
Appendix A: Digital LogicA-1

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Principles of Computer Architecture
Miles Murdocca and Vincent Heuring

Appendix A: Digital Logic

Appendix A: Digital LogicA-2

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Chapter Contents
A.1 Introduction
A.2 Combinational Logic
A.3 Truth Tables
A.4 Logic Gates
A.5 Properties of Boolean Algebra
A.6 The Sum-of-Products Form, and Logic Diagrams
A.7 The Product-of-Sums Form
A.8 Positive vs. Negative Logic
A.9 The Data Sheet
A.10 Digital Components
A.11 Sequential Logic
A.12 Design of Finite State Machines
A.13 Mealy vs. Moore Machines
A.14 Registers
A.15 Counters

Appendix A: Digital LogicA-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Some Definitions
• Combinational logic: a digital logic circuit in which logical deci-

sions are made based only on combinations of the inputs. e.g. an
adder.

• Sequential logic: a circuit in which decisions are made based on
combinations of the current inputs as well as the past history of
inputs. e.g. a memory unit.

• Finite state machine: a circuit which has an internal state, and
whose outputs are functions of both current inputs and its inter-
nal state. e.g. a vending machine controller.

Appendix A: Digital LogicA-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Combinational
logic unit

. . .

i0
i1

in

. . .

f0
f1

fm

(i0, i1)
(i1, i3, i4)

(i9, in)

The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to one or

more mapping functions.

• Inputs and outputs for a CLU normally have two distinct (binary)
values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.

• The outputs of a CLU are strictly functions of the inputs, and the
outputs are updated immediately after the inputs change. A set of
inputs i0 – in are presented to the CLU, which produces a set of
outputs according to mapping functions f0 – fm.

Appendix A: Digital LogicA-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

0
0

1

1

0
1

0

1

A B

0
1

1

0

Z

Inputs Output

Switch A Switch B

“Hot”

GND

Light Z

A Truth Table
• Developed in 1854 by George Boole.

• Further developed by Claude Shannon (Bell Labs).

• Outputs are computed for all possible input combinations (how
many input combinations are there?)

• Consider a room with two light switches. How must they work?

Appendix A: Digital LogicA-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Alternate Assignment of Outputs to
Switch Settings

• We can make the assignment of output values to input combi-
nations any way that we want to achieve the desired input-out-
put behavior.

0
0
1
1

0
1
0
1

A B

1
0
0
1

Z

Inputs Output

Appendix A: Digital LogicA-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Truth Tables Showing All Possible
Functions of Two Binary Variables

• The more fre-
quently used func-
tions have names:
AND, XOR, OR,
NOR, XOR, and
NAND. (Always
use upper case
spelling.)

0

0

1

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

A B False AND A B XOR OR

0

0

1

1

0

1

0

1

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

A B NOR XNOR A + B NAND True

AB AB

B A A + B

Inputs Outputs

Inputs Outputs

Appendix A: Digital LogicA-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Gates and Their Symbols

• Logic symbols
shown for AND, OR,
buffer, and NOT
Boolean functions.

• Note the use of the
“inversion bubble.”

• (Be careful about
the “nose” of the
gate when drawing
AND vs. OR.)

A

B
F = A B

A
0
0
1
1

B
0
1
0
1

F
0
0
0
1

AND

A
0
0
1
1

B
0
1
0
1

F
0
1
1
1

OR

A

B
F = A + B

A
0
1

F
0
1

Buffer

A
0
1

F
1
0

NOT (Inverter)

A F = A A F = A

Appendix A: Digital LogicA-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Gates and their Symbols (cont’)

A

B

A
0
0
1
1

B
0
1
0
1

F
1
1
1
0

NAND

A
0
0
1
1

B
0
1
0
1

F
1
0
0
0

NOR

A

B
F= A B F = A + B

A
0
0
1
1

B
0
1
0
1

F
0
1
1
0

Exclusive-OR (XOR)

A

B
F = A ⊕ B

A
0
0
1
1

B
0
1
0
1

F
1
0
0
1

Exclusive-NOR (XNOR)

A

B
F = A ⊕ B.

