
1

The Architecture of Computer
Hardware and System Software

An Information Technology
Approach

by Irv Englander

Chapter 7: The CPU and Memory

Outline
• The Components of the CPU
• The Concept of Registers
• The Memory Unit
• The Computer Operating Cycle (Fetch-

Execute Instruction Cycle)
• Buses

CPU
Registers

ALU
Control

Unit

Computer Hardware Components

Hardware: Input/Output, Memory, Central
Processing Unit (CPU or Microprocessor)

Input/Output
Interface

Memory
RAM

System Block Diagram

7.1 The Components of the CPU
• CPU Consists of Several Integrated Circuits

(ICs). For a Single Chip, CPU is Called:
Microprocessor

• CPU Consists of
– Set of Registers, SRs, which are used to store

instructions, operands, and the result of the ALU
– Arithmetic Logic Unit, ALU, which does all the

arithmetic and most of the logical operations on
operands

– Control Unit, CU, which sequences the operation of
the computer (Computer Cycle).

2

7.2 The Concept of Registers
• A Register is a single, permanent storage location within

the CPU
• Registers may be small as a single bit or wide as several bytes
• Registers are used to hold data, instructions, I/O address, or

special binary codes
• Registers inside the CPU are called:

General-Purposes Registers
• There are some specific registers called:

– Program Counter (PC)
– Instruction Register (IR)
– Memory Address Register (MAR)
– Memory Data Register (MDR) (or MBR)
– Status Register (ST)
– I/O Registers

Operations on Registers

• Data can be loaded from register or
memory into a register

• Data in register can be added/subtracted
to/from another register

• Data in register can be shifted/rotated
right/left by one or more bits

• Data in register can be cleared, set,
complemented or
incremented/decremented by one

