
Kernel Matching Pursuit

Pascal Vincent and Yoshua Bengio
Dept. IRO, Université de Montréal

C.P. 6128, Montreal, Qc, H3C 3J7, Canada
{vincentp,bengioy}@iro.umontreal.ca

Technical Report #1179
Département d’Informatique et Recherche Opérationnelle

Université de Montréal

August 28th, 2000

Abstract

Matching Pursuit algorithms learn a function that is a weighted
sum of basis functions, by sequentially appending functions to an
initially empty basis, to approximate a target function in the least-
squares sense. We show how matching pursuit can be extended to
use non-squared error loss functions, and how it can be used to
build kernel-based solutions to machine-learning problems, while
keeping control of the sparsity of the solution. We also derive MDL
motivated generalization bounds for this type of algorithm, and
compare them to related SVM (Support Vector Machine) bounds.
Finally, links to boosting algorithms and RBF training procedures,
as well as an extensive experimental comparison with SVMs for
classification are given, showing comparable results with typically
sparser models.

1 Introduction

Recently, there has been a renewed interest for kernel-based methods, due in great
part to the success of the Support Vector Machine approach (Boser, Guyon and
Vapnik, 1992; Vapnik, 1995). Kernel-based learning algorithms represent the func-
tion f(x) to be learnt with a linear combination of terms of the form K(x, xi), where
xi is generally the input vector associated to one of the training examples, and K
is a symmetric positive definite kernel function.

Support Vector Machines (SVMs) are kernel-based learning algorithms in which
only a fraction of the training examples are used in the solution (these are called
the Support Vectors), and where the objective of learning is to maximize a margin
around the decision surface (in the case of classification).

Matching Pursuit was originally introduced in the signal-processing community as
an algorithm “that decomposes any signal into a linear expansion of waveforms that
are selected from a redundant dictionary of functions.” (Mallat and Zhang, 1993).

It is a general, greedy, sparse function approximation scheme with the squared
error loss, which iteratively adds new functions (i.e. basis functions) to the linear
expansion. If we take as “dictionary of functions” the functions di(x) of the form
K(x, xi) where xi is the input part of a training example, then the linear expansion
has essentially the same form as a Support Vector Machine. Matching Pursuit
and its variants were developed primarily in the signal-processing and wavelets
community, but there are many interesting links with the research on kernel-based
learning algorithms developed in the machine-learning community. Connections
between a related algorithm (basis pursuit (Chen, 1995)) and SVMs had already
been reported in (Poggio and Girosi, 1998). More recently, (Smola and Schölkopf,
2000) shows connections between Matching Pursuit, Kernel-PCA, Sparse Kernel
Feature analysis, and how this kind of greedy algorithm can be used to compress
the design-matrix in SVMs to allow handling of huge data-sets.

Sparsity of representation is an important issue, both for the computational effi-
ciency of the resulting representation, and for its theoretical and practical influence
on generalization performance (see (Graepel, Herbrich and Shawe-Taylor, 2000) and
(Floyd and Warmuth, 1995)). However the sparsity of the solutions found by the
SVM algorithm is hardly controllable, and often these solutions are not very sparse.

Our research started as a search for a flexible alternative framework that would
allow us to directly control the sparsity (in terms of number of support vectors)
of the solution and remove the requirements of positive definiteness of K (and
the representation of K as a dot product in a high-dimensional “feature space”). It
lead us to uncover connections between greedy Matching Pursuit algorithms, Radial
Basis Function training procedures, and boosting algorithms (section 4). We will
discuss these together with a description of the proposed algorithm and extensions
thereof to use margin loss functions.

We first (section 2) give an overview of the Matching Pursuit family of algorithms
(the basic version and two refinements thereof), as a general framework, taking a
machine-learning viewpoint. We also give a detailed description of our particular
implementation that yields a choice of the next basis function to add to the expan-
sion by minimizing simultaneously across the expansion weights and the choice of
the basis function, in a computationally efficient manner.

We then show (section 3) how this framework can be extended, to allow the use
of other differentiable loss functions than the squared error to which the original
algorithms are limited. This might be more appropriate for some classification
problems (although, in our experiments, we have used the squared loss for many
classification problems, always with successful results). This is followed by a discus-
sion about margin loss functions, underlining their similarity with more traditional
loss functions that are commonly used for neural networks.

In section 4 we explain how the matching pursuit family of algorithms can be used to
build kernel-based solutions to machine-learning problems, and how this relates to
other machine-learning algorithms, namely SVMs, boosting algorithms, and Radial
Basis Function training procedures.

In section 5, we use previous theoretical work on the minimum description length
principle to construct generalization error bounds for the proposed algorithm. Ba-
sically, the generalization error is bounded by the training error plus terms that
grow with the fraction of support vectors. These bounds are compared with bounds
obtained for Support Vector Machines.

Finally, in section 6, we provide an experimental comparison between SVMs and
different variants of Matching Pursuit, performed on artificial data, USPS digits

classification, and UCI machine-learning databases benchmarks. The main experi-
mental result is that Kernel Matching Pursuit algorithms can yield generalization
performance as good as Support Vector Machines, but often using significantly fewer
support vectors.

2 Three flavors of Matching Pursuit

In this section we first describe the basic Matching Pursuit algorithm, as it was
introduced by (Mallat and Zhang, 1993), but from a machine-learning perspective
rather than a signal processing one. We then present two successive refinements of
the basic algorithm.

2.1 Basic Matching Pursuit

We are given l noisy observations {y1, . . . , yl} of a target function f ∈ H at points
{x1, . . . , xl}. We are also given a finite dictionary D = {d1, . . . , dm} of functions
in a Hilbert space H, and we are interested in sparse approximations of f that are
expansions of the form

f̂N =
N∑
n=1

αngn (1)

where (α1, . . . , αN) ∈ IRN and {g1, . . . , gN} ⊂ D are chosen to minimize the squared
norm of the residue ‖RN‖2 = ‖f − f̂N‖2.

