THE ARCHITECTURE OF COMPUTER HARDWARE AND SYSTEMS SOFTWARE

El Mostapha Aboulhamid Bureau: 3243 EM.Aboulhamid@UMontreal.CA

A computer-based information system elements

- Data: fundamental representation of facts and observations

 processed by a computer system to provide the information
- Hardware
 - processes the data by executing instructions, storing data, and moving data and information between the various input and output devices
- Software
 - system and application programs software
 - determines the work to be performed and controls operation of the system
- communication
 - ability to share processing operations and data among different computers and users, locally and remotely
- Architecture = hardware, software, communication, and data
- Architecture of computer systems remarkably similar whether the system is a personal computer or mainframe

INTRODUCTION

- Users do not have to know What do the insides of a computer "look like". We can:
 - run standard software packages without understanding exactly how they work
 - program a computer in a high-level language without understanding how the machine executes the individual instructions
 - create Web pages without understanding how the Web browser gets its pages from a Web server or how the Web server creates those pages;
 - purchase a computer system without understanding the specifications
- · BUT we might:
 - write programs to be faster and more efficient
 - create Web pages that load faster and work better
 - Choose the optimum system
 - Understand the jargon: "XGA TFT display" or "512K level 2 cache" or "56K V.90 modem", 2.7 gigahertz (GHz) Pentium 4 CPU, 1 GB of RAM memory, 120 GB hard drive, DVD-RAM, "multitasking", "PCI bus"

Figure 1.1 A typical computer ad

1.1 THE USER'S POINT OF VIEW

- A simple online credit card purchasing system
- \Rightarrow
- The Input-Process-Output Model

Basic Data Processing Operations

- Input/output
- · Basic arithmetic and logical calculations
- Data transformation or translation (e.g., program compilation, foreign language translation, file updating)
- · Data sorting
- · Searching for data matches
- · Data storage and retrieval
- Data movement (e.g., movement of text or file data to make room for insertion of additional data)

Basic High-Level Language Constructs

- Input/output (including file storage and retrieval)
- Arithmetic and logical assignment statements
- True/false decision branching (IF-THEN-ELSE or IF-GOTO)
- Loops and/or unconditional branching (WHILE-DO, REPEAT-UNTIL, FOR, GOTO)

1.2 COMPONENTS OF THE COMPUTER SYSTEM

- · The computer hardware
- The software, provides instructions that tell the hardware – exactly what tasks are to be performed
 - in what order
- The data may be
 - numeric, alphanumeric, graphic
 - other forms
 - always representable in a form that the computer can manipulate
- · The communication component
 - consists of hardware and software
 - transports programs and data between interconnected computer systems

The Hardware Component

- Keyboard and mouse provide **input** of program text, data, and commands
- A display screen is commonly used to observe **output**
- Calculations and other operations in a program performed by a central processing unit (CPU) inside the computer
- **Memory** is provided to hold your programs and data while processing is taking place
- Other input and output devices, such as disk and tape,
 used to provide long-term storage of programs and data files.
 - Data and programs transferred between the various input/output devices and memory for the CPU to use
- The CPU, memory, and all the input, output, and storage devices form the **hardware** part of a computer system

CPU

- · Conceptually, the CPU is a composition of:
 - The arithmetic/logic unit, or ALU, where arithmetic and Boolean logical calculations are performed
 - The control unit, or CU, which controls the processing of instructions and the movement of internal CPU data from one part of the CPU to another
 - The interface unit, which moves program instructions and data between the CPU and other hardware components (often a bus)

RAM (random access memory)

- = main memory, primary storage, working storage
- · Holds programs and data for access by the CPU
- Made up of a large number of cells. Each cell
 Numbered and individually addressable
 - Holds a single binary number representing data or an instruction
 - The basic size is 8 bits, known as a byte of memory
- 8 bits of memory can only hold 256 different patterns
 ⇒ neighboring cells always combined to form groupings with a
 larger number of bits
- In many systems, 4 bytes combine to form a word

