
Page 1

DAP Spr.‘98 ©UCB 1

Lecture 2: Review of Pipelines

CS252/Culler
Lec 1.21/22/02

The Instruction Set: a Critical Interface

instruction set

software

hardware

CS252/Culler
Lec 1.31/22/02

Instruction Set Architecture
... the attributes of a [computing] system as seen
by the programmer, i.e. the conceptual structure
and functional behavior, as distinct from the
organization of the data flows and controls the logic
design, and the physical implementation.

– Amdahl, Blaaw, and
Brooks, 1964

SOFTWARESOFTWARE
-- Organization of Programmable

Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

CS252/Culler
Lec 1.41/22/02

Organization
Logic Designer's View

ISA Level

FUs & Interconnect

• Capabilities & Performance
Characteristics of Principal
Functional Units

– (e.g., Registers, ALU, Shifters, Logic
Units, ...)

• Ways in which these components
are interconnected

• Information flows between
components

• Logic and means by which such
information flow is controlled.

• Choreography of FUs to
realize the ISA

• Register Transfer Level (RTL)
Description

Page 2

CS252/Culler
Lec 1.51/22/02

Review: MIPS R3000 (core)
0r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage
2^32 x bytes
31 x 32-bit GPRs (R0=0)
32 x 32-bit FP regs (paired DP)
HI, LO, PC

Data types ?
Format ?
Addressing Modes?

Arithmetic logical

Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,

AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI

SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access

LB, LBU, LH, LHU, LW, LWL,LWR

SB, SH, SW, SWL, SWR

Control

J, JAL, JR, JALR

BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

CS252/Culler
Lec 1.61/22/02

Review: Basic ISA Classes
Accumulator:
1 address add A acc ← acc + mem[A]
1+x address addx A acc ← acc + mem[A + x]

Stack:
0 address add tos ← tos + next

General Purpose Register:
2 address add A B EA(A) ← EA(A) + EA(B)
3 address add A B C EA(A) ← EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra ← Rb + Rc

load Ra Rb Ra ← mem[Rb]
store Ra Rb mem[Rb] ← Ra

CS252/Culler
Lec 1.71/22/02

Instruction Formats
Variable:

Fixed:

Hybrid:

…

•Addressing modes
–each operand requires addess specifier => variable format

•code size => variable length instructions
•performance => fixed length instructions

–simple decoding, predictable operations

•With load/store instruction arch, only one memory
address and few addressing modes
•=> simple format, address mode given by opcode

CS252/Culler
Lec 1.81/22/02

MIPS Addressing Modes & Formats
• Simple addressing modes
• All instructions 32 bits wide

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

• Register Indirect?

Page 3

CS252/Culler
Lec 1.91/22/02

Cray-1: the original RISC

Op
015

Rd Rs1 R2

2689

Load, Store and Branch

35

Op
015

Rd Rs1 Immediate

2689 35 15 0

Register-Register

CS252/Culler
Lec 1.101/22/02

VAX-11: the canonical CISC

• Rich set of orthogonal address modes
– immediate, offset, indexed, autoinc/dec, indirect,

indirect+offset
– applied to any operand

• Simple and complex instructions
– synchronization instructions
– data structure operations (queues)
– polynomial evaluation

OpCode A/M A/M A/M

Byte 0 1 n m

Variable format, 2 and 3 address instruction

CS252/Culler
Lec 1.111/22/02

Review: Load/Store Architectures

MEM reg

° Substantial increase in instructions
° Decrease in data BW (due to many registers)
° Even more significant decrease in CPI (pipelining)
° Cycle time, Real estate, Design time, Design complexity

° 3 address GPR
° Register to register arithmetic
° Load and store with simple addressing modes (reg + immediate)
° Simple conditionals

compare ops + branch z
compare&branch
condition code + branch on condition

° Simple fixed-format encoding

op

op

op

r r r

r r immed

offset

CS252/Culler
Lec 1.121/22/02

MIPS R3000 ISA (Summary)
• Instruction Categories

– Load/Store
– Computational
– Jump and Branch
– Floating Point

» coprocessor
– Memory Management
– Special

R0 - R31

PC
HI
LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

Registers

Page 4

CS252/Culler
Lec 1.131/22/02

Levels of Representation (61C Review)

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw$15,0($2)
lw$16,4($2)
sw $16,0($2)
sw $15,4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

°
°

ALUOP[0:3] <= InstReg[9:11] & MASK

CS252/Culler
Lec 1.141/22/02

Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

CS252/Culler
Lec 1.151/22/02

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-

flight issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

CS252/Culler
Lec 1.161/22/02

Fast, Pipelined Instruction Interpretation

Instruction Register

Operand Registers

Instruction Address

Result Registers

Next Instruction

Instruction Fetch

Decode &
Operand Fetch

Execute

Store Results

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

NI
IF

D
E

W

Time

Registers or Mem

Page 5

DAP Spr.‘98 ©UCB 17

Pipelining: It’s Natural!

