€s252
Graduate Computer Architecture

Lecture 18:
Branch Prediction + analysis resources => ILP

April 2, 2002
Prof. David E. Culler
Computer Science 252

Spring 2002

€s252/Culler
4/2/02 Lec 18.1

Review: Case for Branch Prediction
when
Issue N instructions per clock cycle

1. Branches will arrive up to n times faster in
an n-issue processor

2. Amdahl's Law => relative impact of the
control stalls will be larger with the lower
potential CPI in an n-issue processor

conversely, need branch prediction to ‘see’
potential parallelism

€s252/Culler

4/2/02 Lec 18.3

4/2/02

Today's Big Idea

* Reactive: past actions cause system to
adapt use
- do what you did before better
- ex: caches
- TCP windows
- URL completion, ...
+ Proactive: uses past actions to predict
future actions
- £ﬁmize speculatively, anticipate what you are about to

- branch prediction
- long cache blocks
- ???

€s252/Culler
Lec 18.2

4/2/02

Review: 7 Branch Prediction Schemes

. 1-bit Branch-Prediction Buffer

. 2-bit Branch-Prediction Buffer

. Correlating Branch Prediction Buffer
. Tournament Branch Predictor

. Branch Target Buffer

. Integrated Instruction Fetch Units
. Return Address Predictors

NOoOOlbh WwnN =

cs252/Culler
Lec 18.4

4/2/02

Review: Dynamic Branch Prediction

+ Performance = f(accuracy, cost of misprediction)

* Branch History Table: Lower bits of PC address
index table of 1-bit values
- Says whether or not branch taken last time
- No address check (saves HW, but may not be right branch)

* Problem: in a loop, 1-bit BHT will cause .
2 mispredictions (avg is 9 iterations before exit):
- End of loop case, when it exits instead of looping as before

- First time through loop on next time through code, when it
predicts exit instead of looping

- Only 80% accuracy even if loop 90% of the time

€s252/Culler
Lec 18.5

4/2/02

Consider 3 Scenarios

+ Branch for loop test
+ Check for error or exception
+ Alternating taken / not-taken

- example?

* Your worst-case prediction scenario

€s252/Culler
Lec 18.7

Dacas 9D

Review: Dynamic Branch Prediction
(Jim Smith, 1981)

+ Better Solution: 2-bit scheme where change
prediction only if get misprediction twice:

T

Predict Taken Predict Taken

Predict Not
Taken

Predict Not ¥
Taken

* Red: stop, not taken NT
- Green: go, taken
+ Adds hysteresis to decision making process

4/2/02 €s252/Culler

Lec 18.6

(1,1) Predictor

d= b1 b1 b2 b2

predict |action |predict |action @

Hiniﬁal

=NT b1
2 NT/NT [T NT/NT [T
0 T/NT |NT NT/T |NT @
2 T/INT [T NT/T |T b2
0 T/NT |NT NT/T |NT

4/2/02

Correlating Branches

Idea: taken/not
taken of recently
executed branches is
related to behavior

Branch address (4 bits)

2-bits per branch

local predictors

of next branch (as o (PRGOS,
well as the history of 085858
that branch behavior) 0 Ooas

- Then behavior of recent = E E E_.- Prediction

branches selects % % % %
between, say, 4 [HN [y S) S |
redictions of next H BHHeHY

= = =

ranch, updating just
that prediction

(2,2) predictor: 2-bit
global, 2-bit local

hak

2-bit recent global
branch history
(01 = not taken then taken)

€s252/Culler
Lec 18.9

4/2/02

Re-evaluating Correlation

- Several of the SPEC benchmarks have less
than a dozen branches responsible for 90%
of taken branches:

program branch % static # = 90%
compress 14% 236 13
egntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214

* Real programs + OS more like gcc

+ Small benefits beyond benchmarks for
correlation? problems with branch aliases?

