The Instruction Set
Architecture Level

Chapter 5

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

ISA Level

FORTRAN 90
program C program
FORTRAN 90 C program
program compiled compiled
to ISA program to ISA program
Software
ISA level
Hardware
ISA program executed
by microprogram or hardware
Hardware

The ISA level is the interface between the compilers and the hardware.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Memory Models

Address Address
8 Bytes 8 Bytes

24 i |24
i i 16 1918 17 :16 [16
15:14:13:12:11:10: 9 : 8| 8 15:14 113 {12 8
| 0 i 0

Aligned &-byte Monaligned B-byte

word at address 8 word at address 12

(a) (b)

An 8-byte word in a little-endian memory. (a) Aligned. (b) Not

aligned. Some machines require that words in memory be aligned.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Bits = 16 i 8 -] -

Overview of A XA Eax
the Pentium 4 S T

cH_ " L ECX

ISA Level on ®% o | eox

ESI
EDI
EBP

cs
58
The Pentium 4’s primary os
registers. Es
FS
GS

[| ew

| | eFLacs

“Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Overview of the UltraSPARC Il ISA Level (1)

Register | Alt. name Function
RO Go Hardwired to 0. Stores into it are just ignored.
R1-R7 G1-G7 | Holds global variables
R8-R13 00 -05 | Holds parameters to the procedure being called
R14 SP Stack pointer
R15 o7 Scratch register
R16 — R23 LO-L7 Holds local variables for the current procedure
R24-R29 | 10-15 Holds incoming parameters
R30 FP Paointer to the base of the current stack frame
R31 17 Holds return address for the current procedure

The UltraSPARC lII’s general registers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

4095
Overview of the
Program 8051 ISA Level
memory
o [cTA B rs [oBSP]Psw
27 [Eafs]ez [es]er[x1]E0[xo] 1E
e EeEed ez es[e1[x1]ea]xo0] P
S ;; [o1]r1]oo]Ro] E1]T1]E0[TO] TCON
F==22=4 Register banks: === [Timer1 | Tmero |TMOD
- 8 Bits - - & Bits -
(a) (b)

(a) On-chip memory organization for the 8051.
(b) Major 8051 registers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Overview of the RI| G b A& b
UltraSPARC llI i : : :
ISA Level (2) R7 Cll'.l' Global 7 R7| GT Global 7
ﬁ‘ﬂ 9’ CWP=6
ool _
R ief s2 suckpoiec
R16| LD Local 0
. CWP=?
Operation of the { % Res| 17 Local7
3| 00 Ouiging parameler R2d| 0 Incoming parameies O
UltraSPARC 11l I : :
o pol @ Qupmmees| owe g pommpeers
reglster windows. mis| o7 Temeany R31| 7 Rium addross
R16| LO Local 0 i
H Past of
WP PrEVIOUs window
decremanted
R23| L7 Local 7 on call in
24[10 Incoming parameter | ! direction
H H Part of
R23| 15 Incoming parameter 5 previous window
F30| FP Frame pointer
LE Return address
(2 (L]
Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0
Data Types on the Pentium 4
Type 1 Bit | 8 Bits | 16 Bits | 32 Bits | 64 Bits | 128 Bits
Bit
Signed integer % ®
Unsigned integer x x
Binary coded decimal integer x
Floating point ® *

The Pentium 4 numeric data types.
Supported types are marked with x.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Data Types on the UltraSPARC llI

Type 1 Bit | 8 Bits | 16 Bits | 32 Bits | 64 Bits | 128 Bits
Bit
Signed integer ¥ » ® »
Unsigned integer * x x x

Binary coded decimal integer
Floating point x x x

The UltraSPARC Il numeric data types.
Supported types are marked with x.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Data Types on the 8051

Type 1 Bit | 8 Bits | 16 Bits | 32 Bits | 64 Bits | 128 Bits
Bit *
Signed integer .
Unsigned integer

Binary coded decimal integer

Floating point

The 8051 numeric data types.
Supported types are marked with x.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Instruction Formats (1)

OPCODE | | opcok | ADDRESS |
(a) (b)

[opcopE [appREss1|ApDRESS?] [opcope | apori [aporz [ApoRs |
) (A

Four common instruction formats:
(a) Zero-address instruction. (b) One-address instruction
(c) Two-address instruction. (d) Three-address instruction.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Instruction Formats (2)

1 Word 1 Word 1 Word
Instruction Instruction | Instruction Instruction
Instruction Instruction | Instruction Instruction | Instr. | Instr.
Instruction Instruction | Instruction A

. . : Instruction
Instruction Instruction | Instruction
(a) (b) (e}

Some possible relationships between instruction and word length.

“Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Expanding Opcodes (1)

15 14 13 12 11 10 9 B8 7 6 5 4 3 2 1 0

Op(;ode Address 1 Address 2 Address 3

An instruction with a 4-bit opcode and three 4-bit address fields.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Expanding Opcodes (2)

12-bit T 7170 0000 2222 | 4y 4
i -address
opoode 11171110 0001 zzzz instructions
16 bits 1111 1110 1110 2222
111 1110 1111 zzzz
4-9!—--%;:3: Yy gg 15 3-address 1111 1111 0000 zzzz
epeods 0001 oo WYY 2222 | st cions 111 1111 0001 zzez
1100 xxx yyyy ZEEE
101 wox yyyy Zzzz 1111 1111 101 zzzz
1110 xox yyyy zzzz 1M1 111 1110 zzzz
Bbit HITTT 0000 yyyy 2222 | 44 paad 16-bit ——+TT17 1111 1111)
3 -addross W00 46 g-add
opcode 10001 yyyy zzzz opeeds THT 1111 1117 0001 | 5
1111 0010 yyyy zzzz | Instructions 1111 1111 1111 op1g | instructions
1111 1011 yyyy zzzz 1111 1111 1111 1101
1111 1100 yyyy zzzz 1111 1111 1111 1110
1111 1101 yyyy zzzz 1111 1111 111 1
1512118 7 4 3 0 1B12118 7 430
Bit number Bit number

An expanding opcode allowing 15 three-address instructions, 14
two-address instructions, 31 one-address instructions, and 16
zero-address instructions. The fields marked xxxx, yyyy,
and zzzz are 4-bit address fields.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instruction Formats

Byles 0-5 1-2 0-1 0-1 0-4 0-4
PREFIX | OPCODE | MODE | SIB | DISPLACEMENT | IMMEDIATE |

Bits 6 11 Bis 2 3 3

INSTRUCTION [|] SCALE]
T i
Which operand is source?
Byte/word
Bits 2 3 3
[MoD | REG | AM |

The Pentium 4 instruction formats.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instruction Formats

Format _2 5 6 5 1 8 5

1a DEST QOPCODE SRC1 1] FP-QOP SRC2 3 Register

1b DEST | OPCODE | SRC1 |1| IMMEDIATE CONSTANT | Immediate
2 5 3 22

2| | oest | or| IMMEDIATE CONSTANT | seTHI
2 1 4 3 22

3| [l conp | op | PC-RELATIVE DISPLACEMENT | BRANCH
2 30

af | PC-RELATIVE DISPLACEMENT | ca

The original SPARC instruction formats.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

SETHI Instruction

sethi const22,%reg "const22"
sconstant into the high-order 22 bits of the register
*low-order 10 bits set to 0's

sethi 0x333333,%L1;
0x333333 is .
%L1 set to i

set %L1 to 0x89ABCDEF, 32-bit constant

89ABCDEF = 1000 1001 1010 1011 1100 1101 1110 1111
Top 22: 10 0010 0110 1010 1111 0011 = 226AF3
Low 10 bits are 01 1110 1111 = 1EF

sethi 0x226AF3,%L1
or %L1,0x1EF,%L1 ;or is better than add. (WHY?)

The 8051 Instruction Formats

Format

1 1 Accs
2 Reg Accu Op Registre

3 | Opcade | Operand | Accu Op cte immed
4 | Opcode | 11-Bit address
Appel avec/sans mem externe
5 | Opcode | 16-Bit address |
1 | Opcode [Operand 1 | Operand 2 |

Mem interne<constante

The 8051 instruction formats.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Addressing

mov [A1 [4 |

An immediate instruction for loading 4 into register 1.

MOV R1,#0 ; accumulate the sum in R1, initially 0

MOV R2,#A ; R2 = address of the array A

MOV R3,#A+4096 ; R3 = address of the first word beyond A
LOOP: ADD R1,(R2) ; register indirect through R2 to get operand

ADD R2,#4 ; increment R2 by one word (4 bytes)

CMP R2,R3 ; are we done yet?