• Laundry Example
• Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

DAP Spr.‘98 ©UCB 18

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

DAP Spr.‘98 ©UCB 19

Pipelined Laundry
Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

DAP Spr.‘98 ©UCB 20

Pipelining Lessons
• Pipelining doesn’t help

latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Page 6

DAP Spr.‘98 ©UCB 21

Computer Pipelines

• Execute billions of instructions, so
throughput is what matters

• DLX desirable features: all instructions same
length, registers located in same place in
instruction format, memory operands only in
loads or stores

+ N'est pas visible au programmeur

CS252/Culler
Lec 1.221/22/02

5 Steps of MIPS Datapath
Figure 3.1, Page 130, CA:AQA 2e

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

DAP Spr.‘98 ©UCB 23

Steps 1 & 2

• IF - instruction fetch step
IR <-- Mem[PC]: fetch the next instruction from memory
NPC <-- PC + 4 : compute the new PC

done in parallel with opcode decode
• ID - instruction decode and register fetch step

– A <-- Regs[IR 6.. 10]
– B <-- Regs[IR 11.. 16]

• Possible since register specifiers are encoded in fixed fields
• We may fetch register contents that we don’t use but OK since

the operands will be ready if the opcode is of the type that does
use them

• Also calculate the sign extended immediate in case that’s the
value that the opcode needs

CS252/Culler
Lec 1.241/22/02

5 Steps of MIPS Datapath
Figure 3.4, Page 134 , CA:AQA 2e

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

Page 7

CS252/Culler
Lec 1.251/22/02

Visualizing Pipelining
Figure 3.3, Page 133 , CA:AQA 2e

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

DAP Spr.‘98 ©UCB 26

Its Not That Easy for
Computers

• Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

– Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

– Control hazards: Pipelining of branches & other instructions
that change the PC

– Common solution is to stall the pipeline until the hazard is
resolved, inserting one or more “bubbles” in the pipeline

DAP Spr.‘98 ©UCB 27

A
LU

A
LU

RegRegMem Mem

RegMem Mem

Time (in Clock Cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

RegMem Mem RegA
LU

RegMem Mem RegA
LU

RegMem Mem

A
LU

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

One Memory Port/Structural Hazards
Figure 3.6, Page 142

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
DAP Spr.‘98 ©UCB 28

A
LU

A
LU

RegRegMem Mem

RegMem Mem

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

CC 8

RegMem Mem RegA
LU

RegMem Mem RegAL
U

RegMem MemA
LU

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

FIGURE 3.6 A machine with only one memory port will generate a conflict whenever a memory reference occurs.

Page 8

DAP Spr.‘98 ©UCB 29

A
LU

A
LU

RegRegMem Mem

RegMem Mem

Time (in Clock Cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

RegMem Mem RegA
LU

RegMem Mem

A
LU

Load

Instruction 1

Instruction 2

Instruction 3

stall bubble bubble bubble bubble bubble

One Memory Port/Structural Hazards
Figure 3.7, Page 143

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

stall

Instr 3
DAP Spr.‘98 ©UCB 30

AL
U

AL
U

RegRegMem Mem

RegMem Mem

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

CC 8

RegMem Mem RegAL
U

RegMem MemAL
U

Load

Instruction 1

Instruction 2

Stall

Instruction 3

Bubble Bubble Bubble Bubble Bubble

FIGURE 3.7 The structural hazard causes pipeline bubbles to be inserted.