We shall call the set {g1, . . . , gN} our basis, and N the number of basis functions in
the expansion.

Notice that, in a typical machine-learning framework, all we have are noisy obser-
vations of the target function f at the data points x1..l. So we sometimes abuse the
notation, using f to actually mean (y1, . . . , yl). Also, throughout this article, for
all practical purposes, during training, any function in H can be associated to an l
dimensional vector that represents the function evaluated at the x1..l data points.
We will make extensive use of this abuse of notation for convenience; in particular
the notation 〈g, h〉 will be used to represent the dot product between the two l
dimensional vectors associated with functions g and h, and ‖h‖ is used to repre-
sent the L2 norm of the vector associated to a function h. Only when using the
learnt approximation on new test data do we use the dictionary functions as actual
functions.

Now, finding the optimal basis {g1, . . . , gN} for a given number N of allowed basis
functions is in general an NP-complete problem. So the matching pursuit algorithm
proceeds in a greedy constructive, fashion:

It starts at stage 0 with f̂0 = 0, and recursively appends functions to an initially
empty basis, at each stage n, trying to reduce the norm of the residue Rn = f̂n− f .

Given f̂n we build
f̂n+1 = f̂n + αn+1gn+1

by searching for gn+1 ∈ D and for αn+1 ∈ IR that minimize the squared norm of the
residue, ‖Rn+1‖2 = ‖Rn − αn+1gn+1‖2, i.e.

(gn+1, αn+1) = arg min
(g∈D,α∈IR)

‖
(

n∑
k=1

αkgk

)
︸ ︷︷ ︸

f̂n

+αg − f‖2 (2)

INPUT:
• data set {(x1, y1), . . . , (xl, yl)}
• dictionary of functions D = {d1, . . . , dm}
• number N of basis functions desired in the expansion (or, alternatively, a

validation set to decide when to stop)
INITIALIZE: residue vector R and dictionary matrix D

R←

 y1

...
yl

 and D←

 d1(x1) · · · dm(x1)
...

. . .
...

d1(xl) · · · dm(xl)

FOR n = 1..N (or until performance on validation set stops improving):

• γn ← arg max
k=1..m

∣∣∣∣ 〈D(., k), R〉
‖D(., k)‖

∣∣∣∣
• αn ←

〈D(., γn), R〉
‖D(., γn)‖2

• R← R− αnD(., γn)
RESULT:

The solution found is defined by f̂N(x) =
N∑
n=1

αndγn(x)

Figure 1: Basic Matching Pursuit Algorithm

The gn+1 that minimizes this expression is the one that maximizes
∣∣∣∣〈gn+1, Rn〉
‖gn+1‖

∣∣∣∣
and the corresponding αn+1 is αn+1 =

〈gn+1, Rn〉
‖gn+1‖2

We have not yet specified how to choose N (i.e. when to stop). In the signal
processing literature the algorithm is usually stopped when the reconstruction error
(‖R‖2) goes below a predefined given threshold. For machine-learning problems,
we shall rather use the error estimated on an independent validation set1 to decide
when to stop. In any case, N can be seen as the primary capacity-control parameter
of the algorithm. In section 5, we show that the generalization error of matching
pursuit algorithms can be directly linked to the ratio N

l (l is the number of training
examples).

The pseudo-code for the corresponding algorithm is given in figure 1 (there are slight
differences in the notation, in particular gn in the above explanations corresponds
to vector D(., γn) in the more detailed pseudo-code).

2.2 Matching Pursuit with backfitting

In the basic version of the algorithm, not only is the set of basis functions g1..n

obtained at every step n suboptimal, but so are also their α1..n coefficients. This can

1or a more computationally intensive cross-validation technique if the data is scarce.

be corrected in a step often called back-fitting or back-projection and the resulting
algorithm is known as Orthogonal Matching Pursuit (OMP) (Pati, Rezaiifar and
Krishnaprasad, 1993; Davis, Mallat and Zhang, 1994):

While still choosing gn+1 as previously (equation 2), we recompute the optimal set
of coefficients α1..n+1 at each step instead of only the last αn+1:

α
(n+1)
1..n+1 = arg min

(α1..n+1∈IRn+1)

∥∥∥∥∥
(
n+1∑
k=1

αkgk

)
− f

∥∥∥∥∥
2

(3)

Note that this is just like a linear regression with parameters α1..n+1. This back-
projection step also has a geometrical interpretation:

Let Bn the sub-space of H spanned by the basis (g1, . . . , gn) and let B⊥n = H−Bn
be its orthogonal complement. Let PBn and PB⊥n denote the projection operators
on these subspaces.

Then, any g ∈ H can be decomposed as g = PBng + PB⊥n g (see figure 2).

Ideally, we want the residue Rn to be as small as possible, so given the basis at step
n, we want f̂n = PBnf and Rn = PB⊥n f . This is what (3) insures.

But whenever we append the next αn+1gn+1 found by (2) to the expansion, we
actually add its two orthogonal components:

• PB⊥n αn+1gn+1 contributes to reducing the norm of the residue.

• PBnαn+1gn+1 which increases the norm of the residue.

However, as the latter part belongs to PBn it can be compensated for by adjusting
the previous coefficients of the expansion: this is what the back-projection does.

Bn

Bn

f

g

P g

R

n

P g

n

nB

Bn

y

Figure 2: Geometrical interpretation of Matching Pursuit and backprojection

(Davis, Mallat and Zhang, 1994) suggest maintaining an additional orthogonal basis
of the Bn space to facilitate this back-projection, which results in a computationally
efficient algorithm2.

2In our implementation, we used a slightly modified version of this approach, described
in the prefitting algorithm below.

2.3 Matching Pursuit with prefitting

With backfitting, the choice of the function to append at each step is made regardless
of the later possibility to update all weights: as we find gn+1 using (2) and only
then optimize (3), we might be picking a dictionary function other than the one
that would give the best fit.

Instead, it is possible to directly optimize

(
gn+1, α

(n+1)
1..n+1

)
= arg min

(g∈D,α1..n+1∈IRn+1)

∥∥∥∥∥
(

n∑
k=1

αkgk

)
+ αn+1g − f

∥∥∥∥∥
2

(4)

We shall call this procedure prefitting to distinguish it from the former backfitting
(as backfitting is done only after the choice of gn+1).

This can be achieved almost as efficiently as backfitting. Our implementation main-
tains a representation of both the target and all dictionary vectors as a decomposi-
tion into their projections on Bn and B⊥n :

As before, let Bn = span(g1, . . . , gn). We maintain at each step a representation of
each dictionary vector d as the sum of two orthogonal components:

• component dBn = PBnd lies in the space Bn spanned by the current basis
and is expressed as a linear combination of current basis vectors (it’s a n
dimensional vector).

• component dB⊥n = PB⊥n d lies in Bn’s orthogonal complement and is ex-
pressed in the original l-dimensional vector space coordinates.

We also maintain the same representation for the target y, namely its decomposition
into the current expansion f̂n ∈ Bn plus the orthogonal residue Rn ∈ B⊥n .

Prefitting is then achieved easily by considering only the components in B⊥n : we
choose gn+1 as the g ∈ D whose gB⊥n is most collinear with Rn ∈ B⊥n . This procedure
requires, at every step, only two passes through the dictionary (searching gn+1, then
updating the representation) where basic matching pursuit requires one.

The detailed pseudo-code for this algorithm is given in figure 3.

2.4 Summary of the three variations of MP

Regardless of the computational tricks that use orthogonality properties for efficient
computation, the three versions of matching pursuit differ only in the way the next
function to append to the basis is chosen and the α coefficients are updated at each
step n:

• Basic version: We find the optimal gn to append to the basis and its
optimal αn, while keeping all other coefficients fixed (equation 2).

• backfitting version: We find the optimal gn while keeping all coefficients
fixed (equation 2). Then we find the optimal set of coefficients α(n)

1..n for the
new basis (equation 3).

• prefitting version: We find at the same time the optimal gn and the
optimal set of coefficients α(n)

1..n (equation 4).

INPUT:
• data set {(x1, y1), . . . , (xl, yl)}
• dictionary of functions D = {d1, . . . , dm}
• number N of basis functions desired in the expansion (or, alternatively, a

validation set to decide when to stop)
INITIALIZE: residue vector R and dictionary matrix component DB⊥ and DB

R←

 y1

...
yl

 and DB⊥ ←

 d1(x1) · · · dm(x1)
...

. . .
...

d1(xl) · · · dm(xl)

DB is initially empty, and gets appended an additional row at each step (thus,
ignore the expressions that involve DB during the first iteration when n = 1)

FOR n = 1..N (or until performance on validation set stops improving):

• γn ← arg max
k=1..m

∣∣∣∣ 〈DB⊥(., k), R〉
‖DB⊥(., k)‖

∣∣∣∣
• αn ←

〈DB⊥(., γn), R〉
‖DB⊥(., γn)‖2

• the B⊥ component of αndγn reduces the residue:
R← R− αnDB⊥(., γn)
• compensate for the B component of αndγn by adjusting previous α:

(α1, . . . , αn−1)← (α1, . . . , αn−1)− αnDB(., γn)′

• Now update the dictionary representation to take into account the new
basis function dγn . . .

FOR i = 1..m AND i 6= γn :

βi ←
〈DB⊥(., γn), DB⊥(., i)〉
‖DB⊥(., γn)‖2

DB⊥(., i)← DB⊥(., i)− βiDB⊥(., γn)
DB(., i)← DB(., i)− βiDB(., γn)

• DB⊥(., γn)← 0
• DB(., γn)← 0
• βγn ← 1

• DB ←
(

DB
β1, . . . , βm

)
RESULT:

The solution found is defined by f̂N(x) =
N∑
n=1

αndγn(x)

Figure 3: Matching Pursuit with prefitting

When making use of orthogonality properties for efficient implementations of the
backfitting and prefitting version (as in our previously described implementation of
the prefitting algorithm), all three algorithms have a computational complexity of
the same order O(N.m.l).

3 Extension to non-squared error loss

3.1 Gradient descent in function space

It has already been noticed that boosting algorithms are performing a form of
gradient descent in function space with respect to particular loss functions (Schapire
et al., 1998; Mason et al., 2000). Following (Friedman, 1999), the technique can be
adapted to extend the Matching Pursuit family of algorithms to optimize arbitrary
differentiable loss functions, instead of doing least-squares fitting.

Given a loss function L(yi, f̂n(xi)) that computes the cost of predicting a value of
f̂n(xi) when the true target was yi, we use an alternative residue R̃n rather than
the usual Rn = y − f̂n when searching for the next dictionary element to append
to the basis at each step.

R̃n is the direction of steepest descent (the gradient) in function space (evaluated
at the data points) with respect to L:

R̃n =

−∂L
(
y1, f̂n(x1)

)
∂f̂n(x1)

, . . . ,−
∂L
(
yl, f̂n(xl)

)
∂f̂n(xl)

 (5)

i.e. gn+1 is chosen such that it is most collinear with this gradient:

gn+1 = arg max
g∈D

∣∣∣∣∣∣
〈
gn+1, R̃n

〉
‖gn+1‖

∣∣∣∣∣∣ (6)

A line-minimization procedure can then be used to find the corresponding coefficient

αn+1 = arg min
α∈IR

l∑
i=1

L
(
f(xi), f̂n(xi) + αgn+1(xi)

)
(7)

This would correspond to basic matching pursuit (notice how the original squared-
error algorithm is recovered when L is the squared error: L(a, b) = (a− b)2).