€s252/Culler
Lec 18.11

Daca 9O

4/2/02

Accuracy of Different Schemes

(Figure 3.15, p. 206)

18%

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

Frequency of Mispredictions

naza’?
matriz300
tomeaty
doducd
spice
fpppp

qec
B5presso
eqnntt

[=4,096 entries: 2-bits per entry B Unlimited entries: 2-bits/entry W 1,024 entries (2,2)]

€s252/Culler

What's missing in this picture? Lec 18.10

4/2/02

BHT Accuracy

* Mispredict because either:
- Wrong guess for that branch
- Got branch history of wrong branch when index the
table
+ 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(egntott), with spice at 9% and gcc at 12%

- For SPEC92,
4096 about as good as infinite table

cs252/Culler
Lec 18.12

Tournament Predictors

* Motivation for correlating branch predictors is
2-bit predictor failed on important branches:
by adding global information, performance
improved

+ Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

- Hopes to select right predictor for right
branch (or right context of branch)

€s252/Culler

4/2/02 Lec 18.13

Dynamically finding structure in
Spaghetti

€s252/Culler

4/2/02 Lec 18.15

Which predictor to use

Use predictor 2

00, 1/0, 11

Use predictor 1

(Use predictor 1 Use predictor 2
e E—
10
i i

010, 11

4/2/02

L £2003 Elsevier Science (USA) All rights

€s252/Culler
Lec 18.14

Tournament Predictor in Alpha 21264

Program
Counter

Global History

Local
History
Table

1,024 %
10 bits

Final Prediction

Source: Microprocessor Report, 10/28/96

Tournament Predictor in Alpha 21264

+ 4K 2-bit counters to choose from among a global
predictor and a local predictor

+ Global predictor also has 4K entries and is indexed by
the history of the last 12 branches; each entry in the
global predictor is a standard 2-bit predictor

- 12-bit pattern: ith bit 0 => ith prior branch not taken:
ith bit 1 => ith prior branch taken;

+ Local predictor consists of a 2-level predictor:

- Top level a local history table consisting of 1024 10-bit
entfries; each 10-bit entry corresponds to the most recent
10 branch outcomes for the entry. 10-bit history allows
patterns 10 branches to be discovered and predicted.

- Next level Selected entry from the local history table is
used to index a table of 1K entries consisting a 3-bit
saturating counters, which provide the local prediction

+ Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)

€s252/Culler
Lec 18.17

4/2/02

Accuracy of

99%

tomcatv —QQ%

95%

ﬂ” 7%
86%

w g0,/ 0 Profile-based

W 2-bitcounter
@ Tournament

doduc

198%

86%
w
96%
88%
i 94% fig 3.40

0% 20% 40% 60% 80%

i Bra 9‘1 predictionaccuracy |
+ Profile: branch pro?ue rom last execution
(static in that in encoded in instruction, but profile)

espresso

gcc

100%

€s252/Culler
Lec 18.19

4/2/02

Do~ R

4/2/02

% of predictions from local predictor
in Tournament Prediction Scheme

0% 20% 40% 60% 80%

100%

matrix300
tomcatv

€s252/Culler
Lec 18.18

Conditional branch misprediction rate

4/2/02

Accuracy v. Size (SPEC89)

32 40 48 56 64 72 80 88 96

Total predictor size (Kbits)

104 112 120 128

cs252/Culler
Lec 18.20

Need Address
at Same Time as Prediction

+ Branch Target Buffer (BTB): Address of branch index to get
prediction AND branch address (if taken)

- Note: must check for branch match now, since can't use wrong branch address
(Figure 3.19, 3.20)

Branch PC Predicted PC

]
o
-n -+
I
2
(<]
3

I—v - . . Extra

Yes: instruction is prediction state
No: branch branch and use bits
dicted o: rc“unc "°IT predicted PC as
predicted, proceed normally next PC

(Next PC = PC+4) cs252/culler

4/2/02 Lec 18.21

Predicated Execution

* Avoid branch prediction by turning branches
into conditionally executed instructions:
if (x) then A = B op C else NOP
- If false, then neither store result nor cause exception
- Expanded ISA of Alpha, MIPS, PowerPC, SPARC have

conditional move; PA-RISC can annul any following
instr.
- IA-64: 64 1-bit condition fields selected