DAP Spr.‘98 ©UCB 31

Speed Up Equation for
PipeliningCPIpipelined = Ideal CPI

+ Pipeline stall clock cycles per instr

Speedup = Ideal CPI x Pipeline depth Clock Cycleunpipelined
Ideal CPI + Pipeline stall CPI Clock Cyclepipelined

Speedup = Pipeline depth Clock Cycleunpipelined
1 + Pipeline stall CPI Clock Cyclepipelined

x

x

DAP Spr.‘98 ©UCB 32

Example: Dual-port vs. Single-port
• Machine A: Dual ported memory
• Machine B: Single ported memory, but its pipelined

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33
• Machine A is 1.33 times faster

Page 9

DAP Spr.‘98 ©UCB 33

Reg

Reg

IM DM

RegIM DM

RegIM DM

RegIM

RegIM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in Clock Cycles)

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

Pr
o

g
ra

m
 E

xe
cu

tio
n

 O
rd

er
 (i

n
 In

st
ru

ct
io

n
s) Reg

Data Hazard on R1
Figure 3.9, page 147

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB

DAP Spr.‘98 ©UCB 34

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

R1, R2, R3

Reg

DM

DM

DM

ADD

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Reg

Reg Reg

RegIM

IM

IM

IM

IM

Reg

AL
U

A
LU

A
LU

AL
U

Reg

Pr
og

ra
m

 e
xe

cu
tio

n
or

de
r (

in
 in

st
ru

ct
io

ns
)

FIGURE 3.9 The use of the result of the instruction in the next three instructions causes a hazard, since the ADD
register is not written until after those instructions read it.

DAP Spr.‘98 ©UCB 35

DM

DM

DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Reg

Reg

A
LU

AL
U

AL
U

AL
U

Reg

Reg

RegIM

IM

IM

IM

IM

Reg

Reg

P
ro

gr
am

 e
xe

cu
tio

n
or

de
r (

in
 in

st
ru

ct
io

ns
)

FIGURE 3.10 A set of instructions that depend on the result use forwarding paths to avoid the data hazard.ADD

DAP Spr.‘98 ©UCB 36

Three Generic Data Hazards
InstrI followed by InstrJ

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

Page 10

DAP Spr.‘98 ©UCB 37

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

R1, R2, R3

DM

DM

DM

ADD

LW R4, 0(R1)

SW 12(R1), R4

Reg

Reg Reg

RegIM

IM

IM A
LU

AL
U

A
LU

Reg

Pr
og

ra
m

 e
xe

cu
tio

n
or

de
r (

in
 in

st
ru

ct
io

ns
)

FIGURE 3.11 Stores require an operand during MEM, and forwarding of that operand is shown here.

DAP Spr.‘98 ©UCB 38

Three Generic Data Hazards
InstrI followed by InstrJ

• Write After Read (WAR)
InstrJ tries to write operand before InstrI reads i

– Gets wrong operand

• Can’t happen in DLX 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

DAP Spr.‘98 ©UCB 39

Three Generic Data Hazards
InstrI followed by InstrJ

• Write After Write (WAW)
InstrJ tries to write operand before InstrI writes it

– Leaves wrong result (InstrI not InstrJ)

• Can’t happen in DLX 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated pipes

DAP Spr.‘98 ©UCB 40

RegIM DM

RegIM DM

RegIM

RegIM

CC 1 CC 2 CC 3 CC 4 CC 5

Time (in Clock Cycles)

LW R1,0(R1)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9
Pr

o
g

ra
m

 E
xe

cu
tio

n
 O

rd
er

 (i
n

 In
st

ru
ct

io
n

s) RegI
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure 3.12, Page 153

Page 11

DAP Spr.‘98 ©UCB 41

DMA
LU

A
LU

A
LU

DM

CC 1 CC 2 CC 3 CC 4 CC 5

Time (in clock cycles)

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Reg

Reg

RegIM

IM

IM

IM Reg

Reg

Pr
og

ra
m

 e
xe

cu
tio

n
or

de
r (

in
 in

st
ru

ct
io

ns
)

FIGURE 3.12 The load instruction can bypass its results to the and instructions, but not to the , since AND OR SUB
that would mean forwarding the result in "negative time." DAP Spr.‘98 ©UCB 42

DM

DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Reg AL
U

A
LU

AL
U

Reg

Reg

RegIM

IM

IM

IM Reg

P
ro

gr
am

 e
xe

cu
tio

n
or

de
r (

in
 in

st
ru

ct
io

ns
)

Bubble

Bubble

Bubble

FIGURE 3.13 The load interlock causes a stall to be inserted at clock cycle 4, delaying the instruction and those SUB
that follow by one cycle.

DAP Spr.‘98 ©UCB 43

A = B + C

WBMEMEXIDCaleIFsw a, ra

WBMEMEXCaleIDIFadd ra,rb,rc

WBMEMEXIDIFlw rc, c

WBMEMEXIDIFlw rb,b

DAP Spr.‘98 ©UCB 44

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid
Load Hazards

Page 12

Data Flow Graph Scheduling using DFG

DAP Spr.‘98 ©UCB 47

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid
Load Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd DAP Spr.‘98 ©UCB 48

HW Change for Forwarding
Figure 3.20, Page 161

M
u
x

Data

ALU

Memory

M
u
x

Zero?