BLT LOOP ;if R2 < R3, we are not done, so continue

Register Indirect Addressing: a generic assembly program for
computing the sum of the elements of an array.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Indexed Addressing (1)

MQV R1,#0 ; accumulate the OR in R1, initially 0
MOV R2,#0 ; R2 = index, i, of current product: A[i] AND B[i]
MQV R3,#4096 : R3 = first index value not to use
LOOP: MOQV R4,A(R2) ;R4 = Ali]
AND R4,B(R2) ; R4 = Ali] AND Bi]
OR R1,R4 ; OR all the Boolean products into R1
ADD R2,#4 ;i=1+4 (step in units of 1 word = 4 bytes)
CMP R2,R3 ; are we done yet?
BLT LOOP ; if R2 < R3, we are not done, so continue

A generic assembly program for computing the OR of
Ai AND Bi for two 1024-element arrays.

“Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Indexed Addressing (2)

MOV R4 R2 124300

A possible representation of MOV R4,A(R2).

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reverse Polish Notation (1)

California

AN New York
Switch

Each railroad car represents one
symbol in the formula to be
converted from infix to reverse
Polish notation.

Texas

4]

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reverse Polish Notation (2)

Car at the switch

L+ - x /I ()
8 L|lal1|1|1|1]|1]5
EGJ
S +|2]|2|2(1[1]|1]2
=
sg-f2f2f2f[1[1][1]2
=D
So x|2]|2|2|2]2[1]2
uﬁ—'
Se/|2]2|2|2f2]|1]2
W
2 (|s|1|1|1|1]1]3

Decision table used by the infix-to-reverse Polish notation
algorithm

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reverse Polish Notation (3)

Infix Reverse Polish notation
A+BxC ABCx+
AxB+C ABxC+
AxB+CxD ABxCDx+
(A+B)/(C-D) AB+CD-/
AxB/C ABxC/
((A+B)xC+D)(E+F+Q) AB+CxD+EF+G+/

Some examples of infix expressions and
their reverse Polish notation equivalents.

“Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Evaluation of Reverse Polish notation Formulas

Step Remaining string Instruction Stack
1 B25x+132x+4-/ BIPUSH 8 8
2 26x+132x+4-/ BIPUSH 2 8,2
a Exa132x4+4-/ BIPUSH 5 825
4 “4132x+4-/ IMUL 8,10
5 +132x+4-/ 1ADD 18
6 132%x+4-/ BIPUSH 1 18,1
7 32x+4-/ BIPUSH 3 18,1,3
8 2+ 4=/ BIPUSH 2 18,1,3,2
9 4=/ IMUL 18,1, 6
10 +4-/ 1AL 18,7
11 4-/ BIPUSH 4 18.7. 4
12 -/ ISUB 18,3
13 ! DIV 6

Use of a stack to evaluate a reverse Polish notation formula.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Orthogonality of Opcodes and
Addressing Modes (1)

Bits 8 1 5 5 5 2]
1| OPCODE l[o] oest | smRc1 | smca |
2| OPCODE [1] opest | sect | OFFSET
al OPCODE [OFFSET

A simple design for the instruction formats of a three-address
machine.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Orthogonality of Opcodes and
Addressing Modes (2)

Bits 8 3 5 4 3 5 4

OPCODE [voDe] — ReG OFFSET [MODE[REG OFFSET

(Optional 32-bit direct address or offsat)

(Optional 32-bit direct address or offsat)

A simple design for the instruction formats
of a two-address machine.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Addressing Modes (1)

MOD

RM 00 o1 10 11

000 | MIEAX] | MIEAX + OFFSETS] | M[EAX + OFFSET32] | EAX or AL
001 | MIECX] | MIECX + OFFSET8] | M[ECX + OFFSET32]| ECX or CL
010 | M[EDX] M[EDX + OFFSET8] | M[EDX + OFFSET32] | EDX or DL
011 | MEBX] | M[EBX + OFFSET8] | M[EBX + OFFSET32] | EBX or BL
100 | SIB SIB with OFFSET8 | SIB with OFFSET32 | ESP or AH
101 | Direct | M[EBP + OFFSET8] | MEBP + OFFSET32] | EBP or CH
110 | MIESI] | MIESI + OFFSETe] | M[ESI + OFFSET32] | ESlor DH
111 | M[EDI] | MIEDI + OFFSET8] | M[EDI + OFFSET32] | EDIor BH

The Pentium 4 32-bit addressing modes. M[x]
is the memory word at x.

“Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Addressing Modes (2) Discussion of Addressing Modes
Addressing mode | Pentium 4 | UltraSPARC Il 8051
e EaE /i EAX Accumulator X
n
Other . Immediate X X x
local
variables Direct X X
SIB Mode references ;
Stack alo] ~—EBP +8 M[4 * EAX + EBP + 8] Register X X x
frame Register indirect X X X
a[1] —— EBP + 12
- —— Indexed X X
a2 - * Based-indexed X
Stack
Access to a[i]. A comparison of addressing modes.
Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0 Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0
Loop Control Input/Output (1)
i=1; i i=1;
) L1: if (i > n) goto L2; Character available Ready for next character
L1: first-statement; first-statement;)
Keyboard status Display status
Ld L4
| |\ ! L { |
s mee [P S - Interrupt enabled Interrupt enabled
i=i+1; i=i+1;
if (i < n) goto L1; goto L1; Keyboard buffer Display buffer
L2: l Character received] | Character to display |
(a) (b)
(a) Test-at-the-end loop. .)]]
(b) Test-at-the-beginning loop. Device registers for a simple terminal.
Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0 Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Input/Output (2)

/f Qutput a block of data to the device
int status, i, ready;

for (i = 0; i < count; i++) {

do {
status = in(display_status_reg); Il get status
ready = (status >> 7) & 0x01; /! isolate ready bit

} while (ready != 1);
out(display_buffer_reg, buf[i]);

An example of programmed I/O.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Terminal

Input/Output (3)

Address
CPU \, DMA Memory
Count| T 100|- -
~__32] i ligo | RS232C
4 Controller
71 - :
A
Device Direction
Bus

A system with a DMA controller.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instructions (1)

Moves
MOV DST.SRC Move SRC to DST
PUSH SRC Push SRC onto the stack
POP DET Pop a word from the stack o DST
XCHG DS1,082 Exchangs D31 and DS2
LEA DST,SRC Lead effective addr of SAC into DST
CMOVce DET.5RC | Conditional move

Arithmetic
ADD DST SAC Add SAC 1o DST
SUB DST.SRC Subtract SAC from DST

MUL SRC Multiply EAX by SRC (unsigned)
IMUL SRC Multiply EAX by SRC {signed)

DIV SRC Divide EDX.EAX by SRC (unsigned)
DIV SRC Divide EDX.EAX by SRC (signed)

ADC DST,SRC Adgd SAC to DST, then add canry bit
SBB DST.SAC Subtract SAC & canry from DST

INC DST Add 1 to DST
DEC DT Subtract 1 from DST
NEG DST MNegale DST (subtract it from 0}

A selection of the Pentium 4 integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instructions (2)

Binary coded decimal

DaA Decimal adust
DAS Decimal adjust for sublraction
AAA ASCI adjust for addition
AAS ASCI adjust for subtraction
AAM ASCI adjust for mubtiplication
AAD ASCI adjust for division
Boolean

AND DST SRC Boolean AND SRC inta DST
OR DST,SRC Boolean OR SAC inta DET
XOR DST.SAC Boolean Exclusive OR SAC to DST
NOT DST Replace DST with 1's complement

Shift/rotate
SALSAR DSTN Shift DST lefright # bits
SHL/SHR DET # Logical shift DST left/right # bits
ROL/ROR DST,# Rotale DST left/right # bits
RCL/RCA DST.# Fotate DST through carry # bits

A selection of the Pentium 4 integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instructions (3)

Test/compare

TEST SRC1.8RC2

| Beolean AND operands, sel llags

CMP SRC1,5RC2

| Setilags based on SAC1 - SRC2

Transfer of control

JMP ADDR Jump to ADDR

Jux ADDR Conditional jumps based on flags

CALL ADDR Call procedure al ADDR

RET Return from procedure

IRET Retum from intermpt

LOOPxx Loop wntil condition met

INT Initiale a software intermspt

INTO Interrupt it overflow bit is sat
Strings

LODS Load string

STOS Store string

MOVS Move string

CMPS Compare twa sirings

SCAS Scan Strings

A selection of the Pentium 4 integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instructions (4)

Condition codes

STC Sat carry bit in EFLAGS registor SWAP DST Change endianness of DST

CLC Clear carry bit in EFLAGS registar owo Extand EAX 1o EDX-EAX for division
cmC Complement carry bit in EFLAGS CWDE Extond 16-bit number in AX to EAX
STD Sel direcbion bil in EFLAGS register ENTER SIZELV | Creale slack frame with SIZE byles
cLD Clear direclion bil in EFLAGS reg LEAVE Undo stack frame built by ENTER
ST St interrupt bit in EFLAGS register HOP No opesation

cu Clear intarrupt bit in EFLAGS reg HLT Halt

PUSHFD Push EFLAGS regisier onto stack IN AL.FORT Input a byle from FORT o AL
POPFD Pop EFLAGS register from stack QUT POAT.AL Output & byte from AL to PORT
LAHF Load AH from EFLAGS register WAIT Wait for an interrupt

SAHE Shara A BFLAGS rogletar SRC = source ¥ = shiftrotate count

DST = destination

LV = ¥ locals

A selection of the Pentium 4 integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (1)

Loads

LDSBE ADDR,DST
LDUB ADDR,DST

Load signed byte (8 bits)
Load unsigned byte (B bits)

LDSH ADDR,DST
LDUH ADDR DST

Load signed halfword (16 bits)
Load unsigned haltword (16)

LDSW ADDR,DST
LDUW ADDR.DST| Load unsigned word (32 bits)

Load signed word (32 bits)

LDX ADDR,DST

Load extended (64-bits)

Stores
STB SRC,ADDR | Store byte (8 bits)
STH SRC,ADDR | Store haltword (16 bits)
STW SRC,ADDR | Store word (32 bits)
S5TX SAC,ADDR | Store extended (64 bits)

The primary UltraSPARC Il integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (2)

Arithmetic
ADD R1,52,DST | Add
ADDCC * Add and sel icc
ADDC . Add with carry
ADDCCC Add with carry and set icc
SUB R1,52,D5T Subiract
suecc ¢ Subtract and set icc
SUBC - Sublract with carry
suBCCC * Subtract with carry and set icc

MULX R1,82,08T | Mulliply
SDIVX R1,52,DST | Signed divide
UDIVX R1,52,0ST | Unsigned divide

TADCC R1,52,DST| Tagged add

The primary UltraSPARC Il integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

10

The UltraSPARC Il Instructions (3)

Shifts/rotates
SLL R1,82,DS8T Shift left logical {32 bits)
SLLX R1,52,D3T | Shift left logical extended (64)
SRL R1,82,0S8T | Shift right lagical (32 bits)
SRLX R1,52,0ST | Shift right logical extended (64)
5RA R1,52,D5T | Shifi right arithmetic (32 bits)
SRAX R1,52,D5T | Shift right arithmetic ext. (64)

Miscellaneous
SETHI CON,DST | Set bits 1010 31
MOVee CC,52,05T Move on condition
MOVrR1,52,DST | Move on register
MOP Mo operation
POPC 51,D5T Population count
RDCCR V,DST Read condition code register
WRCCR R1,52,V | Write condition code register
RDPC V,DST Read program counter

The primary UltraSPARC Il integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (4)

Boolean
AND R1,52 DST Boolean AND
ANDCC ¢ Boolean AND and set icc
ANDN » Boolean NAND
ANDNCG * Boolean NAND and set icc
OH A1,52,DST Boolean OR
ORCC * Boolean OR and set icc
ORN “ Boolean NOR
ORNCC Boolean NOR and set ico
XOR R1,52DST | Boolean XOR
XORCC ¢ Boaolean XOR and sel icc
XNOR “ Boolean EXCLUSIVE NOR
XNORCC * Boolean EXCL. NOR and set icc

The primary UltraSPARC Il integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (5)

Transfer of control

BPcc ADDR Branch with prediction
BPr SAC.ADDR | Branch on register
CALL ADDR Call procedure

RETURN ADDR | Retumn from procedure
JMPL ADDR,DST | Jump and link

SAVE R1,52,DST | Advance register windows
RESTORE ~ Restore register windows
Tec CC,TRAP# Trap on condition
PREFETCH FCM | Prefetch data from memory
LDSTUB ADDRR | Atomic load/store
MEMBAR MASK | Memory barriar

The UltraSPARC Il Instructions (6)

SRC = source register TRAP# = trap number CC = condition code set
DST = destination register FCM = function code R =destinalion register
R1 = source register MASK = operation type cc = condition

52 = source: register or immediate COM = constant r=LZLEZZNZGZGEZ

ADDR = memory address

V = register designator

The primary UltraSPARC Il integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Instruction How to do it
MOV SRC,DST OR SRC with GO and store the result DST
CMP SRC1,3RC2 SUBCC SRC2 from SRC1 and store the result in GO
TST SRC ORCC SRC with GO and store the result in GO
NOT DST XNOR DST with GO
NEG DST SUB DST from GO and store in DST
INC DST ADD 1 to DST (immediate operand)
DEC DST SUB 1 from DST (immediate operand)
CLR DST OR GO with G0 and store in DST
NOP SETHIGOto O
RET JMPL %I748,%G0

Some simulated UltraSPARC Il instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