It is also possible to do backfitting, by re-optimizing all α1..n+1 (instead of only αn+1)
to minimize the target cost (with a conjugate gradient optimizer for instance):

α
(n+1)
1..n+1 = arg min

(α1..n+1∈IRn+1)

l∑
i=1

L

(
f(xi),

n+1∑
k=1

αkgk

)
(8)

But as this can be quite time-consuming (as we cannot use any orthogonality prop-
erty in this general case), it may be desirable to do it every few steps instead of
every single step. The corresponding algorithm is described in more details in the
pseudo-code of figure 4 (as previously there are slight differences in the notation, in
particular gk in the above explanation corresponds to vector D(., γk) in the more
detailed pseudo-code).

Finally, let’s mention that it should in theory also be possible to do prefitting with
an arbitrary loss functions, but finding the optimal {gk+1 ∈ D, α1..k+1 ∈ IRk+1} in
the general case (when we cannot use any orthogonal decomposition) would involve
solving equation 8 in turn for each dictionary function in order to choose the next
one to append to the basis, which is computationally prohibitive.

3.2 Margin loss functions versus traditional loss functions for
classification

Now that we have seen how the matching pursuit family of algorithms can be
extended to use arbitrary loss functions, let us discuss the merits of various loss
functions.

In particular the relationship between loss functions and the notion of margin is of
primary interest here, as we wanted to build an alternative to SVMs3.

While the original notion of margin in classification problems comes from the ge-
ometrically inspired hard-margin of linear SVMs (the smallest Euclidean distance
between the decision surface and the training points), a slightly different perspec-
tive has emerged in the boosting community along with the notion of margin loss
function. The margin quantity m = yf̂(x) of an individual data point (x, y), with
y ∈ {−1,+1} can be understood as a confidence measure of its classification by func-
tion f̂, while the class decided for is given by sign(f̂(x)). A margin loss function is
simply a function of this margin quantity m that is being optimized.

It is possible to formulate SVM training such as to show the SVM margin loss
function:

Let ϕ be the mapping into the “feature-space” of SVMs, such that

< ϕ(xi), ϕ(xj) >= K(xi, xj)

The SVM solution can be expressed in this feature space as

f̂(x) =< w,ϕ(x) > +b where w =
∑
xi∈SV

αiyiϕ(xi)

Where SV is the set of support vectors and the solution is the one that minimizes
l∑
i=1

[1− yif̂(xi)]+ +
1
C
‖w‖2 (9)

Where C is the “box-constraint” parameter of SVMs, and the notation [x]+ is to
be understood as the function that gives [x]+ = x when x > 0 and 0 otherwise.

Let m = yf̂(x) the individual margin at point x. (9) is clearly the sum of a margin
loss function and a regularization term.

It is interesting to compare this margin loss function to those used in boosting
algorithms and to the more traditional cost functions. The loss functions that
boosting algorithms optimize are typically expressed as functions of m. Thus Ad-
aBoost (Schapire et al., 1998) uses an exponential (e−m) margin loss function,
LogitBoost (Friedman, Hastie and Tibshirani, 1998) uses the negative binomial log-
likelihood, log2(1 + e−2m), whose shape is similar to a smoothed version of the

3whose good generalization abilities are believed to be due to margin-maximization.

INPUT:
• data set {(x1, y1), . . . , (xl, yl)}
• dictionary of functions D = {d1, . . . , dm}
• number N of basis functions desired in the expansion (or, alternatively, a

validation set to decide when to stop)
• how often to do a full backfitting: every p update steps
• a loss function L

INITIALIZE: current approximation f̂ and dictionary matrix D

f̂ =

 f̂0

...
f̂l

← 0 and D←

 d1(x1) · · · dm(x1)
...

. . .
...

d1(xl) · · · dm(xl)

FOR n = 1..N (or until performance on validation set stops improving):

• R̃←

−∂L(y1,f̂1)

∂f̂1
...

−∂L(yl,f̂n)

∂f̂l

• γn ← arg max

k=1..m

∣∣∣∣∣∣
〈
D(., k), R̃

〉
‖D(., k)‖

∣∣∣∣∣∣
• If n is not a multiple of p do a simple line minimization:

αn ← arg min
α∈IR

l∑
i=1

L(yi, f̂i + αD(i, γn))

and update f̂ : f̂ ← f̂ + αnD(., γn)
• If n is a multiple of p do a full backfitting (for ex. with gradient descent):

α1..n ← arg min
α1..n∈IRn

l∑
i=1

L(yi,
n∑
k=1

αkD(i, γk))

and recompute f̂ ←
n∑
k=1

αkD(., γk)

RESULT:

The solution found is defined by f̂N(x) =
N∑
n=1

αndγn(x)

Figure 4: Backfitting Matching Pursuit Algorithm with non-squared loss

soft-margin SVM loss function [1 − m]+, and Doom II (Mason et al., 2000) ap-
proximates a theoretically motivated margin loss with 1 − tanh(m). As can be
seen in Figure 5 (left), all these functions encourage large positive margins, and
differ mainly in how they penalize large negative ones. In particular 1− tanh(x) is
expected to be more robust, as it won’t penalize outliers to excess.

It is enlightening to compare these with the more traditional loss functions that
have been used for neural networks in classification tasks (i.e. y ∈ {−1,+1}), when
we express them as functions of m.

