
Page 1

Fondements de la conception des
ordinateurs

Prof. David A. Patterson

CS252/Culler
Lec 1.21/22/02

January 22, 2002
Prof. David E Culler

Computer Science 252
Spring 2002

CS252
Graduate Computer Architecture

Lecture 1

Introduction

Plan de cours (avant)

Introduction, architecture du jeu d'instructions
performance, coût (1 ::1,2)
Introduction à la modélisation du matériel, niveaux
d’abstraction (2::notes)
Pipelines (1::3)
Pipelines avancés et parallélisme au niveau

d’instructions (2::4)
Mémoires cache et virtuelle (révision) (1::5)
Réseaux d’interconnexion (2::7)
Multiprocesseurs, traitement vectoriel (1::8)
Cohérence de caches, synchronisation (1::8)
Consistance de mémoire; conclusions (1::8)

Edition 3
• Ch1 - Fundamentals of Computer Design

Ch2 - Instruction Set Principles and Examples
Ch3 - Instruction-Level Parallelism and Its Dynamic Exploitation
Ch4 - Exploiting Instruction-Level Parallelism with Software
Approaches
Ch5 - Memory Hierarchy Design
Ch6 - Multiprocessors and Thread-Level Parallelism
Ch7 - Storage Systems
Ch8 - Interconnection Networks and Clusters
App A - Pipelining: Basic and Intermediate Concepts
App B - Solutions to Selected Exercises Online Appendices
App C - A Survey of RISC Architectures for Desktop, Server, and
Embedded Computers
App D - An Alternative to RISC: The Intel 80x86
App E - Another Alternative to RISC: The VAX Architecture
App F - The IBM 360/370 Architecture for Mainframe Computers
App G - Vector Processors Revised by Krste Asanovic
App H - Computer Arithmetic by David Goldberg
Appendix I - Implementing Coherence Protocols

Page 2

Evaluation

• Travaux pratiques 30%
– (4 et projet pour IFT6380)

• Examen intra 30%
ME 15:30 17:30 2003-02-19 A-A 1355

• Examen final 40%

Plan

• Introduction
• Tâches d’un concepteur
• Tendances technologiques
• Tendances dans le coût
• Peformances : mesures
• Principes quantitatifs
• Conclusion

CS252/Culler
Lec 1.71/22/02

Why take CS252?

• To design the next great instruction set?...well...
– instruction set architecture has largely converged
– especially in the desktop / server / laptop space
– dictated by powerful market forces

• Tremendous organizational innovation relative to
established ISA abstractions

• Many New instruction sets or equivalent
– embedded space, controllers, specialized devices, ...

• Design, analysis, implementation concepts vital to all
aspects of EE & CS
– systems, PL, theory, circuit design, VLSI, comm.

• Equip you with an intellectual toolbox for dealing with
a host of systems design challenges

CS252/Culler
Lec 1.81/22/02

Example Hot Developments ca. 2002
• Manipulating the instruction set abstraction

– itanium: translate ISA64 -> micro-op sequences
– transmeta: continuous dynamic translation of IA32
– Xsilica: synthesize the ISA from the application
– reconfigurable HW

• Virtualization
– vmware: emulate full virtual machine
– JIT: compile to abstract virtual machine, dynamically compile

to host
• Parallelism

– wide issue, dynamic instruction scheduling, EPIC
– multithreading (SMT)
– chip multiprocessors

• Communication
– network processors, network interfaces

• Exotic explorations
– nanotechnology, quantum computing

Page 3

DAP.S98 9

Original Food Chain Picture

Big Fishes Eating Little Fishes

DAP.S98 10

1988 Computer Food Chain

PCWork-
stationMini-

computer

Mainframe

Mini-
supercomputer

Supercomputer

Massively Parallel
Processors

DAP.S98 11

1998 Computer Food Chain

PCWork-
station

Mainframe

Supercomputer

Mini-
supercomputerMassively Parallel Processors

Mini-
computer

Now who is eating whom?