Edge triggered D Flip-Flop

Clk

D

Q

Output changes only on the rising edge of the clock

Register is A Group of Flip-Flops

Q
D Cp

Q
D Cp

Q
D Cp

Q
D Cp

I0 I1 I2 I3

A3A2A1A0

Clock

Clear

Register
Clear

Input

Output

3

Simple Shift Register

D Q

Q Clock

D Q

Q

D Q

Q

D Q

Q

In Out

Q 0 Q 1 Q 2 Q 3

t 0
t 1
t 2
t 3
t 4
t 5
t 6
t 7

1
0
1
1
1
0
0
0

0
1
0
1
1
1
0
0

0
0
1
0
1
1
1
0

0
0
0
1
0
1
1
1

0
0
0
0
1
0
1
1

Q 0 Q 1 Q 2 Q 3 Out = In

Serial Input

Parallel Output
Shift Register with Parallel Load

Q3 Q2 Q1 Q0

Clock
Parallel input

Parallel output

Shift/LoadSerialinput

D Q

Q

D Q

Q

D Q

Q

D Q

Q

I0I1I2I3

Parallel Load
Q3 Q2 Q1 Q0

Clock
Parallel input

Parallel output

Shift/LoadSerialinput

D Q

Q

D Q

Q

D Q

Q

D Q

Q

I0I1I2I3

Shift Register
Q3 Q2 Q1 Q0

Clock
Parallel input

Parallel output

Shift/LoadSerialinput

D Q

Q

D Q

Q

D Q

Q

D Q

Q

I0I1I2I3

4

Three-Bit Up-Counter

(a) Circuit

Count 0 1 2 3 4 5 6 7 0

Clock

(b) Timing diagram

Ck

D Q

Q0

D Q

Q1

Ck

D Q

Q2

Ck

Q 0 0 1 0 1 0 1 0 1

Q 1 0 0 1 1 0 0 1 1

Q 2 0 0 0 0 1 1 1 1

Four-Bit Synchronous Up-Counter

T Q

Q Clock

T Q

Q

Enable

Clear

T Q

Q

T Q

Q

General CPU Bus Organization

R0

R1

R2

R3

ALU

Bus A Bus B

Status Register

Bus C

Control
Unit

Control Signals

Control Signals

General-Purposes Registers

Control Signals

Computer Organization
CPU Connection with Memory

Instruction

Data

MAR

Memory
Address Bus

Data Bus

R

W

MDR

PC

IR

Decoder

Control Unit Timing Signal
Clock Pulse

ALU & Registers

PC: Program Counter, DR: Data Register, IR: Instruction Register

5

7.3 The Memory Unit (RAM)
• A Memory Unit is a collection of storage cells together

with associated circuits needed to transfer information
in and out of storage

• A Word is an entity of bits that move in and out of
storage as a unit. It may represent a number, an
instruction code, characters, or any other binary-coded
information

• A Byte is a group of eight bits
• Memory capacity is the total number of bytes that can

be stored
• Number of words and the number of bits in each word

represent the internal structure of the memory

Random-Access Memory (RAM)

MAR: Memory Address Register holds the address of
information to be stored/read from memory.

MDR: Memory Buffer Register holds the data/instruction
to be stored/read from memory.

Instruction

Data
MAR

MDR

Memory Word
Size = n bits

Address Bus

Data Bus

Address Size = k bits

Read
Write

If the MAR size is k, then the
total number of words which
can be addressed is m = 2k

1K of RAM = 1024 = 210

1M of RAM = 1024x1024 = 220

1G of RAM = 1Kx1M = 230

MDR, MAR, and memory MAR-MDR example

6

A visual analogy for memory

7.4 The Fetch-Execute Instruction Cycle

• Program to be executed by computer consists of
sequence of instructions stored in memory

• The CPU executes each instruction of the program
according to a predefined steps

• The Control Unit of the CPU determines these
defined steps according to the Instruction Format
and the Computer Architecture

• A program instruction must contains field for
operation code, field for the address of the operands,
and field to show where the operands are stored,
address modification (they will be discussed in
Chapter 8)

Instruction Codes
• An instruction code is a group of bits that instruct the

computer to perform a specific operation.
• It is divided into three parts:

– 1. The Operation Code: ADD, SUB, MULT, DIV, ..etc. The
number of bits determines the number of
operations. Example: 4-bit size produces 16 Opcodes

– 2. The Address Code: the address of the two operands
– 3. The Address Modification Code: where are the operands

stored

• Instruction Format:

Opcode Operands Address Address Mod

General Form of A Computer Cycle

• Fetch: Read an Instruction From Memory
• Decode: Decode the Instruction; Obtain the

Operation Code and the Operand Address
• Effective Address (EA): Calculate the Address of

the Operands
• Execute: Perform the Required Operation and

Store the Result in memory/register
• Repeat Until the end of Instructions

Fetch Decode EA Execute

7

The Instruction must be Fetched from Memory
Read and Write Cycle

• Write to Memory:
– T0 : AR <- Address, BR <- Data
– T1 W: M[AR] <- BR

• Read from Memory:
– T0 : AR <- Address
– T1 R: BR <- M[AR]

• The Read/Write Cycle
is written in a language called:
Register Transfer Language
T0 & T1 are Timing Signals
AR: Address Register, BR: Buffer Register

Instruction

Data
AR

BR

Memory Word
Size = n bits

Address Bus

Data Bus

Address Size = k bits

R

W

Register Transfer Language

• A Digital System is an interconnection of Digital
hardware Modules that accomplish a specific
information-processing task

• Digital Modules are best defined by the registers they
contain and the operations that are performed on the
data stored in them

• Micro-operation is an elementary operation
performed on the information stored in one or more
registers Examples are shift, clear and load
operations

Register Transfer Language
• The internal Hardware Organization of a digital

computer is best defined by specifying:
1. the set of registers it contains and their function,
2. the sequence of microoperations performed, and
3. the control that initiates the sequence of

microoperations
• A Register Transfer Language is a system for

expressing in Symbolic Form the microoperarion
sequences among the registers of a digital system

• It is a tool for describing the internal organization of a
digital computer in concise and precise manner

continue
Tri-state Buffer

Z: disconnected

8

In-Out control Register Transfer
Register: R1

R2

015
7 6 5 4 3 2 1 0

PC(H) PC(L)

015 78

R2 <---- R1

If (P=1) then (R2 <-- R1)

R2

R1

Control
Circuit

n

P

Load
Clock

Load

t t+1

Clock

8 bits register

16 bits register

Register Transfer continue

T: R2 <-- R1, R1 <-- R2

Symbol Description Example
Letters and numerals Denotes a Register MAR, R2
Parentheses () Denotes a part of Reg. R2(0-7),R2(L)
Arrow <--- Denotes transfer of Inf. R2 <--- R1
Comma, Separates two microop R2 <--R1, R1 <-- R2
Colon: Separate the control from the Operation

Basic Symbols for Register Transfers

Instruction Execution
• The Program Counter, PC, contains the address of

the first instruction of the program
• The first step in the execution of every instruction

will be (put the address of the instruction into the
memory address register)

T0 : MAR Å PC
• The second step will be (read the instruction from

memory and put it in memory data register)
T1 : MDR ÅM[MAR], PC Å PC + 1

• The third step will be (move the instruction from
MDR to the instruction register)

T2 : IR ÅMDR

9

Instruction Execution
• The fourth step will be (decode the instruction and

determine the address of the operands)
T3 : Op-CodeÅ IR [Op-Code], Address Å IR[Address]

• The fifth step will be (execute the instruction which
is instruction dependent on the op-code such as
Load, Add,… etc). In this case, the operands (data)
must be read from memory or they should be stored
in registers as shown

T4 : AÅM[Address]
• Load the operand from memory and put it in the

accumulator register A

continue

CS252/Culler
Lec 1.341/22/02

Levels of Representation (61C Review)

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw$15,0($2)
lw$16,4($2)
sw $16,0($2)
sw $15,4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

°
°

ALUOP[0:3] <= InstReg[9:11] & MASK

CS252/Culler
Lec 1.351/22/02

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-

flight issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

• Instruction 00

10

?
?

???

00

IR

???

ALU

Ctrl

+1

PC

Out In

Beginning, Program & Data in Memory
Reset counter, the Machine in a random state ….

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 000
11 000

0
0

901

00

???

???

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 000
11 000

Instruction Fetch (1) ...
PC → MAR, Read

IR

0
0

901

01

901

???

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 000
11 000

Instruction Fetch (2) ...
MDR → IR, PC↑1

IR
A B

0
0

901

01

901

102

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 000
11 000

Instruction Execute ...
In → Accu

IR
A B

102

11

41

☺ Next instruction: 01

42

0
1

310

01

901

102

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 000
11 000

Instruction Fetch (1) ...
PC → MAR, Read

IR

43

0
1

310

02

310

102

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 000
11 000

Instruction Fetch (2) ...
MDR → IR, PC↑1

IR
A B

44

1
0

102

02

310

102

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 000

Instruction Execute ...
IR[adr] → MAR, Accu → MDR,Write

IR
A B

ACCU

12

45

☺ Next instruction: 02

46

0
2

901

02

310

102

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 000

Instruction Fetch (1) ...
PC → MAR, Read

IR

47

0
2

901

03

901

102

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 000

Instruction Fetch (2) ...
MDR → IR, PC↑1

IR
A B

48

0
2

901

03

901

304

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 000
11 000

Instruction Execute ...
In → Accu

IR
A B

304

13

49

☺ Next instruction: 03

50

0
3

311

03

901

304

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 000

Instruction Fetch (1) ...
PC → MAR, Read

IR

51

0
3

311

04

311

304

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 000

Instruction Fetch (2) ...
MDR → IR, PC↑1

IR
A B

52

1
1

304

04

311

304

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

IR
A B

ACCU

Instruction Execute ...
IR[adr] → MAR, Accu → MDR,Write

14

53

☺ Next instruction: 04

54

0
4

210

04

311

304

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Fetch (1) ...
PC → MAR, Read

