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Abstract

We combine three important ideas present in previous work for building classi-
fiers: the semi-supervised hypothesis (the input distribution contains information
about the classifier), the unsupervised manifold hypothesis (data density concen-
trates near low-dimensional manifolds), and the manifold hypothesis for classifi-
cation (different classes correspond to disjoint manifolds separated by low den-
sity). We exploit a novel algorithm for capturing manifold structure (high-order
contractive auto-encoders) and we show how it builds a topological atlas of charts,
each chart being characterized by the principal singular vectors of the Jacobian of
a representation mapping. This representation learning algorithm can be stacked
to yield a deep architecture, and we combine it with a domain knowledge-free
version of the TangentProp algorithm to encourage the classifier to be insensitive
to local directions changes along the manifold. Record-breaking classification
results are obtained.

1 Introduction

Much of machine learning research can be viewed as an exploration of ways to compensate for
scarce prior knowledge about how to solve a specific task by extracting (usually implicit) knowledge
from vast amounts of data. This is especially true of the search for generic learning algorithms that
are to perform well on a wide range of domains for which they were not specifically tailored. While
such an outlook precludes using much domain-specific knowledge in designing the algorithms, it
can however be beneficial to leverage what might be called “generic” prior hypotheses, that appear
likely to hold for a wide range of problems. The approach studied in the present work exploits three
such prior hypotheses:

1. The semi-supervised learning hypothesis, according to which learning aspects of the in-
put distribution p(x) can improve models of the conditional distribution of the supervised
target p(y|x), i.e., p(x) and p(y|x) share something (Lasserre et al., 2006). This hypoth-
esis underlies not only the strict semi-supervised setting where one has many more unla-
beled examples at his disposal than labeled ones, but also the successful unsupervised pre-
training approach for learning deep architectures, which has been shown to significantly
improve supervised performance even without using additional unlabeled examples (Hin-
ton et al., 2006; Bengio, 2009; Erhan et al., 2010).

2. The (unsupervised) manifold hypothesis, according to which real world data presented in
high dimensional spaces is likely to concentrate in the vicinity of non-linear sub-manifolds
of much lower dimensionality (Cayton, 2005; Narayanan and Mitter, 2010).

3. The manifold hypothesis for classification, according to which points of different classes
are likely to concentrate along different sub-manifolds, separated by low density regions of
the input space.
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The recently proposed Contractive Auto-Encoder (CAE) algorithm (Rifai et al., 2011a), based on
the idea of encouraging the learned representation to be robust to small variations of the input,
was shown to be very effective for unsupervised feature learning. Its successful application in the
pre-training of deep neural networks is yet another illustration of what can be gained by adopting
hypothesis 1. In addition, Rifai et al. (2011a) propose, and show empirical evidence for, the hypoth-
esis that the trade-off between reconstruction error and the pressure to be insensitive to variations
in input space has an interesting consequence: It yields a mostly contractive mapping that, locally
around each training point, remains substantially sensitive only to a few input directions (with differ-
ent directions of sensitivity for different training points). This is taken as evidence that the algorithm
indirectly exploits hypothesis 2 and models a lower-dimensional manifold. Most of the directions
to which the representation is substantially sensitive are thought to be directions tangent to the data-
supporting manifold (those that locally define its tangent space).

The present work follows through on this interpretation, and investigates whether it is possible to
use this information, that is presumably captured about manifold structure, to further improve clas-
sification performance by leveraging hypothesis 3. To that end, we extract a set of basis vectors
for the local tangent space at each training point from the Contractive Auto-Encoder’s learned pa-
rameters. This is obtained with a Singular Value Decomposition (SVD) of the Jacobian of the
encoder that maps each input to its learned representation. Based on hypothesis 3, we then adopt
the “generic prior” that class labels are likely to be insensitive to most directions within these local
tangent spaces (ex: small translations, rotations or scalings usually do not change an image’s class).
Supervised classification algorithms that have been devised to efficiently exploit tangent directions
given as domain-specific prior-knowledge (Simard et al., 1992, 1993), can readily be used instead
with our learned tangent spaces. In particular, we will show record-breaking improvements by using
TangentProp for fine tuning CAE-pre-trained deep neural networks. To the best of our knowledge
this is the first time that the implicit relationship between an unsupervised learned mapping and
the tangent space of a manifold is rendered explicit and successfully exploited for the training of a
classifier. This showcases a unified approach that simultaneously leverages all three “generic” prior
hypotheses considered. Our experiments (see Section 6) show that this approach sets new records
for domain-knowledge-free performance on several real-world classification problems. Remarkably,
in some cases it even outperformed methods that use weak or strong domain-specific prior knowl-
edge (e.g. convolutional networks and tangent distance based on a-priori known transformations).
Naturally, this approach is even more likely to be beneficial for datasets where no prior knowledge
is readily available.