• Squared loss: (f̂(x)− y)2 = (1−m)2

• Squared loss after tanh with modified target:
(tanh(f̂(x)) − 0.65y)2 = (0.65− tanh(m))2

Both are illustrated on figure 5 (right). Notice how the squared loss after tanh
appears similar to the margin loss function used in Doom II, except that it slightly
increases for large positive margins, which is why it behaves well and does not
saturate even with unconstrained weights (boosting and SVM algorithms impose
constraints on the weights, here denoted α’s).

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3 4

lo
ss

(m
)

margin m = y.f(x)

exp(-m) [AdaBoost]
log(1+exp(-m)) [LogitBoost]

1-tanh(m) [Doom II]
 (1-m)+ [SVM]

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3 4

lo
ss

(m
)

margin m = y.f(x)

squared error as a margin cost function
squared error after tanh with 0.65 target

Figure 5: Boosting and SVM margin loss functions (left) vs. traditional loss func-
tions (right) viewed as functions of the margin. Interestingly the last-born of the
margin motivated loss functions (used in Doom II) is similar to the traditional
squared error after tanh.

4 Kernel Matching Pursuit and links with other paradigms

4.1 Matching pursuit with a kernel-based dictionary

Kernel Matching Pursuit (KMP) is simply the idea of applying the Matching Pur-
suit family of algorithms to problems in machine-learning, using a kernel-based
dictionary:

Given a kernel function K : IRd × IRd → IR, we use as our dictionary the kernel
centered on the training points: D = {di = K(·, xi)|i = 1..l}. Optionally, the
constant function can also be included in the dictionary, which accounts for a bias
term b: the functional form of approximation f̂N then becomes

f̂N (x) = b+
N∑
n=1

αnK(x, xγn) (10)

where the γ1..N are the indexes of the “support points”. During training we only
consider the values of the dictionary functions at the training points, so that it
amounts to doing Matching in a vector-space of dimension l.

When using a squared error loss4, the complexity of all three variations of KMP
(basic, backfitting and prefitting) is O(N.m.l) = O(N.l2) if we use all the training
data as candidate support points. But it is also possible to use a random subset of
the training points as support candidates (which yields a m < l).

We would also like to emphasize the fact that the use of a dictionary gives a lot
of additional flexibility to this framework, as it is possible to include any kind of
function into it, in particular:

• There is no restriction on the shape of the kernel (no positive-definiteness
constraint, could be assymetrical, etc. . .).

• The dictionary could include more than a single fixed kernel shape: it
could mix different kernel types to choose from at each point, allowing for
instance the algorithm to choose among several widths of a Gaussian for
each support point.

• Similarly, the dictionary could easily be used to constrain the algorithm to
use a kernel shape specific to each class, based on prior-knowledge.

• The dictionary can incorporate non-kernel based functions (we already men-
tioned the constant function to recover the bias term b, but this could also
be used to incorporate prior knowledge).

• For huge data-sets, a reduced subset can be used as the dictionary to speed
up the training.

However in this study, we restrict ourselves to using a single fixed kernel, so that
the resulting functional form is the same as the one obtained with SVMs.

4.2 Similarities and differences with SVMs

The functional form (10) is very similar to the one obtained with the Support Vector
Machine (SVM) algorithm (Boser, Guyon and Vapnik, 1992), the main difference
being that SVMs impose further constraints on α1..N .

However the quantity optimized by the SVM algorithm is quite different from the
KMP greedy optimization, especially when using a squared error loss. Consequently
the support vectors and coefficients found by the two types of algorithms are usually
different (see our experimental results in section 6).

Another important difference, and one that was a motivation for this research, is
that in KMP, capacity control is achieved by directly controlling the sparsity of
the solution, i.e. the number N of support vectors, whereas the capacity of SVMs
is controlled through the box-constraint parameter C, which has an indirect and
hardly controllable influence on sparsity. See (Graepel, Herbrich and Shawe-Taylor,
2000) for a discussion on the merits of sparsity and margin, and ways to combine
them.

4The algorithms generalized to arbitrary loss functions can be much more computa-
tionally intensive, as they imply a non-linear optimization step.

4.3 Link with Radial Basis Functions

Squared-error KMP with a Gaussian kernel and prefitting appears to be identical
to a particular Radial Basis Functions training algorithm called Orthogonal Least
Squares RBF (Chen, Cowan and Grant, 1991) (OLS-RBF).

In (Schölkopf et al., 1997) SVMs were compared to “classical RBFs”, where the
RBF centers were chosen by unsupervised k-means clustering, and SVMs gave bet-
ter results. To our knowledge, however, there has been no experimental comparison
between OLS-RBF and SVMs, although their resulting functional forms are very
much alike. Such an empirical comparison is one of the contributions of this paper.
Basically our results (section 6) show OLS-RBF (i.e. squared-error KMP) to per-
form as well as Gaussian SVMs, while allowing a tighter control of the number of
support vectors used in the solution.

4.4 Boosting with kernels

KMP in its basic form generalized to using non-squared error is also very similar to
boosting algorithms (Freund and Schapire, 1996; Friedman, Hastie and Tibshirani,
1998), in which the chosen class of weak-learners would be the set of kernels centered
on the training points. These algorithms differ mainly in the loss function they
optimize, which we have already discussed in section 3.2.

5 Bounds on generalization error

The results of Vapnik on the Minimum Description Length (Vapnik, 1995; Vapnik,
1998) provide a possible framework for establishing bounds on expected generaliza-
tion error for KMP algorithms. One can also simply use the results on the general-
ization error obtained when the number of possible functions is a finite number M ,
(and the capacity is therefore bounded by logM). We will show that, essentially,
the bound depends linearly on the number of support vectors and logarithmically on
the total number of training examples.

Vapnik’s result (theorem 4.3, (Vapnik, 1995)) states that the expected generalization
error rate, Egen, for binary classification, when training with l examples, is less
than 2C log(2) − 2 log(η)/l with probability greater than 1 − η, where C is the
compression rate: the number of bits to transfer the compressed conditional value of
the training target classes (given the training input points) divided by the number
of bits required to transmit them without compression, i.e., l. When there are
training errors, we can incorporate them into the “compressed message” by sending
the identity (and the labels, in the multiclass case) of the wrongly labeled examples.