BopC

so conditional execution of any instruction
- This transformation is called "if -conversion”

- Drawbacks to conditional instructions
- Still takes a clock even if “annulled”
- Stall if condition evaluated late

- Complex conditions reduce effectiveness:
condition becomes known late in pipeline

cs252/Culler
4/z/02 Lec 18.23

Do~ Z

— Inbuff Act Pen.
- g y T 0
Mo Instnaction Yos
[N e Y NT 2
]
o N T 2
N NT 0
No Takon Yos
Al branch? 1
Normal
rucsn
axscaston
: i
! | |
mbor Branch
beanch irstruction branch, kil fetched comectly
addross and Flruclion, sl prechcied;
EX et Toich at ofer CONENUG
it beanch- g, debote axnciation with
tanget butier iy from o stals
. taeget butier

Soog 3 LUSAL A8 ot

4/2/02

Special Case Return Addresses

+ Register Indirect branch hard to predict
address

- SPEC89 85% such branches for procedure
return

- Since stack discipline for procedures, save

return address in small buffer that acts like
a stack: 8 to 16 entries has small miss rate

cs252/Culler
Lec 18.24

Pitfall: Sometimes bigger and
dumber is better

+ 21264 uses tournament predictor (29 Kbits)

+ Earlier 21164 uses a simple 2-bit predictor
with 2K entries (or a total of 4 Kbits)

+ SPEC95 benchmarks, 22264 outperforms

- 21264 avg. 11.5 mispredictions per 1000 instructions
- 21164 avg. 16.5 mispredictions per 1000 instructions

* Reversed for transaction processing (TP) !
- 21264 avg. 17 mispredictions per 1000 instructions
- 21164 avg. 15 mispredictions per 1000 instructions

* TP code much larger & 21164 hold 2X
branch predictions based on local behavior
(2K vs. 1K local predictor in the 21264)

€s252/Culler

4/2/02 Lec 18.25

Getting CPI < 1:
Issuing Multiple Instructions/Cycle
+ Vector Processing: Explicit coding of independent
loops as operations on large vectors of numbers
- Multimedia instructions being added to many processors

* Superscalar: varying no. instructions/cycle (1 to 8),
scheduled by compiler or by HW (Tomasulo)
- IBM PowerPC, Sun UltraSparc, DEC Alpha, Pentium III/4
+ (Very) Long Instruction Words (V)LIW:
fixed number of instructions (4-16) scheduled by
the compiler; put ops into wide templates (TBD)
- Intel Architecture-64 (IA-64) 64-bit address
» Renamed: “Explicitly Parallel Instruction Computer (EPIC)”

* Anticipated success of multiple instructions lead to
Instructions Per Clock_cycle (IPC) vs. CPI

€s252/Culler

4/2/02 Lec 18.27

Do =7

Dynamic Branch Prediction Summary

* Prediction becoming important part of scalar
execution

+ Branch History Table: 2 bits for loop accuracy

+ Correlation: Recently executed branches correlated
with next branch.
- Either different branches
- Or different executions of same branches

- Tournament Predictor: more resources to
competitive solutions and pick between them

+ Branch Target Buffer: include branch address &
prediction

+ Predicated Execution can reduce number of
branches, number of mispredicted branches

* Return address stack for prediction of indirect
Jump cs252/Culler

4/2/02 Lec 18.26

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

* Superscalar MIPS: 2 instructions, 1 FP & 1 anything
- Fetch 64-bits/clock cycle; Int on left, FP on right
- Can only issue 2nd instruction if 1st instruction issues
- More ports for FP registers to do FP load & FP op in a pair
Type Pipe Stages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WwB

Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

1 cycle load delay expands to 3 instructions in SS
- instruction in right half can't use it, nor instructions in next slot

cs252/Culler

4/2/02 Lec 18.28

Multiple Issue Issues

- issue packet: group of instructions from fetch
unit that could potentially issue in 1 clock