2 Contractive auto-encoders (CAE)

We consider the problem of the unsupervised learning of a non-linear feature extractor from a dataset
D = {x1, . . . , xn}. Examples xi ∈ IRd are i.i.d. samples from an unknown distribution p(x).

2.1 Traditional auto-encoders

The auto-encoder framework is one of the oldest and simplest techniques for the unsupervised learn-
ing of non-linear feature extractors. It learns an encoder function h, that maps an input x ∈ IRd to a
hidden representation h(x) ∈ IRdh , jointly with a decoder function g, that maps h back to the input
space as r = g(h(x)) the reconstruction of x. The encoder and decoder’s parameters θ are learned
by stochastic gradient descent to minimize the average reconstruction error L(x, g(h(x))) for the
examples of the training set. The objective being minimized is:

JAE(θ) =
∑
x∈D

L(x, g(h(x))). (1)

We will will use the most common forms of encoder, decoder, and reconstruction error:

Encoder: h(x) = s(Wx + bh), where s is the element-wise logistic sigmoid s(z) = 1
1+e−z .

Parameters are a dh × d weight matrix W and bias vector bh ∈ IRdh .
Decoder: r = g(h(x)) = s2(WTh(x) + br). Parameters are WT (tied weights, shared with

the encoder) and bias vector br ∈ IRd. Activation function s2 is either a logistic sigmoid
(s2 = s) or the identity (linear decoder).
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Loss function: Either the squared error: L(x, r) = ‖x− r‖2 or Bernoulli cross-entropy: L(x, r) =
−
∑d
i=1 xi log(ri) + (1− xi) log(1− ri).

The set of parameters of such an auto-encoder is θ = {W, bh, br}.
Historically, auto-encoders were primarily viewed as a technique for dimensionality reduction,
where a narrow bottleneck (i.e. dh < d) was in effect acting as a capacity control mechanism.
By contrast, recent successes (Bengio et al., 2007; Ranzato et al., 2007a; Kavukcuoglu et al., 2009;
Vincent et al., 2010; Rifai et al., 2011a) tend to rely on rich, oftentimes over-complete represen-
tations (dh > d), so that more sophisticated forms of regularization are required to pressure the
auto-encoder to extract relevant features and avoid trivial solutions. Several successful techniques
aim at sparse representations (Ranzato et al., 2007a; Kavukcuoglu et al., 2009; Goodfellow et al.,
2009). Alternatively, denoising auto-encoders (Vincent et al., 2010) change the objective from mere
reconstruction to that of denoising.

2.2 First order and higher order contractive auto-encoders

More recently, Rifai et al. (2011a) introduced the Contractive Auto-Encoder (CAE), that encourages
robustness of representation h(x) to small variations of a training input x, by penalizing its sensitivity
to that input, measured as the Frobenius norm of the encoder’s Jacobian J(x) = ∂h

∂x (x). The
regularized objective minimized by the CAE is the following:

JCAE(θ) =
∑
x∈D

L(x, g(h(x))) + λ‖J(x)‖2, (2)

where λ is a non-negative regularization hyper-parameter that controls how strongly the norm of the
Jacobian is penalized. Note that, with the traditional sigmoid encoder form given above, one can
easily obtain the Jacobian of the encoder. Its jth row is obtained form the jth row of W as:

J(x)j =
∂hj(x)
∂x

= hj(x)(1− hj(x))Wj . (3)

Computing the extra penalty term (and its contribution to the gradient) is similar to computing the
reconstruction error term (and its contribution to the gradient), thus relatively cheap.

It is also possible to penalize higher order derivatives (Hessian) by using a simple stochastic tech-
nique that eschews computing them explicitly, which would be prohibitive. It suffices to penalize
differences between the Jacobian at x and the Jacobian at nearby points x̃ = x + ε (stochastic cor-
ruptions of x). This yields the CAE+H (Rifai et al., 2011b) variant with the following optimization
objective:

JCAE+H(θ) =
∑
x∈D

L(x, g(h(x))) + λ ||J(x)||2 + γEε∼N (0,σ2I)

[
||J(x)− J(x+ ε)||2

]
, (4)

where γ is an additional regularization hyper-parameters that controls how strongly we penalize
local variations of the Jacobian, i.e. higher order derivatives. The expectation E is over Gaussian
noise variable ε. In practice stochastic samples thereof are used for each stochastic gradient update.
The CAE+H is the variant used for our experiments.

3 Characterizing the tangent bundle captured by a CAE

Rifai et al. (2011a) reason that, while the regularization term encourages insensitivity of h(x) in all
input space directions, this pressure is counterbalanced by the need for accurate reconstruction, thus
resulting in h(x) being substantially sensitive only to the few input directions required to distinguish
close by training points. The geometric interpretation is that these directions span the local tangent
space of the underlying manifold that supports the data. The tangent bundle of a smooth manifold
is the manifold along with the set of tangent planes taken at all points on it. Each such tangent
plane can be equipped with a local Euclidean coordinate system or chart. In topology, an atlas is a
collection of such charts (like the locally Euclidean map in each page of a geographic atlas). Even
though the set of charts may form a non-Euclidean manifold (e.g., a sphere), each chart is Euclidean.
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3.1 Conditions for the feature mapping to define an atlas on a manifold

In order to obtain a proper atlas of charts, h must be a diffeomorphism. It must be smooth (C∞) and
invertible on open Euclidean balls on the manifold M around the training points. Smoothness is
guaranteed because of our choice of parametrization (affine + sigmoid). Injectivity (different values
of h(x) correspond to different values of x) on the training examples is encouraged by minimizing
reconstruction error (otherwise we cannot distinguish training examples xi and xj by only looking
at h(xi) and h(xj)). Since h(x) = s(Wx+ bh) and s is invertible, using the definition of injectivity
we get (by composing h(xi) = h(xj) with s−1)

∀i, j h(xi) = h(xj)⇐⇒W∆ij = 0

where ∆ij = xi − xj . In order to preserve the injectivity of h, W has to form a basis spanned by
its rows Wk, where ∀ i, j ∃α ∈ IRdh ,∆ij =

∑dh

k αkWk. With this condition satisfied, mapping
h is injective in the subspace spanned by the variations in the training set. If we limit the domain
of h to h(X ) ⊂ (0, 1)dh comprising values obtainable by h applied to some set X , then we obtain
surjectivity by definition, hence bijectivity of h between the training set D and h(D). LetMx be an
open ball on the manifoldM around training example x. By smoothness of the manifoldM and
of mapping h, we obtain bijectivity locally around the training examples (on the manifold) as well,
i.e., between ∪x∈DMx and h(∪x∈DMx).

3.2 Obtaining an atlas from the learned feature mapping

Now that we have necessary conditions for local invertibility of h(x) for x ∈ D, let us consider
how to define the local chart around x from the nature of h. Because h must be sensitive to changes
from an example xi to one of its neighbors xj , but insensitive to other changes (because of the CAE
penalty), we expect that this will be reflected in the spectrum of the Jacobian matrix J(x) = ∂h(x)

∂x
at each training point x. In the ideal case where J(x) has rank k, h(x+ εv) differs from h(x) only
if v is in the span of the singular vectors of J(x) with non-zero singular value. In practice, J(x)
has many tiny singular values. Hence, we define a local chart around x using the Singular Value
Decomposition of JT (x) = U(x)S(x)V T (x) (where U(x) and V (x) are orthogonal and S(x) is
diagonal). The tangent planeHx at x is given by the span of the set of principal singular vectors Bx:

Bx = {U·k(x)|Skk(x) > ε} and Hx = {x+ v|v ∈ span(Bx)},

where U·k(x) is the k-th column of U(x), and span({zk}) = {x|x =
∑
k wkzk, wk ∈ IR}. We can

thus define an atlas A captured by h, based on the local linear approximation around each example:

A = {(Mx, φx)|x ∈ D, φx(x̃) = Bx(x̃− x)}. (5)

Note that this way of obtaining an atlas can also be applied to subsequent layers of a deep network.
It is thus possible to use a greedy layer-wise strategy to initialize a network with CAEs (Rifai et al.,
2011a) and obtain an atlas that corresponds to the nonlinear features computed at any layer.

4 Exploiting the learned tangent directions for classification

Using the previously defined charts for every point of the training set, we propose to use this addi-
tional information provided by unsupervised learning to improve the performance of the supervised
task. In this we adopt the manifold hypothesis for classification mentioned in the introduction.

4.1 CAE-based tangent distance

One way of achieving this is to use a nearest neighbor classifier with a similarity criterion defined
as the shortest distance between two hyperplanes (Simard et al., 1993). The tangents extracted on
each points will allow us to shrink the distances between two samples when they can approximate
each other by a linear combination of their local tangents. Following Simard et al. (1993), we
define the tangent distance between two points x and y as the distance between the two hyperplanes
Hx,Hy ⊂ IRd spanned respectively by Bx and By . Using the usual definition of distance between
two spaces, d(Hx,Hy) = inf{‖z−w‖2|/ (z, w) ∈ Hx×Hy}, we obtain the solution for this convex
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problem by solving a system of linear equations (Simard et al., 1993). This procedure corresponds
to allowing the considered points x and y to move along the directions spanned by their associated
local charts. Their distance is then evaluated on the new coordinates where the distance is minimal.
We can then use a nearest neighbor classifier based on this distance.

4.2 CAE-based tangent propagation

Nearest neighbor techniques are often impractical for large scale datasets because their compu-
tational requirements scale linearly with n for each test case. By contrast, once trained, neural
networks yield fast responses for test cases. We can also leverage the extracted local charts when
training a neural network. Following the tangent propagation approach of Simard et al. (1992),
but exploiting our learned tangents, we encourage the output o of a neural network classifier to be
insensitive to variations in the directions of the local chart of x by adding the following penalty to
its supervised objective function:

Ω(x) =
∑
u∈Bx

∣∣∣∣∣∣∣∣ ∂o∂x (x) u
∣∣∣∣∣∣∣∣2 (6)

Contribution of this term to the gradients of network parameters can be computed in O(Nw), where
Nw is the number of neural network weights.

4.3 The Manifold Tangent Classifier (MTC)

Putting it all together, here is the high level summary of how we build and train a deep network:

1. Train (unsupervised) a stack of K CAE+H layers (Eq. 4). Each is trained in turn on the
representation learned by the previous layer.

2. For each xi ∈ D compute the Jacobian of the last layer representation J (K)(xi) =
∂h(K)

∂x (xi) and its SVD1. Store the leading dM singular vectors in set Bxi .
3. On top of theK pre-trained layers, stack an output layer of size the number of classes. Fine-

tune the whole network for supervised classification2 with an added tangent propagation
penalty (Eq. 6), using for each xi, tangent directions Bxi

.

We call this deep learning algorithm the Manifold Tangent Classifier (MTC). Alternatively, instead
of step 3, one can use the tangent vectors in Bxi

in a tangent distance nearest neighbors classifier.

5 Related prior work

Many Non-Linear Manifold Learning algorithms (Roweis and Saul, 2000; Tenenbaum et al.,
2000) have been proposed which can automatically discover the main directions of variation around
each training point, i.e., the tangent bundle. Most of these algorithms are non-parametric and local,
i.e., explicitly parametrizing the tangent plane around each training point (with a separate set of
parameters for each, or derived mostly from the set of training examples in every neighborhood),
as most explicitly seen in Manifold Parzen Windows (Vincent and Bengio, 2003) and manifold
Charting (Brand, 2003). See Bengio and Monperrus (2005) for a critique of local non-parametric
manifold algorithms: they might require a number of training examples which grows exponentially
with manifold dimension and curvature (more crooks and valleys in the manifold will require more
examples). One attempt to generalize the manifold shape non-locally (Bengio et al., 2006) is based
on explicitly predicting the tangent plane associated to any given point x, as a parametrized function
of x. Note that these algorithms all explicitly exploit training set neighborhoods (see Figure 2), i.e.
they use pairs or tuples of points, with the goal to explicitly model the tangent space, while it is

1J(K) is the product of the Jacobians of each encoder (see Eq. 3) in the stack. It suffices to compute its
leading dM SVD vectors and singular values. This is achieved in O(dM × d× dh) per training example. For
comparison, the cost of a forward propagation through a single MLP layer is O(d× dh) per example.

2A sigmoid output layer is preferred because computing its Jacobian is straightforward and efficient (Eq. 3).
The supervised cost used is the cross entropy. Training is by stochastic gradient descent.
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modeled implicitly by the CAE’s objective function (that is not based on pairs of points). More re-
cently, the Local Coordinate Coding (LCC) algorithm (Yu et al., 2009) and its Local Tangent LCC
variant (Yu and Zhang, 2010) were proposed to build a a local chart around each training example
(with a local low-dimensional coordinate system around it) and use it to define a representation for
each input x: the responsibility of each local chart/anchor in explaining input x and the coordinate
of x in each local chart. That representation is then fed to a classifier and yield better generalization
than x itself.

The tangent distance (Simard et al., 1993) and TangentProp (Simard et al., 1992) algorithms were
initially designed to exploit prior domain-knowledge of directions of invariance (ex: knowledge that
the class of an image should be invariant to small translations rotations or scalings in the image
plane). However any algorithm able to output a chart for a training point might potentially be used,
as we do here, to provide directions to a Tangent distance or TangentProp (Simard et al., 1992)
based classifier. Our approach is nevertheless unique as the CAE’s unsupervised feature learning
capabilities are used simultaneously to provide a good initialization of deep network layers and a
coherent non-local predictor of tangent spaces. TangentProp is itself closely related to the Double
Backpropagation algorithm (Drucker and LeCun, 1992), in which one instead adds a penalty that is
the sum of squared derivatives of the prediction error (with respect to the network input). Whereas
TangentProp attempts to make the output insensitive to selected directions of change, the double
backpropagation penalty term attempts to make the error at a training example invariant to changes
in all directions. Since one is also trying to minimize the error at the training example, this amounts
to making that minimization more robust, i.e., extend it to the neighborhood of the training examples.

Also related is the Semi-Supervised Embedding algorithm (Weston et al., 2008). In addition to
minimizing a supervised prediction error, it encourages each layer of representation of a deep ar-
chitecture to be invariant when the training example is changed from x to a near neighbor of x in
the training set. This algorithm works implicitly under the hypothesis that the variable y to pre-
dict from x is invariant to the local directions of change present between nearest neighbors. This
is consistent with the manifold hypothesis for classification (hypothesis 3 mentioned in the intro-
duction). Instead of removing variability along the local directions of variation, the Contractive
Auto-Encoder (Rifai et al., 2011a) initially finds a representation which is most sensitive to them,
as we explained in section 2.

6 Experiments

We conducted experiments to evaluate our approach and the quality of the manifold tangents learned
by the CAE, using a range of datasets from different domains:

MNIST is a dataset of 28 × 28 images of handwritten digits. The learning task is to predict the
digit contained in the images. Reuters Corpus Volume I is a popular benchmark for document
classification. It consists of 800,000 real-world news wire stories made available by Reuters. We
used the 2000 most frequent words calculated on the whole dataset to create a bag-of-words vector
representation. We used the LYRL2004 split to separate between a train and test set. CIFAR-10 is
a dataset of 70,000 32 × 32 RGB real-world images. It contains images of real-world objects (i.e.
cars, animals) with all the variations present in natural images (i.e. backgrounds). Forest Cover
Type is a large-scale database of cartographic variables for the prediction of forest cover types made
available by the US Forest Service.

We investigate whether leveraging the CAE learned tangents leads to better classification perfor-
mance on these problems, using the following methodology: Optimal hyper-parameters for (a stack
of) CAEs are selected by cross-validation on a disjoint validation set extracted from the training set.
The quality of the feature extractor and tangents captured by the CAEs is evaluated by initializing an
neural network (MLP) with the same parameters and fine-tuning it by backpropagation on the super-
vised classification task. The optimal strength of the supervised TangentProp penalty and number of
tangents dM is also cross-validated.

Results

Figure 1 shows a visualization of the tangents learned by the CAE. On MNIST, the tangents mostly
correspond to small geometrical transformations like translations and rotations. On CIFAR-10, the

6



Figure 1: Visualisation of the tangents learned by the CAE for MNIST, CIFAR-10 and RCV1 (top
to bottom). The left-most column is the example and the following columns are its tangents. On
RCV1, we show the tangents of a document with the topic ”Trading & Markets” (MCAT) with the
negative terms in red(-) and the positive terms in green(+).

Figure 2: Tangents extracted by local PCA on CIFAR-10. This shows the limitation of approaches
that rely on training set neighborhoods.

model also learns sensible tangents, which seem to correspond to changes in the parts of objects.
The tangents on RCV1-v2 correspond to the addition or removal of similar words and removal of
irrelevant words. We also note that extracting the tangents of the model is a way to visualize what
the model has learned about the structure of the manifold. Interestingly, we see that hypothesis 3
holds for these datasets because most tangents do not change the class of the example.

Table 1: Classification accuracy on several datasets using KNN variants measured on 10,000 test
examples with 1,000 training examples. The KNN is trained on the raw input vector using the
Euclidean distance while the K-layer+KNN is computed on the representation learned by a K-layer
CAE. The KNN+Tangents uses at every sample the local charts extracted from the 1-layer CAE to
compute tangent distance.

KNN KNN+Tangents 1-Layer CAE+KNN 2-Layer CAE+KNN
MNIST 86.9 88.7 90.55 91.15
CIFAR-10 25.4 26.5 25.1 -
COVERTYPE 70.2 70.98 69.54 67.45

We use KNN using tangent distance to evaluate the quality of the learned tangents more objectively.
Table 1 shows that using the tangents extracted from a CAE always lead to better performance than
a traditional KNN.

As described in section 4.2, the tangents extracted by the CAE can be used for fine-tuning the multi-
layer perceptron using tangent propagation, yielding our Manifold Tangent Classifier (MTC). As it
is a semi-supervised approach, we evaluate its effectiveness with a varying amount of labeled exam-
ples on MNIST. Following Weston et al. (2008), the unsupervised feature extractor is trained on the
full training set and the supervised classifier is trained on a restricted labeled set. Table 2 shows our
results for a single hidden layer MLP initialized with CAE+H pretraining (noted CAE for brevity)
and for the same classifier fine-tuned with tangent propagation (i.e. the manifold tangent classifier of
section 4.3, noted MTC). The methods that do not leverage the semi-supervised learning hypothesis
(Support Vector Machines, traditional Neural Networks and Convolutional Neural Networks) give
very poor performance when the amount of labeled data is low. In some cases, the methods that can
learn from unlabeled data can reduce the classification error by half. The CAE gives better results
than other approaches across almost the whole range considered. It shows that the features extracted
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Table 2: Semi-supervised classification error on the MNIST test set with 100, 600, 1000 and 3000
labeled training examples. We compare our method with results from (Weston et al., 2008; Ranzato
et al., 2007b; Salakhutdinov and Hinton, 2007).

NN SVM CNN TSVM DBN-rNCA EmbedNN CAE MTC
100 25.81 23.44 22.98 16.81 - 16.86 13.47 12.03
600 11.44 8.85 7.68 6.16 8.7 5.97 6.3 5.13
1000 10.7 7.77 6.45 5.38 - 5.73 4.77 3.64
3000 6.04 4.21 3.35 3.45 3.3 3.59 3.22 2.57

from the rich unlabeled data distribution give a good inductive prior for the classification task. Note
that the MTC consistently outperforms the CAE on this benchmark.

Table 3: Classification error on the MNIST test set with the full training set.

K-NN NN SVM DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 0.95% 0.95% 0.81%

Table 3 shows our results on the full MNIST dataset with some results taken from (LeCun et al.,
1999; Hinton et al., 2006). The CAE in this figure is a two-layer deep network with 2000 units
per layer pretrained with the CAE+H objective. The MTC uses the same stack of CAEs trained
with tangent propagation using 15 tangents. The prior state of the art for the permutation invariant
version of the task was set by the Deep Boltzmann Machines (Salakhutdinov and Hinton, 2009)
at 0.95%. Using our approach, we reach 0.81% error on the test set. Remarkably, the MTC also
outperforms the basic Convolutional Neural Network (CNN) even though the CNN exploits prior
knowledge about vision using convolution and pooling to enhance the results.

Table 4: Classification error on the Forest CoverType dataset.

SVM Distributed SVM MTC
4.11% 3.46% 3.13%

We also trained a 4 layer MTC on the Forest CoverType dataset. Following Trebar and Steele
(2008), we use the data split DS2-581 which contains over 500,000 training examples. The MTC
yields the best performance for the classification task beating the previous state of the art held by
the distributed SVM (mixture of several non-linear SVMs).

7 Conclusion

In this work, we have shown a new way to characterize a manifold by extracting a local chart at
each data point based on the unsupervised feature mapping built with a deep learning approach.
The developed Manifold Tangent Classifier successfully leverages three common “generic prior
hypotheses” in a unified manner. It learns a meaningful representation that captures the structure
of the manifold, and can leverage this knowledge to reach superior classification performance. On
datasets from different domains, it successfully achieves state of the art performance.
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