IR

55

0
4

210

05

210

304

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Fetch (2) ...
MDR → IR, PC↑1

IR
A B

56

1
0

102

05

210

304

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Execute (1) ...
IR[adress] → MAR , Read

IR
A B

ACCU

15

57

1
0

102

05

210

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Execute (2) ...
ACCU - MDR → ACCU

IR
A B

ACCU

304

58

☺ Next instruction: 05

59

0
5

808

05

210

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Fetch (1) ...
PC → MAR, Read

IR

60

0
5

808

06

808

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Fetch (2) ...
MDR → IR, PC↑1

IR
A B

16

61

0
5

808

08

808

102

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Execute ...
(acc ≥ 0 ⇒ IR[adress] → PC)

IR
A B

ACCU

62

☺ Next instruction: 08

63

0
8

902

08

808

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Fetch (1) ...
PC → MAR, Read

IR

64

0
8

902

09

902

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Fetch (2) ...
MDR → IR, PC↑1

IR
A B

17

65

0
8

902

09

902

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Execute ...
ACCU → OUT

IR
A B

ACCU

202

66

☺ Next instruction: 09

67

0
9

000

09

902

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Fetch (1) ...
PC → MAR, Read

IR

68

0
9

000

10

000

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Fetch (2) ...
MDR → IR, PC↑1

IR
A B

18

69

0
9

000

10

000

202

ALU

Ctrl

+1

PC

Out In

MAR

MDR

00 901
01 310
02 901
03 311
04 210
05 808
06 510
07 211
08 902
09 000
10 102
11 304

Instruction Execute ...
HLT

IR
A B

ACCU

7.5 Buses
• A Bus is a group of electrical conductors suitable

for carrying computer signals from one location to
another

• Buses are used to transfer data/instructions among
computer peripherals, memory and the CPU

• The lines on a bus can be grouped into four
categories:
– Data,
– Addressing,
– Control, and
– Power

Hardware Components Interconnected
with Buses

Serial
Port

Modem

Control
Unit

ALU

Computer Computer

PrinterComputer

CPU

Disk
Controller

Memory

Video
Controller

Point-to-Point Buses MultiPoint Buses

Backplane/System
or External Bus

Typical PC Interconnections
CPU

Disk
Controller

Memory

Video
Card

Bus
Interface

Bus
Interface

Serial Port
Interface

Parallel Port
Interface

CPU Bus

PCI or VESA Bus

ISA Bus

19

Different Buses for Connecting
Different parts of the Computer

• The buses internal to the CPU don’t have a names
• The CPU bus, Peripheral Connect Interface (PCI) or Video Electronic

Standards Association (VESA) local bus, and Industry Standard
Architecture (ISA) bus are all part of the Backplane as shown

• The PCI, VESA local, also known as VL, and ISA buses are examples of
popular modern external buses

• A bus protocol is an agreement between two or more entities that
establish a clear, common path of communication and understanding
between them

• Buses can be characterized by:
– Throughput (Data Transfer Rate, bit/second),
– the Data Width in bits,
– the distance between the two end points,
– the type of control required,
– the type of bus,
– the addressing capacity, and
– the dedicated line or shared line inside the bus

7.6 Timing Issues
• The time of the events at the CPU is synchronized to the

pulses of an electronic clock
• The clock provides a master control as to when each step

in the instruction cycle takes place
• The pulses in the clock is separated sufficiently to assure

that each step has enough time to complete, with the
data settled down, before the results of that step are
required by the next step

• Wait state is provided when the clock pulse is not wide
enough (slow down the speed of the computer)

• Each clock pulse is used to control one step in the
sequence of the instruction execution

• Sometime, additional pulses might be used to control
different details within a single step

