
with respect to the training data, other directions being contracted in the
learned representation.

Salah Rifai, Grégoire Mesnil, Pascal Vincent
Xavier Muller, Yoshua Bengio

Yann Dauphin and Xavier Glorot
University of Montreal

Higher Order Contractive Auto-Encoder

Learned filters

mercredi 5 août 2015



JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction Contraction
pressure to be insensitive 
to all directions

⇐ tradeoff ⇒

CAE must capture manifold directions

(warning: may require tied weights)

mercredi 5 août 2015



JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction Contraction
pressure to be insensitive 
to all directions

⇐ tradeoff ⇒

CAE must capture manifold directions

(warning: may require tied weights)

mercredi 5 août 2015



JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction Contraction
pressure to be insensitive 
to all directions

⇐ tradeoff ⇒

CAE must capture manifold directions

(warning: may require tied weights)

mercredi 5 août 2015



JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction Contraction
pressure to be insensitive 
to all directions

⇐ tradeoff ⇒

CAE must capture manifold directions

(warning: may require tied weights)

mercredi 5 août 2015



JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction Contraction
pressure to be insensitive 
to all directions

⇐ tradeoff ⇒

CAE must capture manifold directions

(warning: may require tied weights)

mercredi 5 août 2015



JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction Contraction
pressure to be insensitive 
to all directions

⇐ tradeoff ⇒

CAE must capture manifold directions

(warning: may require tied weights)

mercredi 5 août 2015



Learned tangent space

✤ CAE captures the structure of the manifold by defining an atlas of 
charts.

41

SVD:

Top singular vectors are tangent 
directions to which h is most sensitive.

✤ Jacobian                             measures 
sensitivity of h locally around x

Jh(x) =
∂h

∂x
(x)

mercredi 5 août 2015



100 200 300 400 500 600 700 8000

0.5

1

1.5

# singular values

Ja
co

bi
an

 si
ng

ul
ar

 v
al

ue
s

CIFAR!10

 

 

AE
CAE

42

SVD of Jh(x) =
∂h

∂x
(x)

mercredi 5 août 2015



(as e.g. in Manifold Parzen)

Learned tangents CIFAR-10

Local PCA

}Input Point Tangents

Contractive Auto-Encoder

Not based on explicit neighbors or pairs of points!

(singular vectors of Jh(x) )

mercredi 5 août 2015



(as e.g. in Manifold Parzen)

Learned tangents CIFAR-10

Local PCA

}Input Point Tangents

Contractive Auto-Encoder

Not based on explicit neighbors or pairs of points!

(singular vectors of Jh(x) )

mercredi 5 août 2015



✤ Simard et al, 1993 exploited tangents
 derived from prior-knowledge of 
image deformations we can use 
our learned tangents instead.

✤ Use them to define tangent distance to use 
in your favorite distance (k-NN) or kernel-based classifier...

✤ Use them with tangent propagation when fine-tuning a deep-net 
classifier to make class prediction insensitive to tangent directions.
(Manifold Tangent Classifier, Rifai et al. NIPS 2011) 0.81% on MNIST 

✤ Moving preferably along tangents 
allows efficient quality sampling 

4433

How to leverage the learned tangents

mercredi 5 août 2015



✤ Simard et al, 1993 exploited tangents
 derived from prior-knowledge of 
image deformations we can use 
our learned tangents instead.

✤ Use them to define tangent distance to use 
in your favorite distance (k-NN) or kernel-based classifier...