Server

DAP.S98 12

Why Such Change in 10 years?
• Performance

– Technology Advances
» CMOS VLSI dominates older technologies (TTL, ECL) in

cost AND performance
– Computer architecture advances improves low-end

» RISC, superscalar, RAID, …

• Price: Lower costs due to …
– Simpler development

» CMOS VLSI: smaller systems, fewer components
– Higher volumes

» CMOS VLSI : same dev. cost 10,000 vs. 10,000,000 units
– Lower margins by class of computer, due to fewer services

• Function
– Rise of networking/local interconnection technology

Page 4

DAP.S98 13
Year

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000

i80386

i4004

i8080

Pentium

i80486

i80286

i8086

Technology Trends:
Microprocessor Capacity

CMOS improvements:
• Die size: 2X every 3 yrs
• Line width: halve / 7 yrs

“Graduation Window”

Alpha 21264: 15 million
Pentium Pro: 5.5 million
PowerPC 620: 6.9 million
Alpha 21164: 9.3 million
Sparc Ultra: 5.2 million

Moore’s Law

CS252/Culler
Lec 1.141/22/02

A take on Moore’s Law

Tr
an

si
st

or
s

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008
i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

DAP.S98 15

Memory Capacity
(Single Chip DRAM)

size

Year

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

year size(Mb) cyc time
1980 0.0625 250 ns
1983 0.25 220 ns
1986 1 190 ns
1989 4 165 ns
1992 16 145 ns
1996 64 120 ns
2000 256 100 ns

DAP.S98 16

Technology Trends
(Summary)

Capacity Speed (latency)
Logic 2x in 3 years 2x in 3 years
DRAM 4x in 3 years 2x in 10 years
Disk 4x in 3 years 2x in 10 years

Page 5

DAP.S98 17

Processor Performance
Trends

Microprocessors

Minicomputers

Mainframes

Supercomputers

Year

0.1

1

10

100

1000

1965 1970 1975 1980 1985 1990 1995 2000

DAP.S98 18

Processor Performance
(1.35X before, 1.55X now)

0

200

400

600

800

1000

1200

87 88 89 90 91 92 93 94 95 96 97

DEC Alpha 21264/600

DEC Alpha 5/500

DEC Alpha 5/300

DEC Alpha 4/266
IBM POWER 100

DEC
AXP/
500

HP
9000/
750

Sun
-4/
260

IBM
RS/

6000
MIPS

M/
120

MIPS
M

2000

1.54X/yr

DAP.S98 20

Performance Trends
(Summary)

• Workstation performance (measured in Spec
Marks) improves roughly 50% per year
(2X every 18 months)

• Improvement in cost performance estimated
at 70% per year

Page 6

DAP.S98 21

Measurement and Evaluation

Design

Analysis

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas
Mediocre Ideas

Bad Ideas

Cost /
Performance
Analysis

CS252/Culler
Lec 1.221/22/02

What is “Computer Architecture”?

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
Architecture

Firmware

• Coordination of many levels of abstraction
• Under a rapidly changing set of forces
• Design, Measurement, and Evaluation

Datapath & Control

Layout

DAP.S98 23

Computer Architecture Topics

Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, DSP

Addressing,
Protection,
Exception Handling

L1 Cache

L2 Cache

DRAM

Disks, WORM, Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction
Level Parallelism

DAP.S98 24

Computer Architecture Topics

M

Interconnection NetworkS

PMPMPMP ° ° °

Topologies,
Routing,
Bandwidth,
Latency,
Reliability

Network Interfaces

Shared Memory,
Message Passing,
Data Parallelism

Processor-Memory-Switch

Multiprocessors
Networks and Interconnections

Page 7

DAP.S98 25

Course Focus
Understanding the design techniques, machine

structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications
Interface Design

(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
• Instruction Set Design
• Organization
• Hardware

DAP.S98 26

Topic Coverage
Textbook: Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 2nd Ed., 1996.

