

- Combinational logic: a digital logic circuit in which logical decisions are made based only on combinations of the inputs. e.g. an adder.
- Sequential logic: a circuit in which decisions are made based on combinations of the current inputs as well as the past history of inputs. e.g. a memory unit.
- Finite state machine: a circuit which has an internal state, and whose outputs are functions of both current inputs and its internal state. e.g. a vending machine controller.

- Translates a set of inputs into a set of outputs according to one or more mapping functions.
- Inputs and outputs for a CLU normally have two distinct (binary) values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.
- The outputs of a CLU are strictly functions of the inputs, and the outputs are updated immediately after the inputs change. A set of inputs $i_0 - i_n$ are presented to the CLU, which produces a set of outputs according to mapping functions $f_0 - f_m$.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Appendix A: Digital Logic

A Truth Table

• Developed in 1854 by George Boole.

A-5

- Further developed by Claude Shannon (Bell Labs).
- Outputs are computed for all possible input combinations (how many input combinations are there?)
- Consider a room with two light switches. How must they work?

A-6

Alternate Assignment of Outputs to Switch Settings

• We can make the assignment of output values to input combinations any way that we want to achieve the desired input-output behavior.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

A-15

Appendix A: Digital Logic

Properties of Boolean Algebra

Principle of		Relationship	Dual	Property
duality: The	SS	A B = B A	A + B = B + A	Commutative
dual of a	ulat	A (B+C) = A B + A C	$A+B\ C\ =\ (A+B)\ (A+C)$	Distributive
Boolean	Post	1 A = A	0 + A = A	Identity
function is		$A\overline{A} = 0$	$A + \overline{A} = 1$	Complement
obtained by		0A = 0	1 + A = 1	Zero and one theorems
		A A = A	A + A = A	Idempotence
and OR with	s	$\begin{array}{l} A (B C) = (A B) C \\ = \end{array}$	A+(B+C)=(A+B)+C	Associative
AND. 1s with	rem	$\overline{A} = A$		Involution
0s, and 0s	Theo	$\overline{A B} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \overline{B}$	DeMorgan's Theorem
with 1s.		$AB + \overline{AC} + BC$	$(A+B)(\overline{A}+C)(B+C)$	Consensus Theorem
		= AB + AC	= (A+B)(A+C)	
		A(A+B) = A	A + A B = A	Absorption Theorem

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

A-16

Appendix A: Digital Logic

DeMorgan's Theorem

A B	$\overline{AB} =$	$\overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$		
$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	1	1	1	1	
	1	1	0	0	
	1	1	0	0	
	0	0	0	0	

DeMorgan's theorem:
$$A + B = \overline{A + B} = \overline{A B}$$

$$\begin{array}{c} A \\ B \\ \hline \end{array} \\ \hline \end{array} \\ F = A + B \\ \hline \end{array} \\ \begin{array}{c} A \\ B \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} A \\ \hline \end{array} \\ \hline \end{array} \\ F = \overline{A B} \\ \hline \end{array} \\ \begin{array}{c} B \\ \end{array} \\ \begin{array}{c} B \\ \hline \end{array} \\ \begin{array}{c} B \\ \hline \end{array} \\ \begin{array}{c} B \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} B \\ \hline \end{array} \\ \begin{array}{c} B \\ \hline \end{array} \\ \begin{array}{c} B \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} B \\ \end{array} \\ \end{array} \\ \begin{array}{c} B \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} B \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} B \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} B \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$$
 \\ \begin{array}{c} B \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