✤ Use them with tangent propagation when fine-tuning a deep-net 
classifier to make class prediction insensitive to tangent directions.
(Manifold Tangent Classifier, Rifai et al. NIPS 2011) 0.81% on MNIST 

✤ Moving preferably along tangents 
allows efficient quality sampling 

4433

How to leverage the learned tangents

mercredi 5 août 2015



Analytic v.s. stochastic ?

a)  Analytic approximation of stochastic perturbation

• - Equiv. to tiny perturbations: does not probe far away

• + Potentially more efficient. Ex:
CAE’s Jacobian penalty probes sensitivity in all d directions in O(dh d)
With DAE or SCAE it would require encoding d corrupted inputs: O(dh d2)

b) Stochastic approximation of analytic criterion

• + can render practical otherwise computationally infeasible criteria
Ex: CAE+H

• - less precise, more noisy

45

CAE+H actually leverages both 

mercredi 5 août 2015



46

Score matching
(Hyvärinen 2005)

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�

We want to learn a p.d.f. : pθ(x) =
1

Z(θ)
e−Eθ(x)

with intractable partition function Z

Score matching: alternative inductive principle to max. likelihood 

Find parameters that minimize objective: 

mercredi 5 août 2015



47

Score matching
my geometric interpretation

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�

mercredi 5 août 2015



47

Score matching
my geometric interpretation

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�

�JE(x)�2

mercredi 5 août 2015



47

Score matching
my geometric interpretation

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�

First derivative encouraged to be small: ensures 
training points stay close to local minima of E
 

�JE(x)�2

mercredi 5 août 2015



47

Score matching
my geometric interpretation

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�

First derivative encouraged to be small: ensures 
training points stay close to local minima of E
 

�JE(x)�2 Tr(HE(x))
Laplacian

mercredi 5 août 2015



47

Score matching
my geometric interpretation

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�

First derivative encouraged to be small: ensures 
training points stay close to local minima of E
 

Encourage large positive 
curvature in all directions
 

�JE(x)�2 Tr(HE(x))
Laplacian

mercredi 5 août 2015



47

Score matching
my geometric interpretation

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�

First derivative encouraged to be small: ensures 
training points stay close to local minima of E
 

Encourage large positive 
curvature in all directions
 

E(x)

x

�JE(x)�2 Tr(HE(x))
Laplacian

mercredi 5 août 2015



47

Score matching
my geometric interpretation

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�

First derivative encouraged to be small: ensures 
training points stay close to local minima of E
 

Encourage large positive 
curvature in all directions
 

E(x)

x x1

x2e-E(x)

sharply peaked 
density

�JE(x)�2 Tr(HE(x))
Laplacian

mercredi 5 août 2015



Score matching variants

48

Maths for workshop presentation

December 8, 2012

1 Functions

softplus(x) = log (1 + e
x)

sigmoid(x) =
1

1 + e−x
= softplus�(x)

2 Score matching
Original score matching criterion

JSM (θ) =
�

x∈D

�
1

2

����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2
E

∂x2
i

(x)

�

=
�

x∈D

�
1

2
�JE(x)�2 − Tr (HE(x))

�

Regularized score matching (Kingma & LeCun 2010):

JSMreg,λ(θ) = JSM +
�

x∈D

λ
d�

i=1

∂2
E

∂x2
i

(x)

JSMreg,λ(θ) =
�

x∈D

�
1

2

����
∂E

∂x
(x)

����
2

− (1− λ)
d�

i=1

∂2
E

∂x2
i

(x)

�

Denoising score matching

JDSM,σ =
�

x∈D

�
E�∼N (0,σ2I)

�
1

2

����
∂E

∂x
(x+ �)− 1

σ2
�

����
2
��

1

Maths for workshop presentation

December 8, 2012

1 Functions

softplus(x) = log (1 + e
x)

sigmoid(x) =
1

1 + e−x
= softplus�(x)

2 Score matching
Original score matching criterion

JSM (θ) =
�

x∈D

�
1

2

����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2
E

∂x2
i

(x)

�

=
�

x∈D

�
1

2
�JE(x)�2 − Tr (HE(x))

�

Regularized score matching (Kingma & LeCun 2010):

JSMreg,λ(θ) = JSM +
�

x∈D

λ
d�

i=1

∂2
E

∂x2
i

(x)