Appendix A: Digital LogicA-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Variations of Logic Gate Symbols

(a) 3 inputs (b) A Negated input (c) Complementary outputs

A
B
C

F = ABC

(a) (b)

A

B
F = A + B

(c)

A + B

A + BA

B

Appendix A: Digital LogicA-15

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Properties of Boolean Algebra

• Principle of
duality: The
dual of a
Boolean
function is
obtained by
replacing
AND with OR
and OR with
AND, 1s with
0s, and 0s
with 1s.

A B = B A

A (B + C) = A B + A C

1 A = A

A A = 0

0 A = 0

A A = A

A (B C) = (A B) C

A + B = B + A

A + B C = (A + B) (A + C)

0 + A = A

1 + A = 1

A + A = 1

A + A = A

A + (B + C) = (A + B) + C

Commutative

Distributive

Identity

Complement

Associative

A B = A + B A + B = A B DeMorgan’s Theorem

PropertyRelationship Dual

Zero and one theorems

Idempotence

A = A Involution

Consensus Theorem(A + B)(A+C)(B +C)

= (A + B)(A +C)

AB+ AC + BC

= AB + AC

A (A + B) = A A + A B = A Absorption Theorem

T
he

or
em

s
P

os
tu

la
te

s

Appendix A: Digital LogicA-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

DeMorgan’s Theorem

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A + B A + B A B

A

B
F = A + B

A + B = A + B = A BDeMorgan’s theorem:

A

B
F = A B

Appendix A: Digital LogicA-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

All-NAND Implementation of OR
• NAND alone implements all other Boolean logic gates.

A

B
 A + B

A

B

 A + B

Appendix A: Digital LogicA-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sum-of-Products Form: The Majority
Function

• The SOP form for the 3-input majority function is:

M = ABC + ABC + ABC + ABC = m3 + m5 + m6 + m7 = Σ (3, 5, 6, 7).
• Each of the 2n terms are called minterms, ranging from 0 to 2n - 1.
• Note relationship between minterm number and boolean value.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

F

0
1
2
3
4
5
6
7

A balance tips to the left or
right depending on whether
there are more 0’s or 1’s.

0-side 1-side

1

00

Minterm
Index

Appendix A: Digital LogicA-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Majority

• Gate count is
8, gate input
count is 19.

F

A B C

A B C

A B C

A B C

A B C

A-41 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.41 A K-Map of the Majority
Function

The map contains all the minterms. Adjacent 1’s in the K-map
satisfy the complement property of Boolean algebra.

Place a “1” in each cell that has a that minterm.
Cells on the outer edge of the map “wrap around”

A B C FMinterm

Index

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

0

1

2

3

4

5

6

7

1

0

0-side 1-side

0

A balance tips to the left or
right depending on whether

there are more 0’s or 1’s.

00
AB

C

0

1

1

11 1

01 11 10

A-42 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.42 Adjacency Groupings for the
Majority Function

00
AB

C

0

1

1

11 1

01 11 10

M= BC + AC + AB

A-43 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.43 Minimized AND-OR Circuit for
the Majority Function

F

BA C

M= BC + AC + AB

A-44 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.44 Minimal and Not-Minimal
K-Map Groupings

00
AB

CD

F = ABC + ACD +

ABC + ACD

F = BD + ABC + ACD +

 ABC + ACD

00

01

11

10

1

2

1

4

3

1 1

1

1

11 1

01 11 10 00
AB

CD

00

01

11

10

1

3

2

1 5

4

1 1

1

1

11 1

01 11 10

A-45 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

Fig A.45 The Corners of a K-Map
Are Logically Adjacent

00
AB

CD

F = BCD + BD + AB

00

01

11

10

11 1

1 1

1

1

1

1

01 11 10

A-46 Appendix A—Digital Logic

Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan

A.46 Two Different Minimized Equations
Are Produced from the Same K-Map

00
AB

CD

F = BCD + BD

00

01

11

10

1 d

d

1 1

1 1

01 11 10 00
AB

CD

F = ABD + BD

00

01

11

10

1 d

d

1 1

11

01 11 10

Appendix A: Digital LogicA-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Notation Used at Circuit Intersections

