

Appendix A - Digital Logic Translates a set of inputs into a set of outputs according to one or more mapping functions. Inputs and outputs for a CLU normally have two distinct (binary) values: high and low, 1 and 0, 0 and 1, or 5 v. and 0 v. for example. The outputs of a CLU are strictly functions of the inputs, and the outputs are updated immediately after the inputs change. A set of inputs i0 – in are presented to the CLU, which produces a set of outputs according to mapping functions f0 – fm

		Principle of duality: The dual of a Boolean function is gotten by			
1	Relationship	Dual	Property	replacing AND with OR and OR with AND,	
	AB = BA	A + B = B + A	Commutative	constant 1s by 0s, and 0s by 1s	
alates	A(B+C) = AB + AC	$A+B\ C\ =\ (A+B)\ (A+C)$	Distributive	, ·-	
Post	1 A = A	0 + A = A	Identity	Postulates	
	$A\overline{A} = 0$	$A + \overline{A} = 1$	Complement	L Î	
	0A = 0	1 + A = 1	Zero and one theorems	Postulat	
	A A = A	A + A = A	Idempotence		
	A (B C) + (A B) C	A + (B + C) = (A + B) + C	Associative	Theorems	
rem	$\overline{A} = A$		Involution		
Theo	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \overline{B}$	DeMorgan's Theorem		
	$AB + \overline{AC} + BC$ = $AB + \overline{AC}$	$(A+B)(\overline{A}+C)(B+C)$ = $(A+B)(\overline{A}+C)$	Consensus Theorem	А, В, etc. are Literals; 0 and	
	A(A+B) = A	A + AB = A	Absorption Theorem	1 are	

A-47				Ap	pendix A - Digital Logic						
Scientific Prefixes											
• For computer memory, $1K = 2^{10} = 1024$. For everything else, like clock speeds, $1K = 1000$, and likewise for 1M, 1G, <i>etc.</i>											
Prefix	Abbrev.	Quantity	Prefix	Abbrev.	Quantity						
milli	m	10^{-3}	Kilo	К	10^{3}						
micro	μ	10^{-6}	Mega	М	10^{6}						
nano	n	10^{-9}	Giga	G	109						
pico	р	10^{-12}	Tera	Т	1012						
femto	f	10^{-15}	Peta	Р	10 ¹⁵						
atto	а	10^{-18}	Exa	Е	1018						
Principles of Computer A	rchitecture by M. Mu	rdocca and V. Heuring		© 1999 M. I	Murdocca and V. Heuring						

A-63 Seq	uence Dete	ctor	Stat	Appendix A - Digital Logic e Table
	Input		Х	
	Present state	0	1	
	A	B/0	C/0	
	C B	D/0 F/0	E/0 G/0	
		D/0 E/0	E/0	
	F E	D/0	E/1	
	G	F/1	G/0	
Principles of Computer Archited	cture by M. Murdocca and V. Heuring			© 1999 M. Murdocca and V. Heuring