- If instruction causes structural hazard or a data hazard
either due to earlier instruction in execution or to earlier
instruction in issue packet, then instruction does not issue

- 0 to N instruction issues per clock cycle, for N-issue

* Performing issue checks in 1 cycle could limit
clock cycle time: O(n?-n) comparisons
- => issue stage usually split and pipelined

- 1st stage decides how many instructions from within this
packet can issue, 2nd stage examines hazards among selected
instructions and those already been issued

- => higher branch penalties => prediction accuracy important

€s252/Culler

4/2/02 Lec 18.29

Dynamic Scheduling in Superscalar
The easy way

+ How to issue two instructions and keep in-order
instruction issue for Tomasulo?
- Assume 1 integer + 1 floating point
- 1 Tomasulo control for integer, 1 for floating point

- Issue 2X Clock Rate, so that issue remains in order

* Only loads/stores might cause dependency between
integer and FP issue:

- Replace load reservation station with a load queue;

operands must be read in the order they are fetched
- Load checks addresses in Store Queue to avoid RAW violation
- Store checks addresses in Load Queue to avoid WAR, WAW

€s252/Culler

4/2/02 Lec 18.31

Daeas O

Multiple Issue Challenges

* While Integer/FP split is simﬁle for the HW, get CPI
of 0.5 only for programs with:
- Exactly 50% FP operations AND No hazards

+ If more instructions issue at same time, greater
difficulty of decode and issue:
- Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide
if 1 or 2 instructions can issue; (N-issue ~O(N2-N) comparisons)
- Register file: need 2x reads and 1x writes/cycle

- Rename logic: must be able to rename same register multiple times in
one cycle!” For instance, consider 4-way issue:

add rl, r2, r3 add pll, p4, p7
sub r4, rl, r2 = sub p22, pll, p4
1w , 4(r4) 1w , 4(p22)
add r5, , r2 add pl2, , P4
Imagine doing this transformation in a single cycle!
- Result buses: Need to complete multiple instructions/cycle

» So, need multiple buses with associated matching logic at every
reservation station.

» Or, need multiple forwarding paths

4/2/02 €s252/Culler

Lec 18.30
Iteration Memory Write
number Instructions Issues at Executes accessat CDBat Comment
| L.D F0,0(R1)] 2 E
o _ADD.D_F4,FO,F2 ERETETNE T L 3
niles e 815 Dy OO B oy g RE) T WaitforADD.D
= DADDIU R1,R1,#-B 2 4 U s iAo
I BNE R1,RZ,Loop 3 3 T WaitforDADDIU.
LD F0,0(R1) 4 T 8 9 Wait for BNE complee
2 ADD.D_FA,FO,F2 4 T 13 WaitforL.D
2 5.0 5 3 4 " WaitfwrADD.D
2 DAL R] 5 9 a0 waiteA
2 BNE R1,R2,Loop G s Al e Wait for DADDIU
L.D_ F0,0(R1) =T TE R 14 Wait for BHE complele
3 ADD.D_F4,FO,F2 7 15 18 Wait for L.D
) 5.0 F4,0(R1) e 19 Witk 0 1
3 DAADIU R1,R1,#-8 8" 14 TS Wake A
3 BNE RI,R2,Loop 9 16 T WaitforDADOIU

Clock number Integer ALU FP ALU Data cache cDB
2 1/L.D
3 1/5.D0 1/L.D -
4 1 / DADDIU /L.
5 1/ ADD.D 1 / DADDIU
6
7 2/L.D
8 2/5.D 2/L.D 1 /ADD.D
9 2 / DADDIU 1/5.0 2/L.D
10 2 /ADD.D 2 / DADDIU
11
12 3/L.D
13 3/5.0 3/L.D 2/ADD.D
14 3/ DADDIU 2/5.D 3/L.D
15 3/ADD.D 3 / DADDIU
16
17
18 3/ADD.D
19 3/s.D
20
FIRISRRRS P = PP T- oT- VA E—
Clock number Integer ALU Address adder FP ALU Data cache CDB #1 CDB #2
2 1/L.D
3 1 / DADDIU 1/8.0 1/L.D
4 1L.D 1/ DADDIU
5 1/ ADD.D
[2/ DADDIU 2/L.0
7 2/5.0 2/L.D 2/ DADDIU
8 1/ADD.D 2/L.D
9 3/ DADDIU 3/L.0 2/ADD.D 1/5.0
10 3/s.0 3/L.D 3/ DADDIU
11 3/L.D
12 3/ADD.D 2/ADD.D
13 2/5.0
14
15 3/ADD.D
16 3/5.0