ID/EX EX/MEM MEM/WB

Page 13

DAP Spr.‘98 ©UCB 49

Data
memory

ALU

Zero?

ID/EX EX/MEM MEM/WB

M
u
x

M
u
x

FIGURE 3.20 Forwarding of results to the ALU requires the addition of three extra
inputs on each ALU multiplexer and the addition of three paths to the new inputs.

DAP Spr.‘98 ©UCB 50

Data
memory

ALU

Sign
extend

PC
Instruction

memory

ADD

IF/ID

4

ID/EX EX/MEM MEM/WB

IR6..10

MEM/WB.IR

M
u
x
M
u
x

M
u
x

IR11..15

R
eg

is
te

rs

Branch
taken

IR

16 32

M
u
x Zero?

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.

511998 Morgan Kaufmann Publishers

• When we decide to branch, other instructions are in the pipeline!

• We are predicting “branch not taken”
– need to add hardware for flushing instructions if we are wrong

Branch Hazards

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program�
execution�
order�
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

Control Hazard on Branches Three Stage Stall DAP Spr.‘98 ©UCB 52

Branch Stall Impact

• If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!
• Two part solution:

– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• DLX branch tests if register = 0 or not 0
• DLX Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3

Page 14

DAP Spr.‘98 ©UCB 53

M
u
x

Data

ALU

Sign
extend

16 32

Memory

PC

Memory
Instruction

ADD

ADD

IF/ID

4

ID/EX EX/MEM MEM/WB

M
u
x

M
u
x

IR6..10

MEM/WB.IR

M
u
x

IR

IR11..15

Registers

Zero?

Pipelined DLX Datapath
Figure 3.22, page 163

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.
This is the correct 1 cycle
latency implementation!

DAP Spr.‘98 ©UCB 54

Data
ALU

Sign
extend

16 32

memory

PC

Instruction
memory

ADD

ADD
IF/ID

4

ID/EX

EX/MEM MEM/WB

IR6..10

MEM/WB.IR

IR11..15

R
eg

ist
er

s

Zero?

M
u
x

M
u
x

M
u
x

IR

FIGURE 3.22 The stall from branch hazards can be reduced by moving the zero test and branch target calculation
into the ID phase of the pipeline.

DAP Spr.‘98 ©UCB 55

Percentage of instructions executed
0% 25%5% 10% 15% 20%

10%

0%

0%

2%

1%

2%

6%

4%
4%

6%

2%
2%

11%

8%
4%

12%

4%
3%

11%

1%
4%

22%

2%
2%

11%

3%
3%

9%
0%

1%

Forward conditional
branches

Unconditional branchesBackward conditional
branches

Benchmark

compress

eqntott

espresso

gcc

li

doduc

ear

hydro2d

mdljdp

su2cor

FIGURE 3.24 The frequency of instructions (branches, jumps, calls, and returns)
that may change the PC.

DAP Spr.‘98 ©UCB 56

Fraction of all
conditional branches

0%

80%

10%

20%

30%

40%

50%

70%

60%
61%

21%

14%

53%

37%38%

26%

34%

13%

44%

16%

35%

25%

63%

8%

51%

22%

78%

3%

21%

Backward takenForward taken

Benchmark

co
mpre

ss
eq

nto
tt

esp
res

so

gc
c li dod

uc
ea

r
hy

dr
o2

d

mdlj
dp

su2
co

r

FIGURE 3.25 Together the forward and backward taken branches account for an average of 67% of all conditional
branches.

Page 15

DAP Spr.‘98 ©UCB 57

Four Branch Hazard Alternatives
#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% DLX branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average
– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

DAP Spr.‘98 ©UCB 58

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instructionsequential successor1sequential successor2........sequential successorn
branch target if taken

– 1 slot delay allows proper decision and branch target address in 5
stage pipeline

– DLX uses this

Branch delay of length n

DAP Spr.‘98 ©UCB 59

Delayed Branch

• Where to get instructions to fill branch delay slot?
– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful

in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines,
multiple instructions issued per clock (superscalar)

Page 16

DAP Spr.‘98 ©UCB 61

Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

DAP Spr.‘98 ©UCB 62

Pipelining Introduction
Summary

• Just overlap tasks, and easy if tasks are independent
• Speed Up Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined

