

B-5	Appendix B - Reduction of Digital Logic
The Algebraic	Method
 Consider the majority function, F. We to reduce F to its minimal two-level for 	
$F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$	
$F = \overline{A}BC + A\overline{B}C + AB(\overline{C} + C) \text{Dis}$	tributive Property
$F = \overline{A}BC + A\overline{B}C + AB(1) \qquad \text{Corr}$	nplement Property
$F = \overline{A}BC + A\overline{B}C + AB \qquad \text{Iden}$	ntity Property
$F = \overline{A}BC + A\overline{B}C + AB + ABC$	Idempotence
$F = \overline{A}BC + AC(\overline{B} + B) + AB$	Identity Property
$F = \overline{A}BC + AC + AB \qquad \text{Comp}$	blement and Identity
$F = \overline{A}BC + AC + AB + ABC$ Idem	potence
$F = BC(\overline{A} + A) + AC + AB$ Distri	butive
F = BC + AC + AB Complem	nent and Identity
Principles of Computer Architecture by M. Murdocca and V. Heuring	© 1999 M. Murdocca and V. Heuring

B-24				Appen	dix B - Reduction of Digital Logic
Mult	tiple (Dutp	out	Truth	Table
• The power of t	- abular rec	- duction	con	nes into play	
	Minterm	A B	С	$F_0 F_1 F_2$	
	m_0	0 0	0	1 0 0	
	m_1 m_2	$\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}$	-	$ \begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} $	
	m_3 m_4	$ \begin{array}{ccc} 0 & 1 \\ 1 & 0 \end{array} $	1 0	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	
	m_5 m_6	$ 1 0 \\ 1 1 $	1 0	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}$	
	m ₇	1 1	1	1 1 1	

© 1999 M. Murdocca and V. Heuring

Page 6

Principles of Computer Architecture by M. Murdocca and V. Heuring

Sequence Detecto	
Input	
Present state A: A' BD: B' C: C' E: D' F: E'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
G: F'	E'/1 F'/0

			•							a serial adder for	
R, T, and J	-K flip	o-fl	ops.	Sha	dec	d fur	nct	ion	s ar	e used in the exam	ple.
	X		Present State S_t	D	(Set) (S	(Reset) R	Т	J	K	z	
	0	0	0	0	0	0	0	0	d	0	
	0	0	1	0	0	1	1	d	1	1	
	0	1	0	0		0	0		d	1	
	0	1	1	1		0		d		0	
	1	0	0	0	0			0		1	
	1	0	1	1	0	0		d	0 d	0	
	1		0	1	0	0	1 0	d	0	0	