11

8051 Instructions (1)

8051 Instructions (2)

Inst. Description ACC |Reg | Dir | @R | # | C | Bit
MOV Move srcto ACC * * * *
MOV Move sreto register » ® *
MOV Maove srcto me'mnry x x x x x
MoV Move src to indirect RAM x ® *
MOV Move 16-bit constant to DPTR
MOVC | Move code to ACC offset from DPTR
MOVC | Move code to ACC ofiset from PC
MOVX | Move | RAM byte to ACC x
MOVX | Move ext. RAM byte to ACC @DPTR
MOVX | Move to ext. RAM byte from ACC *
MOVX | Move to ext. RAM byte from ACC @DPTH
PUSH | Push src byte to stack *

FOP Pop stack byte to dst *
XCH E ACC and dst * b «
XCHD | Exchange low-order digit ACC and dst b
SWAP | Swap nibbles of dst B
ADD Add srcto ACC * B x x
The 8051 Instruction set.
Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0
8051 Instructions (3)

Inst. Description ACC | Reg | Dir | @R | # | C | Bit
XAL XOR srcto ACC * * * *
XAL XOR ACC to dst *

XAL XOR immediate to dst x
CLR Clear dst *

CPL Complement dst *

RL Rotate dst left x
RLC Rotate dst left through carry x
RR Rotate dst right *

RRC Rotate dst right through carry *

The 8051 Instruction set.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The 8051 Instruction set.

Inst. Description ACC | Reg | Dir | @R | # Bit
ADDC | Add sicto ACC with carry * * * *
SUBB | Subtract src from ACC with borrow x * * *

ING Increment dst x x x x
DEC Decrement dst * B B :-<
INC DPTR
MuL Multiply
DIV Divide
DA Decimal adjust dst %
ANL AND src to ACC x b * *
ANL | AND AGC to dst x
ANL AND immediate to dst *
ORL OH sre to ACC * * * *
ORL OHR ACC to dst =
OAL OR immediate lo dst *
The 8051 Instruction set.
Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. Allrights reserved. 0-13-148521-0
8051 Instructions (4)

Inst. Description ACC | Reg | Dir | @R Bit
CLR Clear bit =
SETB Set bit *
CPL Complement bit ®
AML AND sreto cany ®
ANL AND complement of src to carry ®
ORL OR sreto camy ®
ORL OR [of sic to carry X
MOV Move s to camry x
MOV Move carry to src x
Jv Jump relative if carry set
JNG Jump relative if carry not set
JB Jump relative if direct bit set ®
JNB Jump relative it direct bit not set ®
JBC Jump rel. it direct bit sa.t and carry clear ®

12

8051 Instructions (5)

Inst. Description ACC | Reg | Dir | @R | # C | Bit
ACALL | Call subroutine (11-bit addr)
LCALL Call subroutine (16-bit addr)
RET Retum from subroutine

RETI Retum from interrupt

SIMP Shont relative jump (8-bit addr)
AJMP Absolute jump (11-bit addr)
LJMP Absolute jump (16-bit addr)

JMP Jump indirect rel, to DPR+ACC

JZ Jump if ACC js zero

JNZ Jump if ACC is nonzero

CJNE Comp. sreto ACC, jump unequal ® x
CJNE Comp. sre to immediate, jump unequal ® *
DJNZ Decrement dst and jump nonzero

| NOP No operation

The 8051 Instruction set.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Sequential Flow of Control and Branches

\

Jumps

Program counter
Program counter

Time Time
(a) (b)

Program counter as a function of time (smoothed).
(a) Without branches. (b) With branches.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (1)

Peg 1 Peg 2 Peg 3
-' Z/ -

D)
Si=

Initial configuration for the Towers of Hanoi problem for five disks.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (2)
ﬁ

Initial state ==

First move 2 disks

from peg 1 to peg 2 EB |

The steps required to solve the Towers of Hanoi for three disks.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

13

Recursive Procedures (3)

Then move 1 disk
from peg 1 1o peg 3 3
—
&S] =
Finally move 2 disks —
frompeg 2topeg 3 _'3\
- T _-_,—o—"/

The steps required to solve the Towers of Hanoi for three disks.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (4)

public void towers(int n, inti, intj) {

int k;
if (n==1)

System.out.printin("Move a disk from " +i+ "to " + j);
else {

k=6-i-j;

towers(n — 1, i, k);
towers(1, i, j);
towers(n - 1, k, j);

A procedure for solving the Towers of Hanoi.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (5)