Figure 3.28 Resource usage table for the example shown in Figure 3.27, using the same format as Figure 3.26.

Do~ 0O

Iteration
number Instructions Issuesat Executes :::::::?; clg:t; Comment
1 L.D F0,0(R1) 1 2 3 4 First issue
1 ADD.D F4,F0,F2 1 5 B Wait for L.D
1 5.0 F4,0(R1) 2 3 9 Wait for ADD.D
1 DADDIU R1,R1,#-8 2 3 4 Executes earlier
1 BNE R1,R2, Loop 3 5 Wait for DADDIU
2 L.D FO,0(R1) 4] i 8 Wit for BNE complete
2 ADD.D F4,F0,F2 4 9 12 Wait for L.D
2 S.D F4,0(R1) 5 7 13 Wit for ADD.D
2 DADDIU R1,R1,#-8 5 (0 7 Executes earier
2 BNE R1,R2,Loop 6 8 Wait for DADDIU
3 L.D F0,0(R1) T 9 10 11 Wait for BNE complete
3 ADD.D F4,F0,F2 T 12 15 Wait for L.D
3 s.D F4,0(R1) 8 10 16 Wait for ADD.D
3 DADDIU R1,R1,#-8 -1 9 10 Executes earlier
i BNE R1,R2,Loop 9 1 Wait for DADDIU

:[qur$‘§27 Thg dfocl(f;f:lePfissug,emecution. and writing result for a dual-issue version of our Tomasulo nloe:

4/2/02

Hardware based speculation

€s252/culler
Lec 18.36

From instruction unit

—

Data

FP registars. I
Load-store
operations
rand
[Addessunt Jy ~ Fosta-poit o
operations
Load buffers
Operation bus
Store a) 2
address | 2 H:‘:' Reservaion []—1—Jp %
Store. i’ stations
data Address
FP mullipliers

I@
data Common data

bus (CDB)

£ 2003 Elsavier Soiance (UISAL AN dahts teservad

Reorder buffer
i Value
Entry Busy Instruction State Destination
1 no L.D F0,0(R1) Commit Fi Mcm|0+R§‘.iR11|
2 no MUL.D F4,F0,F2 Commit F4 #1 » Regs[F2]
3 yes 5.0 F4,0(R1) Write result 0+ Regs[R1] #2
:i ’yﬁ DADDIU R1,R1,#-8 Write result R1 Regs[R1] -8
) yes BNE R1,R2,Loop Write result
6 yes L.D FO,0(R1) Write result FO Mem/[#4] .
7 yes MUL.D F4,FO0,F2 Write result F4 #6 % Regs[F2]
8 yes 5.0 F4,0(R1) Write result 0+#4 #1
i -8
9 yes DADDIU R1,R1,#-8 Write result R1 il
10 yes BNE R1,R2,Loop Write result
FP register status
Field FO F1 F2 F3 Fa4 FS Fé F7 F8
T
Reorder # f -
Busy yes no no no yes no no

d MUL.D instructions have com I the s
Rae 32 i) thg L_nhat_‘ smsimes men buiew and nana are shown. The remaining instructions.