No connection

No connection

Connection

Connection

Appendix A: Digital LogicA-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

OR-AND Implementation of Majority

F

A B C

A + B + C

A + B + C

A + B + C

A + B + C

Appendix A: Digital LogicA-27

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Multiplexer

0
0
1
1

0
1
0
1

A B

D0

D1

D2

D3

FD0

A

D1

D2

D3

B

F

00
01

10
11

F = A B D
0

+ A B D
1

+ A B D
2

+ A B D
3

D
at

a
In

pu
ts

Control Inputs

Appendix A: Digital LogicA-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of MUX

F

A B

D0

D1

D2

D3

Appendix A: Digital LogicA-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

MUX Implementation of Majority
• Principle: Use the 3 MUX control inputs to select (one at a time)

the 8 data inputs.

A C

F

000
001

010
011

B

100
101

110
111

0
0

0
1

0
1

1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

M

Appendix A: Digital LogicA-30

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

4-to-1 MUX Implements 3-Var Function
• Principle: Use the A and B inputs to select a pair of minterms.

The value applied to the MUX data input is selected from {0, 1,
C, C} to achieve the desired behavior of the minterm pair.

A B

F

00

01
10

11

0

1
C

C

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
1
1
0
1
1
0

F

0
0
0
0
1
1
1
1

A

0

1

C

C

Appendix A: Digital LogicA-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Demultiplexer

F0

A

F1

F2

F3

B

00

01
10

11

D

F 0 = D A B

F 1 = D A B

F 2 = D A B

F 3 = D A B

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

A B

0
0
0
0
1
0
0
0

F0

0
0
0
0
0
1
0
0

F1

0
0
0
0
0
0
1
0

F2

0
0
0
0
0
0
0
1

F3

0
0
0
0
1
1
1
1

D

Appendix A: Digital LogicA-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of DEMUX

A B

F0

F1

F2

F3

D

Appendix A: Digital LogicA-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder

D0

A D1

D2

D3

B

00
01

10
11

0
0
1
1

0
1
0
1

A B

1
0
0
0

D0

0
1
0
0

D1

0
0
1
0

D2

0
0
0
1

D3

D3 = A BD1 = A B D2 = A BD0 = A B

Enable

Enable = 1

0
0
1
1

0
1
0
1

A B

0
0
0
0

D0

0
0
0
0

D1

0
0
0
0

D2

0
0
0
0

D3

Enable = 0

Appendix A: Digital LogicA-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of Decoder

A

B

D0

D1

D2

D3

Enable

Appendix A: Digital LogicA-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder Implementation of Majority
Function

A

C
M

000
001

010
011

B
100
101

110
111

• Note that the en-
able input is not
always present.
We use it when
discussing de-
coders for
memory.

Appendix A: Digital LogicA-36

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Priority Encoder
• An encoder translates a set of inputs into a binary encoding.
• Can be thought of as the converse of a decoder.
• A priority encoder imposes an order on the inputs.
• Ai has a higher priority than Ai+1

0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0

F0 F1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

A1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

A2

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A3

F0

F1

00
01

10
11

A0

A1

A2

A3

F0 = A0 A1 A3 + A0 A1 A2

F1 = A0 A2 A3 + A0 A1

Appendix A: Digital LogicA-37

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Priority
Encoder

F0
A1

A2

A3

F1

A0

Appendix A: Digital LogicA-40

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: Ripple-Carry Addition

Operand A
Operand B

0
0+

00

SumCarry
Out

0
1+

10

1
1+

01

Example:

Carry
Operand A

Operand B
Sum

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

+

Carry In 0 0

1
0+

10

0 0

0
0+

10

1

0
1+

01

1

1
0+

01

1

1
1+

11

1

Appendix A: Digital LogicA-41

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Full Adder

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Bi Ci

0
0
0
0
1
1
1
1

Ai

0
1
1
0
1
0
0
1

Si

0
0
0
1
0
1
1
1

Ci+1

Full
adder

Bi Ai

Ci

Ci+1

Si

Appendix A: Digital LogicA-42

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Four-Bit Ripple-Carry Adder
• Four full adders connected in a ripple-carry chain form a four-bit

ripple-carry adder.

Full
adder

b0 a0

s0

Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Appendix A: Digital LogicA-44

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequential Logic
• The combinational logic circuits we have been studying so far

have no memory. The outputs always follow the inputs.

• There is a need for circuits with memory, which behave differ-
ently depending upon their previous state.

• An example is a vending machine, which must remember how
many and what kinds of coins have been inserted. The machine
should behave according to not only the current coin inserted,
but also upon how many and what kinds of coins have been in-
serted previously.

• These are referred to as finite state machines, because they can
have at most a finite number of states.

Appendix A: Digital LogicA-45

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Classical Model of a Finite State
Machine

• An FSM is com-
posed of a com-
binational logic
unit and delay
elements (called
flip-flops) in a
feedback path,
which maintains
state informa-
tion.

Synchronization
signal

Combinational
logic unit

. . .

. . .

Inputs Outputs

Delay elements (one per state bit)

. . .

D0Q0

DnQn

. . .

. . .
s0

sn

io

ik

fo

fm

State bits

Appendix A: Digital LogicA-46

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

NOR Gate with Lumped Delay

• The delay between input and output (which is lumped at the out-
put for the purpose of analysis) is at the basis of the functioning
of an important memory element, the flip-flop.

A

B
∆τ A + B

Timing Behavior

A + B

A

B

∆τ

0

1

0

1

0

1

Appendix A: Digital LogicA-47

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

S-R Flip-Flop
• The S-R flip-flop is an active high (positive logic) device.

S

R Q

Q

Timing Behavior

Q

S

R

∆τ

Q

2∆τ

∆τ

2∆τ

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

St Rt

0
0
0
0
1
1
1
1

Qt

0
0
1

(disallowed)
1
0
1

(disallowed)

Qi+1

Appendix A: Digital LogicA-48

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

NAND Implementation of S-R Flip-Flop

Q
S

R Q

Q
R

S Q

Q
S

R Q

S

R Q

Q

Appendix A: Digital LogicA-51

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Scientific Prefixes
• For computer memory, 1K = 210 = 1024. For everything else, like

clock speeds, 1K = 1000, and likewise for 1M, 1G, etc.

m

µ

n

p

f

a

10– 3

10– 6

10– 9

10– 12

10– 15

10– 18

K

M

G

T

P

E

103

106

109

1012

1015

1018

Prefix Abbrev. Quantity

milli

micro

nano

pico

femto

atto

Kilo

Mega

Giga

Tera

Peta

Exa

Prefix Abbrev. Quantity

Appendix A: Digital LogicA-52

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Clocked S-R Flip-Flop

• The clock signal, CLK, enables the S and R inputs to the flip-flop.

Q

Q

S

CLK

R

Timing Behavior

Q

S

R

∆τ

Q

2∆τ

CLK

Appendix A: Digital LogicA-53

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Clocked D Flip-Flop
• The clocked D flip-flop, sometimes called a latch, has a potential

problem: If D changes while the clock is high, the output will also
change. The Master-Slave flip-flop (next slide) addresses this prob-
lem.

Q

Q

D

CLK

Circuit

D

Q

Q

C

Symbol

Timing Behavior

Q

D

∆τ

Q

2∆τ

CLK

2∆τ

∆τ

Appendix A: Digital LogicA-59

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: Modulo-4 Counter
• Counter has a clock input (CLK) and a RESET input.