The compression is due to the representation learned by the training algorithm. A
“good” representation is one that requires few bits to represent the learned function,
while keeping the training error low. This assumes that the number of possible
functions is finite (which we will obtain by quantizing the α coefficients). To obtain
compression, we take advantage of the sparse representation of the learned function
in terms of only N “support points”.

To obtain a rough bound we will encode the target outputs using three sets of bits,
corresponding to three terms for C:

1. The first one is due to the classification errors: we have to send the identity
and the correct class of the training errors. If the number of errors is
e = lEemp, that will cost log2

(
l
e

)
bits. In the case where the number

of classes is Nc > 2, there is an increase in the number of bits by a factor
log2(Nc−1), but there is a similar increase in the numerator of C (to encode
the correct classes of all the training examples).

2. The second term is required to encode the identity of the support points:
to choose N among l examples requires log2

(
l
N

)
bits.

3. The third term is to encode the quantized weights αk associated with each
support point, which will cost Np bits, where p is the number of bits of
precision to quantize the weights, and it can be chosen as the smallest
number that allows to obtain with the discretized α’s the same classes on
the training set as the undiscretized α’s.

To summarize, for KMP, we have, for e training errors and N support vectors out
of l examples, with probability greater than 1− η (over the choice of training set),

Egen < 2
log
(
l
e

)
+ log

(
l
N

)
+ (Np log 2)

l
− 2 log(η)/l (11)

Note that
(
l
n

)
is poorly bounded by n log2 l, in which the e/l and N/l ratios become

apparent, but where a too large log l factor appears.

Slightly tighter bounds can be obtained using the result (Vapnik, 1995; Vapnik,
1998) for learning by choosing one function among M <∞ functions: with proba-
bility at least 1− η,

Egen ≤ Eemp +
logM − log η

l

(
1 +

√
1 +

2Eempl
logM − log η

)
. (12)

Using the same quantization of the α’s (with precision p), one obtains with logM =
log(

(
l
N

)
2Np),

Egen < Eemp +
log
(
l
N

)
+Np log 2− log η

l

(
1 +

√
1 +

2Eempl
log
(
l
N

)
+Np log 2− log η

)
.

(13)

In contrast, one can obtain an expectation bound (Vapnik, 1995) for SVMs that
is E[Egen] < E[Eemp] + E[Nl], where E is the expectation over training sets (note
that for SVMs, N is random because it depends on the training set). Note that the
probability bounds can be readily converted into expectation bounds. For example,
in the case of the MDL bound (eq. 11), one obtains that in expectation,

Egen < 2
E[log

(
l
e

)
] + log

(
l
N

)
+ (Np log 2) + 1

l
.

To see the role of the ratio N
l in the above, one can note that

log(lN)
l < N log l

l (but
keep in mind that this is a rather poor bound).

Note that several related compression bounds have been studied, e.g. (Littlestone
and Warmuth, 1986; Floyd and Warmuth, 1995; Graepel, Herbrich and Shawe-
Taylor, 2000). The results of (Graepel, Herbrich and Shawe-Taylor, 2000) are meant
for maximum margin classifiers and draw interesting connections between sparsity
and maximum margin. The results in (Littlestone and Warmuth, 1986; Floyd and
Warmuth, 1995) are very general (and very much linked to the above discussion),
but they apply to classifiers which can be specified using only a subset of the training
examples. However, note that the case of Matching Pursuit, the classifier requires
not only the support vectors but also the weights αi, which in general depend on
the whole training set.

6 Experimental results on binary classification

Throughout this section:

• any mention of KMP without further specification of the loss function
means least-squares KMP (also sometimes written KMP-mse)
• KMP-tanh refers to KMP using squared error after a hyperbolic tangent

with modified targets (which behaves more like a typical unlessmargin loss
function as we discussed earlier in section 3.2).
• Unless otherwise specified, we used the prefitting matching pursuit algo-

rithm of figure 3 to train least-squares KMP.
• To train KMP-tanh we always used the backfitting matching pursuit with

non-squared loss algorithm of figure 4 with a conjugate gradient optimizer
to optimize the α1..n

5.

6.1 2D experiments

Figure 6 shows a simple 2D binary classification problem with the decision surface
found by the three versions of squared-error KMP (basic, backfitting and prefitting)
and a hard-margin SVM, when using the same Gaussian kernel.

We fixed the number N of support points for the prefitting and backfitting versions
to be the same as the number of support points found by the SVM algorithm. The
aim of this experiment was to illustrate the following points:

• Basic KMP, after 100 iterations, during which it mostly cycled back to
previously chosen support points to improve their weights, is still unable
separate the data points. This shows that the backfitting and prefitting
versions are a useful improvement, while the basic algorithm appears to be
a bad choice if we want sparse solutions.
• The backfitting and prefitting KMP algorithms are able to find a reason-

able solution (the solution found by prefitting looks slightly better in terms
of margin), but choose different support vectors than SVM, that are not
necessarily close to the decision surface (as they are in SVMs). It should
be noted that the Relevance Vector Machine (Tipping, 2000) similarly pro-
duces6 solutions in which the relevance vectors do not lie close to the border.

Figure 7, where we used a simple dot-product kernel (i.e. linear decision surfaces),
illustrates a problem that can arise when using least-squares fit: since the squared
error penalizes large positive margins, the decision surface is drawn towards the
cluster on the lower right, at the expense of a few misclassified points. As expected,
the use of a tanh loss function appears to correct this problem.

5We tried several frequencies at which to do full-backfitting, but it did not seem to
have a real impact, as long as it was done often enough.

6however in a much more computationally intensive fashion.

Figure 6: From left to right: 100 iterations of basic KMP, 7 iterations of KMP
backfitting, 7 iterations of KMP prefitting, and SVM. Classes are + and ×. Support
vectors are circled. Prefitting KMP and SVM appear to find equally reasonable
solutions, though using different support vectors. Only SVM chooses its support
vectors close to the decision surface. backfitting chooses yet another support set,
and its decision surface appears to have a slightly worse margin. As for basic KMP,
after 100 iterations during which it mostly cycled back to previously chosen support
points to improve their weights, it appears to use more support vectors than the
others while still being unable to separate the data points, and is thus a bad choice
if we want sparse solutions.

Figure 7: Problem with least squares fit that leads KMP-mse (center) to misclassify
points, but does not affect SVMs (left), and is successfully treated by KMP-tanh
(right).

6.2 US Postal Service Database

The main purpose of this experiment was to complement the results of (Schölkopf
et al., 1997) with those obtained using KMP-mse, which, as already mentioned, is
equivalent to orthogonal least squares RBF (Chen, Cowan and Grant, 1991).

In (Schölkopf et al., 1997) the RBF centers were chosen by unsupervised k-means
clustering, in what they referred to as “Classical RBF”, and a gradient descent
optimization procedure was used to train the kernel weights.

We repeated the experiment using KMP-mse (equivalent to OLS-RBF) to find the
support centers, with the same Gaussian Kernel and the same training set (7300
patterns) and independent test set (2007 patterns) of preprocessed handwritten
digits. Table 1 gives the number of errors obtained by the various algorithms on
the tasks consisting of discriminating each digit versus all the others (see (Schölkopf
et al., 1997) for more details). No validation data was used to choose the number
of bases (support vectors) for the KMP. Instead, we trained with N equal to the
number of support vectors obtained with the SVM, and also with N equal to half
that number, to see whether a sparser KMP model would still yield good results.
As can be seen, results obtained with KMP are comparable to those obtained for
SVMs, contrarily to the results obtained with k-means RBFs, and there is only a

slight loss of performance when using as few as half the number of support vectors.

Table 1: USPS Results: number of errors on the test set (2007 patterns), when
using the same number of support vectors as found by SVM (except last row which
uses half #sv). Squared error KMP (same as OLS-RBF) appears to perform as well
as SVM.

Digit class 0 1 2 3 4 5 6 7 8 9
#sv 274 104 377 361 334 388 236 235 342 263
SVM 16 8 25 19 29 23 14 12 25 16
k-means RBF 20 16 43 38 46 31 15 18 37 26
KMP (same #sv) 15 15 26 17 30 23 14 14 25 13
KMP (half #sv) 16 15 29 27 29 24 17 16 28 18

6.3 Benchmark datasets

We did some further experiments, on 5 well-known datasets from the the UCI
machine-learning databases, using Gaussian kernels of the form

K(x1, x2) = e−
‖x1−x2‖2

σ2 .

A first series of experiments used the machinery of the Delve (Rasmussen et al.,
1996) system to assess performance on the Mushrooms dataset. Hyper-parameters
(the σ of the kernel, the box-constraint parameter C for soft-margin SVM and the
number of support points for KMP) were chosen automatically for each run using
10-fold cross-validation.

The results for varying sizes of the training set are summarized in table 2. The p-
values reported in the table are those computed automatically by the Delve system7.

Table 2: Results obtained on the mushrooms data set with the Delve system. KMP
requires less support vectors, while none of the differences in error rates are signifi-
cant.

size of KMP SVM p-value KMP SVM
train error error (t-test) #s.v. #s.v.

64 6.28% 4.54% 0.24 17 63
128 2.51% 2.61% 0.82 28 105
256 1.09% 1.14% 0.81 41 244
512 0.20% 0.30% 0.35 70 443
1024 0.05% 0.07% 0.39 127 483

7For each size, the delve system did its estimations based on 8 disjoint training sets of
the given size and 8 disjoint test sets of size 503, except for 1024, in which case it used 4
disjoint training sets of size 1024 and 4 test sets of size 1007.

For Wisconsin Breast Cancer, Sonar, Pima Indians Diabetes and Ionosphere, we
used a slightly different procedure.

The σ of the Kernel was first fixed to a reasonable value for the given data set8.

Then we used the following procedure: the dataset was randomly split into three
equal-sized subsets for training, validation and testing. SVM, KMP-mse and KMP-
tanh were then trained on the training set while the validation set was used to choose
the optimal box-constraint parameterC for SVMs9, and to do early stopping (decide
on the number N of s.v.) for KMP. And finally the trained models were tested on
the independent test set.

This procedure was repeated 50 times over 50 different random splits of the dataset
into train/validation/test to estimate confidence measures (p-values were computed
using the resampled t-test (Nadeau and Bengio, 2000)). Table 3 reports the average
error rate measured on the test sets, and the rounded average number of support
vectors found by each algorithm.

As can be seen from these experiments, the error rates obtained are comparable,
but the KMP versions appear to require fewer support vectors than SVMs. On
these datasets, however (contrary to what we saw previously on 2D artificial data),
KMP-tanh did not seem to give any significant improvement over KMP-mse. Even
in other experiments where we added label noise, KMP-tanh didn’t seem to improve
generalization performance10.

Table 3: Results on 4 UCI-MLDB datasets. Again, error rates are not significantly
different (values in parentheses are the p-values for the difference with SVMs), but
KMPs require fewer support vectors.

Dataset SVM KMP-mse KMP-tanh SVM KMP-mse KMP-tanh
error error error #s.v. #s.v. #s.v.