itted, although all the others have completed exe-
bt g will be committed

Do~ 1N

Reservation stations

Name Busy op vj Vk Qj ak Dest A
Load] no
Load2 no
Addl no
Add2 no
Add3 no
no HUL.D Mem|[45 + Regs[R3]] Regs[F4] Wi
yes oIv.o Mem[34 + R"JL[EJ..I LE] ¥
Reorder buffer
Entry Busy Instruction State Destination Value
S L.D F6,34(R2) Commit F6 Mem[34 + Regi]
2 no L.D F2,45(R3) Commit F2 Mem|[45 + Regs[R3)
3 yes MUL.D FO,F2,F4 Write result F #2 % Regs(F4)
4 yes SUB.D F8,F6,F2 Write result F& #1 - 82
5 yes DIV.D F10,F0,F6 Execute Fl0
6 yes ADD.D F6,FB,F2 Write result F& W+ W2
FP register status
Field Fo F1 F2 F3 F4 Fs F& F7 F8
Reorder # 3 6 4
Busy yes no no no no no yes yes
Memory
Issuesat Executesat accessat Write CDB at
Iteration clockcycle clock cycle clock cycle clock cycle
number Instructions b k k b C
| LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2,R2,#1 1 5 6 Wiait for LW
1 S0 R2,0(R1) 2 3 T Wait for DADDIU
| DADDIU R1,R1,#4 2 3 4 Execute directly
1 BNE RZ,R3,L00P 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU RZ,RZ,#1 4 11 12 Wait for LW
2 S0 R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#4 b 8 9 Wait for BNE
2 BNE R2,R3,L00P 6 13 ‘Wait for DADDIU
i LD R2,0(R1) T 14 15 16 Wait for BNE
2 DADDIU RZ2,R2,#1 7 17 18 Wait for LN
3 SO R2,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#4 B 14 15 Wait for BNE
3 BNZ R2,R3,L00P 9 19 Wait for DADDIU
Figure 3.33 The time of issue, execution, and writing result for a dual-i fon of our pipeline without

e

Issuss Executes Readaccess CDBat Commits
Iteration atclock atclock at clock clock atclock
number Instructions L: L; b number Comment
I L0 Re,0(R1) 1 2 3 = 5 Firstissue
I DADDIU R2,RZ,#1 B s —C6 7 Wail for LW
1 50 RZ,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#4 2 3 4 8 Commit in order
1 BNE R2,R3,L00P 3 7 8 Wait for DADDIU
2 LD RZ,0(R1) 4 5 6 7 9 No execute delay
2 DADDIU R2,R2,#1 4 8 9 10 Wait for LW
2 S0 Re,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU RI,RI,#4 5 6 7 1 Commil in order
2 BNE R2,R3,L00P 6 10 1 Wait for DADDIY
3 LD Re,0(R1) 7 9 10 12 Earliest possible
3 DADDIU R2,R2, 1 7 1 12 13 Wait for LH
3 S0 R2,0(R1) 8 9 13 Wait for DADDIU
3 DADDIL R1,R1,#4 8 9 10 4 Executes earlier
3 BNE RZ,R3,L00P 9 13 14 Wait for DADDIU

Figure 3.34 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specula-

4/2/02

How much to speculate?

+ Speculation Pro: uncover events that would
otherwise stall the pipeline (cache misses)

* Speculation Con: speculate costly if exceptional
event occurs when speculation was incorrect

* Typical solution: speculation allows only low-
cost exceptional events (1st-level cache miss)

* When expensive exceptional event occurs,
(2nd-level cache miss or TLB miss) processor
waits until the instruction causing event is no
longer speculative before handling the event

+ Assuming single branch per cycle: future may
speculate across multiple branches!

€s252/Culler
Lec 18.43

Daca 11

4/2/02

Register renaming, virtual registers
versus Reorder Buffers

Alternative to Reorder Buffer is a larger virtual
set of registers and register renaming

Virtual registers hold both architecturally visible
registers + temporary values

- replace functions of reorder buffer and reservation station
Renaming process maps names of architectural
registers to registers in virtual register set

- Changing subset of virtual registers contains architecturally
visible registers

Simplifies instruction commit: mark register as no
longer speculative, free register with old value

Adds 40-80 extra registers: Alpha, Pentium,...