Address

5P —- [5P — k 1068

1 Old FP = 1024 ——Old FP = 1024 | 1064

Return addr Return addr | 1060

j=3 j=2 1056

i=1 i=1 1052

FP -~ n=1 FP -1~ n=1 1048

Sp —={ K k=3 K k=3 1044

+ Old FP = 1000 | 11 Old FP = 1000 | — Old FP = 1000 | 11 Old FP = 1000 | 1040

Return addr Return addr Return addr Return addr | 1036

j=2 j=2 j=2 j=2 1032

i=1 i=1 i=1 i=1 1028

FP n=2 1 n=2 n=2 -] n=2 1024

8P —= K k=2 k=2 k=2 k=2 1020
Old FP Old FP Oid FP Oid FP Old FP 1016

Return addr Return addr Return addr Return addr Return addr 1012

j=3 j=3 j=3 j=3 j=3 1008

i=1 i=1 i=1 i=1 i=1 1004

FP —= n=3 n=3 - n=3 n=3 - n=3 1000

(a) (b} {c) (d) (&)

The stack at several points during the execution of Fig. 5-42.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

- Al Coroutines (1)

Calling
procedure procedure

Acalled —e—t
from main
program

When a procedure is called,
execution of the procedure
always begins at the first
statement of the procedure.

A returns —a—
o main
program

“Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

14

Coroutines (2)

{a}

(1]

A called ——w—t
from main E_'_'_'_,___a_eg\,l_“.él’—-f

A returns

o main
program

1 AESUME 4

t——PESUME 4 |
| pESUMES,

|
“%j
™~

%

When a coroutine is resumed, execution begins at the

statement where it left off the previous time, not at the beginning.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Interrupts

Disk interrupt
priority 4 held pending

AS232 ISR finishes
disk interrupt occurs

RS232 in_Ier_rupl
priority 5 Disk ISR finishes
Printer interrupt Printer 1SR finishes
pricrity 2
1
(V] 10 15 20 2 35 40
L l | |
- T T - - - - T -
User iPrinter] RS232 | Disk iPrteri User M°
program } ISR | ISR ISR} ISR | program
H i
H i
U User User ' Stack
T

Time sequence of multiple interrupt example.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in Pentium 4 Assembly Language (1)

5BE

MODEL FLAT

PUBLIC _towers

EXTERM _printhNEAR

.CODE

towers: PUSH EBP

MOV EBP, ESP
CMP [EBP+8]. 1
JNE L1
MOV EAX, [EBP+16]
PUSH EAX
MOV EAX, [EBP+12]
PUSH EAX
PUSH OFFSET FLAT:format
CALL _printf
ADD ESP, 12
JMP Done

; compille for Pentium (as opposed to BOBE etc.)

3 export ‘towers’
< impor printt

: save EBP (frame pointer) and decrement ESP
: sel new frame pointer above ESP

Mn==1)
; branch If nis not 1
s print(* .00

: note that parameters i, j and the format

; string are pushed onto the stack

3 In reverse order. This Is the € calling convention
; offset flat means the address of format

s call printf

; remove params from the stack

3 we are finlshed

Towers of Hanoi for Pentium 4.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in Pentium 4 Assembly Language (2)

L1 MOV EAX, 6
SUB EAX, [EBP+12]
SUB EAX, [EBP+16]
MOV [EBP+20], EAX
PUSH EAX
MOV EAX. [EBP+12]
PUSH EAX
MOV EAX, [EEP+8]
DEC EAX
PUSH EAX
CALL _towers
ADD ESP, 12
MOV EAX, [EBP+18]
PUSH EAX
MOV EAX, [EBP+12]
PUSH EAX
PUSH 1
CALL _towers

islan k= 6-i-|

TEAR =6 -1
JEAX=6-1-|

i k=EAX

: star towers(n - 1,0, k)
(EAX =1

;push |

JEAX =n

tEAX =n-1

Tpushn-1

s call towers(n - 1,1, 6 -1~)
; remove params from the stack
3 stant towers(1, L, J)

push |

iEAX =1

;push |

;push 1

s call towers(1, i,)

Towers of Hanoi for Pentium 4.

“Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

15

Towers of Hanoi in Pentium 4 Assembly Language (3)

ADD ESP, 12
MOV EAX, [EBP+12]
PUSH EAX
MOV EAX, [EBP+20]
PUSH EAX
MOV EAX, [EBP+8]
DEC EAX
PUSH EAX
CALL _towers
ADD ESP, 12
Done: LEAVE
RET O
DATA

: remove params from the slack
cstant towersin-1.6-1-J. 1)
;push |

(EAX =k

push k

(EAX =N

;EAX =n-1

;pushn—1

ccall towersin =1, 6=1=], i)
: adjust stack pointer

i prepare to exit

; retumn to the caller

format DB *Move disk from %d lo %din® ; formal string

END

Towers of Hanoi for Pentium 4.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in UltraSPARC IlI

#define N %0

ddefine 1 %01

idefine J %2

#define K %:10

#define Param0 .00

#define Param1 201

define Parama2 %002

#deline Scralch %1
proc 04
-global towers

Assembly Language (1)

£ Nis input parameter 0 */

* lis Input parameter 1 */

/* J is input parameter 2 */

/* K is local varable 0 */

 Param0 is output parameter 0 */

/* Param1 is output parameter 1 */

/* Param2 is output paramater 2 */

/* as an aside, cpp uses the C comment convention */

towers: save %sp, -112, %sp

cmp N, 1
bna Else

sethi *zhi{formal), Param0

tn==1)
tif (n 1= 1) goto Else

! printf{*Move a disk from %d to %ed\n®, I, j)

or Param0, %lo(format). Param0 | Param = address of format siring

mov |, Param1
call printt

maw J, Param2
b Done

nop

! Parami =1

! call printf BEFORE parameter 2 (j) is sat up

! use the delay slot after call to set up parameter 2
! we are done now

Hill delay slot

Towers of Hanoi for UltraSPARC llI.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Else:

Towers of Hanoi in UltraSPARC Il
Assembly Language (2)

mov 8, K
sub K, J, K
sub K, LK

add M, -1, Scratch
mov Scratch, Param0
mav |, Param1

call towers

mov K, Param2

mov 1, Param@
mov |, Param1
call towars
maov J, Param2

Istart k= 6 -i - |
1k=6-]

! start towers(n — 1, 1, k)

! Scratch =n=1

! parameter 1 =i

! call towers BEFORE parameter 2 (k) is set up

! use the delay siot after call 1o set up parameter 2

! start towers(1, i, j)
! parameter 1 = |
! call towers BEFORE parameter 2 (j) Is set up
| paramater 2 = |

Towers of Hanoi for UltraSPARC IlI.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in UltraSPARC IlI

mov Scralch, Param0
mav K, Param1

call towers

mov J, Param2

Done: ret
restore

Assembly Language (3)

! start towers(n - 1, k.)
| parameter 1=K
| call towers BEFORE parameter 2 (]} Is set up
| parameter 2=

! return
! use the delay slot after ret to restore windows

formal: asciz "Move a disk from %ed to Sedn®

Towers of Hanoi for UltraSPARC IlI.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

16

Reducing Memory References

64 1-Bit
predicate
registers

128 General 128 Floating-point 128 Application
registers registers registers

96
Registers
usedasa 4 8 Branch

register registers
stack /
32 Static

registers{ E E %’

The Itanium 2’s registers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Instruction Scheduling

Bits 41 41 4 5
Instruction 2 | Instruction 1 | Instruction 0 [‘
/"’ “>~._ Template
Bits .4 10 7 7 7 8~
‘ | ORP.TYPE | REGISTER 3 | REGISTER 2 | REGISTER 1 ‘ ‘
OPERATION GROUP PREDICATE REGISTER

An 1A-64 bundle contains three instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reducing Conditional Branches: Predication (1)

if (R1==0) CMP R1,0 CMOVZ R2,R3,R1
R2 =R3; BNE L1
MOV R2,R3
L1:
(a) (b) (c)

(a) An if statement.
(b) Generic assembly code for a).
(c) A conditional instruction.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reducing Conditional Branches: Predication (2)

if (R1==0){ CMP R1,0 CMOVZ R2,R3,R1
R2 =R3; BNE L1 CMOVZ R4,R5,R1
R4 = R5; MOV R2,R3 CMOVN R6,R7,R1
}else { MOV R4.R5 CMOVN R8,R9,R1
R6 =R7; BR L2
R8 = R9; L1: MOV R6,R7
} MOV R8,R9
L2:
@) ©

(a) An if statement.
(b) Generic assembly code for a).
(c) Conditional instruction.

“Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

17

Reducing Conditional Branches: Predication (3)

if (R1 == R2) CMP R1,R2 CMPEQ R1,R2,P4
R3 =R4 +R5; BNE L1 <P4> ADD R3,R4,R5
else MOV R3,R4 <P5> SUB R6,R4,R5
R6 =R4 -R5 ADD R3,R5
BR L2
L1: MOV R6,R4
SUB R6,R5
L2:

(@) (b) (©)

(a) An if statement.
(b) Generic assembly code for a).
(c) Predicated instruction.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

18