• Counter has two output lines, which take on values of 00, 01, 10,
and 11 on subsequent clock cycles.

3-bit
Synchronous

Counter

0 0 0 0 1 0 1 1 0 0RESET q0

4 3 2 1 04 3 2 1 0 Time (t)Time (t)

0 1 0 1 0

D

Q

Q

CLK

s0

s1

D

Q

Q

q1

s0

s1

Appendix A: Digital LogicA-60

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State
Transition

Diagram for
Mod-4

Counter

A B1/00

0/01

1/00

Output 00
state

Output 01
state

RESET

q1

C D

Output 10
state

Output 11
state

q0

0/10
1/00

0/00

0/11

1/00

Appendix A: Digital LogicA-61

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Table for Mod-4 Counter

Present state

Input RESET

0 1

A B/01 A/00
B C/10 A/00

Next state Output

C D/11 A/00
D A/00 A/00

Appendix A: Digital LogicA-62

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Assignment for Mod-4 Counter

Present
state (St)

Input RESET

0 1

A:00 01/01 00/00
B:01 10/10 00/00

C:10 11/11 00/00
D:11 00/00 00/00

Appendix A: Digital LogicA-63

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Truth Table for Mod-4 Counter

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

s1(t) s0(t)

0
0
0
0
1
1
1
1

RESET
r(t)

01
10
11
00
00
00
00
00

s1s0(t+1)

01
10
11
00
00
00
00
00

q1q0(t+1)

s1(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

s0(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

q1(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

q0(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

Appendix A: Digital LogicA-64

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Design for Mod-4 Counter

CLK

QD

Q

s1

QD

Q

s0

RESET

q1

q0

Appendix A: Digital LogicA-67

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

X

0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0

Appendix A: Digital LogicA-68

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

X
0 1

A: 000 001/0 010/0

Present state

Input

B: 001
C: 010
D: 011
E: 100

011/0 100/0
101/0 110/0
011/0 100/0
101/0 110/1

F: 101 011/0 100/1

S2S1S0 S2S1S0Z S2S1S0Z

G: 110 101/1 110/0

(a)

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

s0 x

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

s1

0
0
0
1
1
1
0
1
1
1
0
1
1
1
d
d

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

s2

(b)

0
1
1
0
0
1
1
0
0
1
1
0
0
1
d
d

1
0
1
0
1
0
1
0
1
0
1
0
1
0
d
d

0
0
0
0
0
0
0
0
0
1
0
1
1
0
d
d

zs0s1s2

Input and
state at
time t

Next state
and output at

time t+1

Appendix A: Digital LogicA-69

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector Logic Diagram

QD

Q
S2

000

001

010

011

100

101

110

111

0

x

1

x

1

x

1

0

QD

Q
S1

000

001

010

011

100

101

110

111

x

0

QD

Q
S0

000

001

010

011

100

101

110

1110

000

001

010

011

100

101

110

111

0

0

0

0

x

0

Z

xx

CLK

x

xx

x

xx

x

xx

xx

xx

xx

xx

xx

xx

x

xx

Appendix A: Digital LogicA-75

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Four-Bit Register
• Makes use of tri-state buffers so that multiple registers can gang

their outputs to common output lines.

D3

Q3

D2

Q2

D1

Q1

D0

Q0

WR

EN

QD

D3

Write (WR)

Enable (EN)

Q3

QD

D2

Q2

QD

D1

Q1

QD

D0

Q0

CLK

Appendix A: Digital LogicA-77

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Modulo-8 Counter
• Note the use of the T flip-flops, implemented as J-K’s. They are

used to toggle the input of the next flip-flop when its output is 1.

Enable (EN)

QJ

Q2

CLK
K

1 QJ

Q1

K

1 QJ

Q0

K

1

RESET

Q2 Q1 Q0

ENABLE

MOD(8) COUNTER

RESET

Timing Behavior

Q0

CLK

Q1

Q2