- Size limits no. instructions in execution (used until commit)

€s252/Culler
Lec 18.42

4/2/02

Limits to ILP

Conflicting studies of amount
- Benchmarks (vectorized Fortran FP vs. integer C programs)
- Hardware sophistication
- Compiler sophistication
How much ILP is available using existing
mechanisms with increasing HW budgets?

Do we need to invent new HW/SW mechanisms to
keep on processor performance curve?

- Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints

- Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock

- Motorola AltaVec: 128 bit ints and FPs

- Supersparc Multimedia ops, etc.

cs252/Culler
Lec 18.44

4/2/02

Limits to ILP

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Relg/’sfer' r'enam/’/‘z - infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction - perfect; no mispredictions

3. Jump prediction - all jumps perfectly predicted
2 & 3 => machine with perfect speculation & an
unbounded buffer of instructions available

4. Memory-address alias anagfsis - addresses are
known & a store can be moved before a load
provided addresses not equal

Also:

unlimited number of instructions issued/clock cycle;
erfect caches;

cycle latency for all instructions (FP *,/);

€s252/Culler
Lec 18.45

IPC

Instruction issues per cycle
@
8

4/2/02

More Realistic HW: Branch Impact
Figure 3.37
Change from Infinite

« 1 window to examine to
2000 and maximum
issue of 64
instructions per clock
cycle ¢

FP: 15 - 45

@
3

N
3

N
S

3

doducd tomcatv

goe espresso li foppp
Program

[mPerfect m Selective predictor _m Standard 2-bit o Static_m None |

Tournament BHT (512) Profile

Perfect No predi(C:’.cﬁz)zx/ac_'fa";r

Do 19

Upper Limit to ILP: Ideal Machine

(Figure 3.35 p. 242)

160 150.1

FP: 75 -150

118.7

140 +

Integer: 18 - 60

120 +

100

80

IPC

60 -+

40 1

20 T

gcc espresso li fpppp doducd tomcatv

. . Programs
How is this data generated? cs252/Culler

4/2/02 Lec 18.46

More Realistic HW:
Renaming Register Impact

Figure 3.41

-
3

Change 2000 instr FP:11-45
window, 64 instr
issue, 8K 2 level

Prediction

@
3

@
3

IS
)

Integer: 5-15

InstlEﬁgssues per cycle
@
8

1110
0

doducd

gee espresso li foppp tomcatv

Program

[minfinite @256 w128 064 W32 @ None]

Infinite 256 128 64 32

cs252/Culler
Lec 18.48

None

4/2/02

IPC

4/2/02

50

45 1

40 1

3% +

30 +

25 1

More Realistic HW:
Memory Address Alias Impact

Figure 3.44 4 4

Change 2000 instr

window, 64 instr FP: 4 -45
issue, 8K 2 level Fortran
Prediction, 256 Lo heapi

renaming registers
Integer: 4 -9

gee espresso li fpppp doducd tomcatv
Program
W Perfect M Giobalistack Perfect I Inspection [None
Perfect Global/Stack perf; Inspec. None

€s252/Culler
Lec 18.49

heap conflicts Assem.

4/2/02

How to Exceed ILP Limits of this
study?

WAR and WAW hazards through memory
- eliminated WAW and WAR hazards on registers through
renaming, but not in memory usage
Unnecessary dependences (compiler not unrolling
loops so iteration variable dependence)

Overcoming the data flow limit: value prediction,
predicting values and speculating on prediction

- Address value prediction and speculation predicts addresses
and speculates by reordering loads and stores: could provide
better aliasing analysis, only need predict if addresses =

Use multiple threads of control

€s252/Culler
Lec 18.51

Dacae 19

Realistic HW: Window Impact

(Figure 3.46)

60 T+

Perfect disambiguation s
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

50 T

40 T

30 +

20 +

IPC

Integer: 6 - 12

121211,
9

151

0 4
gee expresso li Toppp doducd tomcatv
Program
W infinite I 256 M2 Oes M3 M 16 Hs)
w2102 Infinite 256 128 64 32 16 8 4 cszsucier