The Software Component

- Two major categories of software: system software, application software
- Operating system = system software helps
 - manage files, load and execute programs, accept commands from mouse and keyboard
 - examples: Windows and Linux
- Application programs
 - Ex: Microsoft Word, Netscape, user programs
 - normally run to get your work done
- The operating system is made up of many components. Most obvious element is the user interface that
 - allows to execute programs, enter commands, and manipulate files
 - accepts input from a keyboard and a mouse or other pointing device
 - outputs presentation on the display
 - manages windows

OS location

- Nearly always stored on a hard disk
- The bootstrap or IPL (Initial Program Load) program in the OS is stored within the computer using a ROM, or Read Only Memory
 - tools to test the system
 - load the remainder of the OS from the disk or network

1.5 A BRIEF ARCHITECTURAL HISTORY OF THE COMPUTER

the abacus, already in use as early as 500 BCE, in common use until the 1500s

Early Machines

- Blaise Pascal
 - invented a calculating machine in 1642 at the age of 19
 - was never able to construct the machine
- In 1801, Joseph Marie Jacquard
 - invented a loom that used punched cards to control the patterns woven into cloth
 - program provided by the punched cards controlled rods that raised and lowered different threads in the correct sequence to print a particular pattern
 - First documented application of punched cards to hold a program for the use of a semi-automated, programmable machine.

Analytical Engine

- Charles Babbage, early 1800s
- spent much of his fortune attempting to build a mechanical calculating machine: "analytical engine"
- · the mill capable of
 - selecting one of four arithmetic operations
 - testing the sign of a number with a different program branch specified for each result
 - sequence of operation specified by instructions on the operation cards
 - variable cards, specify particular memory locations for the data involved in the calculations
 - memory of 1000 50-digit decimal numbers
 - Each digit was to be stored using a ten-toothed gear known as a counter wheel

Figure 1.12 Block diagram of Babbage's analytical engine *Source:* From *Computer Architecture and Organization* 2e, J. Hayes, copyright © 1988, by McGraw-Hill Companies, pg. 14 Reprinted by permission.

Modern electronic computers

- George Boole
 - developed the Boolean logic
 - recognized the relationship between binary arithmetic and Boolean logic
 - ⇒ makes possible the circuitry that implements the modern electronic computer
- The Mark I
 - built in 1937 by Howard H. Aiken and associates at Harvard U. with help and funding from IBM
 - used thousands of relays
 - · mechanical binary switches controlled by electrical currents
 - fundamental design was decimal.
- Similar electromechanical computer designed and built by Conrad Zuse in Germany

ABC: totally electronic digital

- Devised by john V. Atanasoff, a physicist at Iowa State College, in 1937
- Built in 1939 by Atanasoff and Clifford Berry (grad. Student)
- · Electronic vacuum tubes as the switching components
- · Built to solve physics equations
- · ABC was a binary-based machine
 - arithmetic/logic unit with 30 units that could do + and -
 - a rotating drum memory that held 30 binary numbers of 50 digits
 - punched card input. Each punched card held 5 15-digit decimal numbers
 - numbers converted to binary as they entered the machine
- Precursor to ENIAC

ENIAC

- · Electronic Numerical Integrator and Computer
- · WWII research :solution to formulas related to ballistic missile trajectories
- designed and built 1943-1946 operated until 1955
- by John W. Mauchly and J. P. Eckert at the U. of Pennsylvania
- Storage: 20 ten-digit decimal number + 100 numbers in ROM
- Calculations performed using decimal arithmetic
- 10 electronic vacuum tube binary switches were used for each digit
- Input and output used punched cards
- The system provides printed output
- · Programs not stored internally, hard wired with externally
- Led to UNIVAC I, 1st commercial computer in 1951
- 18000 vacuum tubes
- floor space more than 15000 square feet
- weighed more than 30 tons
- average error-free operating 5.6 hours only

ENIAC

von Neumann Architecture

- In 1945, John von Neumann
 - ENIAC consultant
 - proposed a computer with significant improvements
- A memory that would hold both programs and data:
 - stored program concept
 - \Rightarrow avoid rewiring the control panels for changing programs
- · Binary processing of data
 - simplified the design of the computer
 - use of binary memory for both instructions and data
 - recognized the natural relationship between
 - ON/OFF nature of switches and
 - · calculation in the binary number system, using Boolean logic