Wisc. Cancer 3.41% 3.40% (0.49) 3.49% (0.45) 42 7 21
Sonar 20.6% 21.0% (0.45) 26.6% (0.16) 46 39 14

Pima Indians 24.1% 23.9% (0.44) 24.0% (0.49) 146 7 27
Ionosphere 6.51% 6.87% (0.41) 6.85% (0.40) 68 50 41

8These were chosen by trial and error using SVMs with a validation set and several
values of C, and keeping what seemed the best σ, thus this choice was made at the
advantage of SVMs (although they did not seem too sensitive to it) rather than KMP.
The values used were: 4.0 for Wisconsin Breast Cancer, 6.0 for Pima Indians Diabetes,
2.0 for Ionosphere and Sonar.

9Values of 0.02, 0.05, 0.07, 0.1, 0.5, 1, 2, 3, 5, 10, 20, 100 were tried for C.
10We do not give a detailed account of these experiments here, as their primary intent

was to show that the tanh error function could have an advantage over squared error in
presence of label noise, but the results were inconclusive.

7 Conclusion

We have shown how Matching Pursuit provides a flexible framework to build and
study alternative kernel-based methods, how it can be extended to use arbitrary
differentiable loss functions and how it relates to SVMs, RBF training procedures,
and boosting methods.

We have also provided experimental evidence that such greedy constructive algo-
rithms can perform as well as SVMs, while allowing a better control of the sparsity
of the solution, and thus often lead to solutions with far fewer support vectors.

It should also be mentioned that the use of a dictionary gives additional flexibility,
as it can be used, for instance, to mix several kernel shapes to choose from, similar
to what has been done in (Weston et al., 1999), or to include other non-kernel
functions based on prior knowledge, which opens the way to further research.

References

Boser, B., Guyon, I., and Vapnik, V. (1992). An algorithm for optimal margin clas-
sifiers. In Fifth Annual Workshop on Computational Learning Theory, pages
144–152, Pittsburgh.

Chen, S. (1995). Basis Pursuit. PhD thesis, Department of Statistics, Stanford
University.

Chen, S., Cowan, F., and Grant, P. (1991). Orthogonal least squares learning
algorithm for radial basis function networks. IEEE Transactions on Neural
Networks, 2(2):302–309.

Davis, G., Mallat, S., and Zhang, Z. (1994). Adaptive time-frequency decomposi-
tions. Optical Engineering, 33(7):2183–2191.

Floyd, S. and Warmuth, M. (1995). Sample compression, learnability, and the
vapnik-chervonenkis dimension. Machine Learning, 21(3):269–304.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algo-
rithm. In Machine Learning: Proceedings of Thirteenth International Confer-
ence, pages 148–156.

Friedman, J. (1999). Greedy function approximation: a gradient boosting machine.
IMS 1999 Reitz Lecture, February 24, 1999, Dept. of Statistics, Stanford Uni-
versity.

Friedman, J., Hastie, T., and Tibshirani, R. (1998). Additive logistic regression:
a statistical view of boosting. Technical report, August 1998, Department of
Statistics, Stanford University.

Graepel, T., Herbrich, R., and Shawe-Taylor, J. (2000). Generalization error bounds
for sparse linear classifiers. In Thirteenth Annual Conference on Computational
Learning Theory, 2000, page in press. Morgan Kaufmann.

Littlestone, N. and Warmuth, M. (1986). Relating data compression and learnabil-
ity. Unpublished manuscript. University of California Santa Cruz. An extended
version can be found in (Floyd and Warmuth 95).

Mallat, S. and Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries.
IEEE Trans. Signal Proc., 41(12):3397–3415.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. (2000). Boosting algorithms
as gradient descent. In Solla, S. A., Leen, T. K., and Mller, K.-R., editors,
Advances in Neural Information Processing Systems, volume 12, pages 512–
518. MIT Press.

Nadeau, C. and Bengio, Y. (2000). Inference for the generalization error. In Solla,
S. A., Leen, T. K., and Mller, K.-R., editors, Advances in Neural Information
Processing Systems, volume 12, pages 307–313. MIT Press.

Pati, Y., Rezaiifar, R., and Krishnaprasad, P. (1993). Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition.
In Proceedings of the 27 th Annual Asilomar Conference on Signals, Systems,
and Computers, pages 40–44.

Poggio, T. and Girosi, F. (1998). A sparse representation for function approxima-
tion. Neural Computation, 10(6):1445–1454.

Rasmussen, C., Neal, R., Hinton, G., van Camp, D., Ghahramani, Z., Kustra, R.,
and Tibshirani, R. (1996). The DELVE manual. DELVE can be found at
http://www.cs.toronto.edu/̃ delve.

Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1998). Boosting the
margin: A new explanation for the effectiveness of voting methods. The Annals
of Statistics, 26(5):1651–1686.

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., and Vapnik,
V. (1997). Comparing support vector machines with gaussian kernels to radial
basis function classifiers. IEEE Transactions on Signal Processing, 45:2758–
2765.

Smola, A. and Schölkopf, B. (2000). Sparse greedy matrix approximation for ma-
chine learning. In Langley, P., editor, International Conference on Machine
Learning, pages 911–918, San Francisco. Morgan Kaufmann.

Tipping, M. (2000). The relevance vector machine. In Solla, S. A., Leen, T. K.,
and Mller, K.-R., editors, Advances in Neural Information Processing Systems,
volume 12, pages 652–658. MIT Press.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New York.
Vapnik, V. (1998). Statistical Learning Theory. Wiley, Lecture Notes in Economics

and Mathematical Systems, volume 454.
Weston, J., Gammerman, A., Stitson, M., Vapnik, V., Vovk, V., and Watkins, C.

(1999). Density estimation using support vector machines. In Schölkopf, B.,
Burges, C. J. C., and Smola, A. J., editors, Advances in Kernel Methods —
Support Vector Learning, pages 293–306, Cambridge, MA. MIT Press.