Lec 18.50

Workstation Microprocessors 3/2001

Processor 5ap A

Clock Rate 833MHz 1.2GHz 552MHz S0MH 1.0GHz 1.5GHz 400MHz | 480MHz o0
Cache (I/D/L2) | 64K/64K | B4K/BAK/Z56K | S12K/MM | 32K/64K 16K/ 16K/256K | 12K/8K/256K | 32K/32K | 16K/16K 32
Issue Rate 4 issue 3 xB6 instr 4issue 4 issue 3 x86 instr 3 x ROPs 4 issue 4issue 4
Pipeline Stages | 7/9 stages = 9/11 stages | 7/9 stages |7/8& stages | 12/14 stages |22/24 stages | 6stages |6/9 stages |14/1
[Out of Order 80 instr 72ROPs 56 instr 32 instr 40 ROPs 126 ROPs 48 instr None

Rename regs 48741 36/36 56 total [16int/24 fp 40 total 128 total 32/32 None

|BHT Entries 4K % 9-bit 4K s 2-bit 2K x2-bit | 2K x 2-bit »>=512 4K x2-bit | 2K x 2-bit |512 x 2-bit | 16l

TLB Entries 128/128 280/288 120 unified | 1287128 321/ 64D 12817660 &4 unified | 641/64D 128)
[Memory B/W | 2.66GB/s 2.1GB/s 1.54GB/s 1.6GB/s 1.06GB/s 3.2GB/s 539 MB/s | 1.9GB/s 4.
Package CPGA-588 PGA-462 LGA-544 | SCC-1088 PGA-37D PGA-423 CPGA-527 | CLGA-787 |1368
IC Process 01BuéM | D1BuEM | 0254 2M | 0.22u6m | 018y &M 018 &M 0250 4M | 029 6M | 01
Die Size 116mm?* 117 mm? 47 Fmm? 163mm? 106mm? 217mm? 204mm* | 126 mm? 21
Transistors 15.4 million| 37 million 130 millien | 23 million 24 million 42 million | 7.2 million | 3.8 million | 29
Est mfg cost* $160 362 3330 $110 539 5110 5125 370 3|
Power(Max) 75W* 76W 60W* 36w+ 30w 55W(TDF} 25W* 20W*

| Availability 1001 4C00 3000 4000 2000 4000 2000 3Q0 4

* Max issue: 4 instructions (many CPUs)
Max rename registers: 128 (Pentium 4)
Max BHT: 4K x 9 (Alpha 21264B), 16Kx2 (Ultra IIT)
Max Window Size (OOOQ): 126 intructions (Pent. 4)
Max Pipeline: 22/24 stages (Pentium 4)

cs252/Culler
Lec 18.52

4/2/02 Source: Microprocessor Report, www.MPRonline.com

sixtrack
aspi
Cfp_base2000

SPEC 2000 Performance 3/2001 Source: Microprocessor Report, www.MPRonline.com

IBM
Power 3-Il
RS/6000
44P-170
450MHz

759

553
537
514
739
451
366
764
427
257

IX 227

411
373
259
192
199
252

150
273
735
920

459
313
205
207
159

Daceas 11

4/2/02

Conclusion

1985-2000: 1000X performance

- Moore's Law transistors/chip => Moore's Law for Performance/MPU

Hennessy: industry been following a roadmap of ideas

known in 1985 to exploit Instruction Level Parallelism

and (real) Moore's Law to get 1.55X/year

- Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order
execution, ...

ILP limits: To make performance progress in future

need to have explicit %amllelism rom programmer vs.

implicit parallelism of ILP exploited by compiler, HW?

- Otherwise drop to old rate of 1.3X per year?

- Less than 1.3X because of processor-memory performance gap?

Impact on you: if you care about performance,

better think about explicitly parallel algorithms
vs. rely on ILP?

€s252/Culler
Lec 18.54