• 1.5 weeks Review: Fundamentals of Computer Architecture (Ch. 1),
Instruction Set Architecture (Ch. 2), Pipelining (Ch. 3)

• 1 week: Pipelining and Instructional Level Parallelism (Ch. 4)
• 2.5 weeks: Vector Processors and DSPs (Appendix B)
• 1 week: Memory Hierarchy (Chapter 5)
• 1.5 weeks: Input/Output and Storage (Chapter 6)
• 1.5 weeks: Networks and Interconnection Technology (Chapter 7)
• 1.5 weeks: Multiprocessors (Ch. 8 + Culler book draft Chapter 1)
• Research Guest Lectures: Reconfigurable MPer(“BRASS”),

DRAM+MPer(“IRAM”), Systems of Systems (“Millennium”)

DAP.S98 27

Computer Engineering
Methodology

Technology
Trends

DAP.S98 28

Computer Engineering
Methodology

Evaluate ExistingEvaluate Existing
Systems for Systems for
BottlenecksBottlenecks

Technology
Trends

Benchmarks

Page 8

DAP.S98 29

Computer Engineering
Methodology

Evaluate ExistingEvaluate Existing
Systems for Systems for
BottlenecksBottlenecks

Simulate NewSimulate New
Designs andDesigns and

OrganizationsOrganizations

Technology
Trends

Benchmarks

Workloads
DAP.S98 30

Computer Engineering
Methodology

Evaluate ExistingEvaluate Existing
Systems for Systems for
BottlenecksBottlenecks

Simulate NewSimulate New
Designs andDesigns and

OrganizationsOrganizations

Implement NextImplement Next
Generation SystemGeneration System

Technology
Trends

Benchmarks

Workloads

Implementation
Complexity

DAP.S98 31

Measurement Tools

• Benchmarks, Traces, Mixes
• Hardware: Cost, delay, area, power estimation
• Simulation (many levels)

– ISA, RT, Gate, Circuit

• Queuing Theory
• Rules of Thumb
• Fundamental “Laws”/Principles

DAP.S98 32

The Bottom Line:
Performance (and Cost)

• Time to run the task (ExTime)
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns … (Performance)
– Throughput, bandwidth

Plane

Boeing 747

BAD/Sud
Concodre

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

Page 9

DAP.S98 33

The Bottom Line:
Performance (and Cost)

"X is n times faster than Y" means

ExTime(Y) Performance(X)
--------- = ---------------

ExTime(X) Performance(Y)

• Speed of Concorde vs. Boeing 747

• Throughput of Boeing 747 vs. Concorde

DAP.S98 34

Amdahl's Law
Speedup due to enhancement E:

ExTime w/o E Performance w/ E
Speedup(E) = ------------- = -------------------

ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F
of the task by a factor S, and the remainder of the
task is unaffected

DAP.S98 35

Amdahl’s Law

ExTimenew = ExTimeold x (1 - Fractionenhanced) + Fractionenhanced

Speedupoverall =
ExTimeold

ExTimenew

Speedupenhanced

=
1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

DAP.S98 36

Amdahl’s Law

• Floating point instructions improved to run 2X;
but only 10% of actual instructions are FP

Speedupoverall =

ExTimenew =

Page 10

DAP.S98 37

Amdahl’s Law

• Floating point instructions improved to run 2X;
but only 10% of actual instructions are FP

Speedupoverall = 1
0.95

= 1.053

ExTimenew = ExTimeold x (0.9 + .1/2) = 0.95 x ExTimeold

DAP.S98 38

Metrics of Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month
Operations per second

DAP.S98 39

Aspects of CPU Performance
CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X
DAP.S98 40

Cycles Per Instruction

CPU time = Cycle Time * Σ CPI * IC
i = 1

n

i i

CPI = Σ CPI * F where F = IC
i = 1

n

i i i i
Instruction Count

“Instruction Frequency”

Invest Resources where time is Spent!

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

“Average Cycles per Instruction”

Page 11

DAP.S98 41

Example: Calculating CPI

Typical Mix

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)

1.5

DAP.S98 42

SPEC: System Performance
Evaluation Cooperative

• First Round 1989
– 10 programs yielding a single number (“SPECmarks”)

• Second Round 1992
– SPECInt92 (6 integer programs) and SPECfp92 (14 floating point

programs)
» Compiler Flags unlimited. March 93 of DEC 4000 Model 610:
spice: unix.c:/def=(sysv,has_bcopy,”bcopy(a,b,c)=

memcpy(b,a,c)”
wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200
nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

• Third Round 1995
– new set of programs: SPECint95 (8 integer programs) and

SPECfp95 (10 floating point)
– “benchmarks useful for 3 years”
– Single flag setting for all programs: SPECint_base95,

SPECfp_base95

DAP.S98 43

How to Summarize Performance
• Arithmetic mean (weighted arithmetic mean)

tracks execution time: Σ(Ti)/n or Σ(Wi*Ti)
• Harmonic mean (weighted harmonic mean) of

rates (e.g., MFLOPS) tracks execution time:
n/Σ (1/Ri) or n/Σ(Wi/Ri)

• Normalized execution time is handy for scaling
performance (e.g., X times faster than
SPARCstation 10)

• But do not take the arithmetic mean of
normalized execution time,
use the geometric mean (Π(Ri))

1/n

DAP.S98 44

Temps d’execution

401101001Total

201001000P2

20101P1

CBA

Qui est plus rapide que qui?

Page 12

DAP.S98 45

Moyenne arith. pondérée

20.0010.092.00Moy
(.999,.001)

2018.1991.91Moy
(.909,.091)

20.0055.00500.5Moy (0.5-0.5)

20.00100.001000.00P2

20.0010.00 1.00P1

CBA

DAP.S98 46

Normalisation

12.7525.030.3619.10.040.111Tps
Tot

11.581.580.63110.6311MG

12.7525.031.115.0510.015.051MA

1550.2110.020.11P2

1.5.05210.120101P1

CBACBACBA

Normalisé à CNormalisé à BNormalisé à A

DAP.S98 47

SPEC First Round
• One program: 99% of time in single line of code
• New front-end compiler could improve dramatically

Benchmark

0

100

200

300

400

500

600

700

800

gc
c

ep
re

ss
o

sp
ic

e

do
du

c

na
sa

7 li

eq
nt

ot
t

m
at

rix
30

0

fp
pp

p

to
m

ca
tv

DAP.S98 48

Impact of Means on
SPECmark89 for IBM 550

Ratio to VAX: Time: Weighted Time:
Program Before After Before After Before After
gcc 30 29 49 51 8.91 9.22
espresso 35 34 65 67 7.64 7.86
spice 47 47 510 510 5.69 5.69
doduc 46 49 41 38 5.81 5.45
nasa7 78 144 258 140 3.43 1.86
li 34 34 183 183 7.86 7.86
eqntott 40 40 28 28 6.68 6.68
matrix300 78 730 58 6 3.43 0.37
fpppp 90 87 34 35 2.97 3.07
tomcatv 33 138 20 19 2.01 1.94
Mean 54 72 124 108 54.42 49.99

Geometric Arithmetic Weighted
Arith.

Ratio 1.33 Ratio 1.16 Ratio 1.09

Page 13

DAP.S98 49

Performance Evaluation
• “For better or worse, benchmarks shape a field”
• Good products created when have:

– Good benchmarks
– Good ways to summarize performance

• Given sales is a function in part of performance
relative to competition, investment in improving
product as reported by performance summary

• If benchmarks/summary inadequate, then choose
between improving product for real programs vs.
improving product to get more sales;
Sales almost always wins!

• Execution time is the measure of computer
performance! DAP.S98 50

IC cost = Die cost + Testing cost + Packaging cost
Final test yield

Die cost = Wafer cost
Dies per Wafer * Die yield

Dies per wafer = Π * (Wafer_diam / 2)2 – Π * Wafer_diam – Test
dies

Die Area √ 2 * Die Area

Die Yield = Wafer yield * 1 + Defects_per_unit_area * Die_Area
α

Integrated Circuits Costs

Die Cost goes roughly with die area4

{
− α

}

DAP.S98 51

Real World Examples

Chip Metal Line Wafer Defect Area Dies/ Yield Die Cost
layers width cost /cm2 mm2 wafer

386DX 2 0.90 $900 1.0 43 360 71% $4
486DX2 3 0.80 $1200 1.0 81 181 54% $12
PowerPC 601 4 0.80 $1700 1.3 121 115 28% $53
HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73
DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149
SuperSPARC 3 0.70 $1700 1.6 256 48 13% $272
Pentium 3 0.80 $1500 1.5 296 40 9% $417

– From "Estimating IC Manufacturing Costs,” by Linley Gwennap,
Microprocessor Report, August 2, 1993, p. 15

DAP.S98 52

Cost/Performance
What is Relationship of Cost to Price?

• Component Costs
• Direct Costs (add 25% to 40%) recurring costs: labor,

purchasing, scrap, warranty

• Gross Margin (add 82% to 186%) nonrecurring costs:
R&D, marketing, sales, equipment maintenance, rental, financing
cost, pretax profits, taxes

• Average Discount to get List Price (add 33% to 66%): volume
discounts and/or retailer markup

Component
Cost

Direct Cost

Gross
Margin

Average
Discount

Avg. Selling Price

List Price

15% to 33%
6% to 8%

34% to 39%

25% to 40%

Page 14

DAP.S98 53

Calcul des coûts

coût composante 100 33%
coûts directs 25% 125 8%
coûts non-recurrents 82% 228 34%
marge d'escompte 33% 303 25%

Marge Prix %P.V.
coût composante 100 15%
coût direct 40% 140 6%
coûts non-recurrents 186% 400 39%
marge d'escompte 66% 665 40%

DAP.S98 54

• Assume purchase 10,000 units

Chip Prices (August 1993)

Chip Area Mfg. Price Multi- Comment
mm2 cost plier

386DX 43 $9 $31 3.4 Intense CompetitionIntense Competition
486DX2 81 $35 $245 7.0 No CompetitionNo Competition
PowerPC 601 121 $77 $280 3.6
DEC Alpha 234 $202 $1231 6.1 Recoup R&D?
Pentium 296 $473 $965 2.0 Early in shipments

DAP.S98 55

Summary: Price vs. Cost

0%

20%

40%

60%

80%

100%

Mini W/S PC

Average Discount

Gross Margin

Direct Costs

Component Costs

0

1

2

3

4

5

Mini W/S PC

Average Discount

Gross Margin

Direct Costs

Component Costs

4.7
3.8

1.8

3.5
2.5

1.5

DAP.S98 56

Computer Architecture Is …

the attributes of a [computing] system as seen
by the programmer, i.e., the conceptual
structure and functional behavior, as distinct
from the organization of the data flows and
controls the logic design, and the physical
implementation.

Amdahl, Blaaw, and Brooks, 1964

SOFTWARESOFTWARE

Page 15

DAP.S98 57

Computer Architecture’s
Changing Definition

• 1950s to 1960s: Computer Architecture Course
Computer Arithmetic

• 1970s to mid 1980s: Computer Architecture Course
Instruction Set Design, especially ISA appropriate
for compilers

• 1990s: Computer Architecture Course
Design of CPU, memory system, I/O system,
Multiprocessors

DAP.S98 58

Instruction Set Architecture (ISA)

instruction set

software

hardware

DAP.S98 59

Interface Design
A good interface:

• Lasts through many implementations (portability,
compatability)

• Is used in many differeny ways (generality)
• Provides convenient functionality to higher levels
• Permits an efficient implementation at lower levels

Interface
imp 1

imp 2

imp 3

use

use

use

time

DAP.S98 60

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000, . . .1987)

Page 16

DAP.S98 61

Evolution of Instruction Sets

• Major advances in computer architecture are
typically associated with landmark instruction
set designs

– Ex: Stack vs GPR (System 360)

• Design decisions must take into account:
– technology
– machine organization
– programming languages
– compiler technology
– operating systems

• And they in turn influence these

DAP.S98 62

A "Typical" RISC

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store:

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

DAP.S98 63

Example: MIPS

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

DAP.S98 64

Summary, #1
• Designing to Last through Trends

Capacity Speed
Logic 2x in 3 years 2x in 3 years
DRAM 4x in 3 years 2x in 10 years
Disk 4x in 3 years 2x in 10 years

• 6yrs to graduate => 16X CPU speed, DRAM/Disk size

• Time to run the task
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns, …
– Throughput, bandwidth

• “X is n times faster than Y” means
ExTime(Y) Performance(X)
--------- = --------------
ExTime(X) Performance(Y)

Page 17

DAP.S98 65

Summary, #2

• Amdahl’s Law:

• CPI Law:

• Execution time is the REAL measure of computer
performance!

• Good products created when have:
– Good benchmarks, good ways to summarize performance

• Die Cost goes roughly with die area4

• Can PC industry support engineering/research
investment?

Speedupoverall =
ExTimeold

ExTimenew

=
1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