JSMreg,λ(θ) =
�

x∈D

�
1

2

����
∂E

∂x
(x)

����
2

− (1− λ)
d�

i=1

∂2
E

∂x2
i

(x)

�

Denoising score matching

JDSM,σ =
�

x∈D

�
E�∼N (0,σ2I)

�
1

2

����
∂E

∂x
(x+ �)− 1

σ2
�

����
2
��

1

Maths for workshop presentation

December 8, 2012

1 Functions

softplus(x) = log (1 + e
x)

sigmoid(x) =
1

1 + e−x
= softplus�(x)

2 Score matching
Original score matching criterion

JSM (θ) =
�

x∈D

�
1

2

����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2
E

∂x2
i

(x)

�

=
�

x∈D

�
1

2
�JE(x)�2 − Tr (HE(x))

�

Regularized score matching (Kingma & LeCun 2010):

JSMreg,λ(θ) = JSM +
�

x∈D

λ
d�

i=1

∂2
E

∂x2
i

(x)

JSMreg,λ(θ) =
�

x∈D

�
1

2

����
∂E

∂x
(x)

����
2

− (1− λ)
d�

i=1

∂2
E

∂x2
i

(x)

�

Denoising score matching

JDSM,σ =
�

x∈D

�
E�∼N (0,σ2I)

�
1

2

����
∂E

∂x
(x+ �)− 1

σ2
�

����
2
��

1

Original score matching (Hyvärinen 2005):

Regularized score matching (Kingma & LeCun 2010):

Denoising score matching (Vincent 2011)

Stochastic

Analytic

Analytic

mercredi 5 août 2015



DAE training has a deeper 
relationsip to RBMs
✤ Same functional form as RBM: 

h(x) is expected hidden given visible
g(h) is expected visible given hidden

✤ With linear reconstruction and squared error, 
DAE amounts to learning the following energy

using the denoising score matching inductive principle.

✤ Above energy closely related to free energy of Gaussian-binary RBM
(identical for σ=1)

49

A Connection Between Score Matching and Denoising Autoencoders 1667

qσ (x̃, x) = qσ (x̃|x)q0(x), we define the following denoising score matching
(DSM) objective:

J DSMqσ
(θ ) = Eqσ (x,x̃)

[
1
2

∥∥∥∥ψ(x̃; θ ) − ∂ log qσ (x̃|x)
∂ x̃

∥∥∥∥
2
]

. (4.3)

The underlying intuition is that following the gradient ψ of the log
density at some corrupted point, x̃ should ideally move us toward the clean
sample x. Note that with the considered gaussian kernel, we have

∂ log qσ (x̃|x)
∂ x̃

= 1
σ 2 (x − x̃). (4.4)

Direction 1
σ 2 (x − x̃) clearly corresponds to moving from x̃ back toward clean

sample x, and we want ψ to match that as best it can.
This objective, inspired by denoising autoencoders, is equivalent to ex-

plicit SM. Formally,

J E SMqσ
% J DSMqσ

. (4.5)

The proof is in the appendix and does not depend on the particular form
of qσ (x̃|x) as long as log qσ (x̃|x) is differentiable with respect to x̃.

4.3 An Energy Function That Yields the Denoising Autoencoder
Objective. Let us now choose for model p the form

p(x; θ ) = 1
Z(θ )

exp(−E(x; θ )),

E(x; W, b, c︸ ︷︷ ︸
θ

) = −
〈c, x〉 − 1

2 ‖x‖2 +
∑dh

j=1 softplus
(〈

W j , x
〉
+ b j

)

σ 2 . (4.6)

We then have

ψi (x; θ ) = ∂ log p(x; θ )
∂xi

= − ∂ E
∂xi

= 1
σ 2



ci − xi +
dh∑

j=1

softplus′ (〈W j , x
〉
+ b j

) ∂
(〈

W j , x
〉
+ b j

)

∂xi





mercredi 5 août 2015



50

Questions ?

mercredi 5 août 2015


