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Review: Parallel Framework

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data 

sets simultaneously and then exchange information 
globally and simultaneously (shared or message 
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling) 

=> many hardware designs 1:1 programming model

Programming Model
Communication Abstraction
Interconnection SW/OS 
Interconnection HW
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Distributed Directory MPs
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Example
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 °  A2

Processor 1 Processor 2 Bus Memory

Remote
Write

or Miss
Write Back

Remote Write 
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back
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Example: Step 1
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 °  A2.
Active arrow  = Remote

Write
or Miss

Write Back

Remote Write 
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back
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P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Example: Step 2

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 °  A2

Remote
Write

or Miss
Write Back

Remote Write 
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back
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Example: Step 3
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 °  A2.

Remote
Write

or Miss
Write Back

Remote Write 
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1
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Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 °  A2

Remote
Write

or Miss
Write Back

Remote Write 
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1

DAP Spr.‘98 ©UCB 10

Remote
Write

or Miss
Write Back

Remote Write 
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 °  A2
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Snooping Coherncy
Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first, 
and then write the same cache block!

– Two step process:
» Arbitrate for bus 
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: 

can have multiple outstanding transactions for a block
» Multiple misses can interleave, 

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations DAP Spr.‘98 ©UCB 12

Implementing Snooping Caches
• Multiple processors must be on bus, 

access to both addresses and data
• Add a few new commands to perform coherency, 

in addition to read and write
• Processors continuously snoop on address bus

– If address matches tag, either invalidate or update
• Since every bus transaction checks cache tags, 

could interfere with CPU just to check: 
– solution 1: duplicate set of tags for L1 caches 

to allow checks in parallel with CPU
– solution 2: L2 cache already duplicate and underutilized, 

provided L2 obeys inclusion with L1 cache
» block size, associativity of L2 affects L1
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Implementing Snooping Caches
• Bus serializes writes, getting bus ensures no one else 

can perform memory operation
• On a miss in a write back cache, may have the desired 

copy and its dirty, so must reply
• Add extra state bit to cache to determine shared or not
• Add 4th state (MESI)

DAP Spr.‘98 ©UCB 14

Larger MPs
• Separate Memory per Processor
• Local or Remote access via memory controller
• 1 Cache Coherency solution: non-cached pages 
• Alternative: directory per cache that tracks state of every 

block in every cache
– Which caches have a copies of block, dirty vs. clean, ...

• Info per memory block vs. per cache block?
– PLUS: In memory => simpler protocol (centralized/one location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

• Prevent directory as bottleneck? 
distribute directory entries with memory, each keeping 
track of which Procs have copies of their blocks
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Directory Protocol
• Similar to Snoopy Protocol: Three states

– Shared: � 1 processors have data, memory up-to-date
– Uncached (no processor hasit; not valid in any cache)
– Exclusive: 1 processor (owner) has data; 

memory out-of-date
• In addition to cache state, must track which 

processors have data when in the shared state 
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data 

=> write miss
– Processor blocks until access completes
– Assume messages received 

and acted upon in order sent
DAP Spr.‘98 ©UCB 16

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location 

of an address resides
– Remote node has a copy of a cache 

block, whether exclusive or shared
• Example messages on next slide: 

P = processor number, A = address
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Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A; 
make P a read sharer and arrange to send data back 

Write miss Local cache Home directory P, A
– Processor P writes data at address A; 

make P the exclusive owner and arrange to send data back 
Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory; 
invalidate the block in the cache

Data value reply Home directory Local cache Data
– Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
– Write-back a data value for address A (invalidate response) DAP Spr.‘98 ©UCB 18

State Transition Diagram for an 
Individual Cache Block in a 

Directory Based System

• States identical to snoopy case; 
transactions very similar.

• Transitions caused by read misses, write 
misses, invalidates, data fetch requests

• Generates read miss & write miss msg
to home directory.

• Write misses that were broadcast on the 
bus for snooping => explicit invalidate & 
data fetch requests.

• Note: on a write, a cache block is bigger, 
so need to read the full cache block
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CPU -Cache State Machine
• State machine

for CPU  requests
for each 
memory block

• Invalid state
if in 
memory

Fetch/Invalidate
send Data Write Back message 

to home directory

InvalidateInvalidate
Invalid

Shared
(read/only)

Exclusive
(r/w)

CPU Read

CPU Read hit

Send R Miss msg

CPU Write:
Send Write Miss 
msg to h.d.

CPU Write:
Wr Miss msg to h.d. 

CPU read hit
CPU write hit

Fetch: send 
Data Write Back message 
to home directory

Read miss
Miss msg
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State Transition Diagram for the 
Directory 

• Same states & structure as the transition 
diagram for an individual cache

• 2 actions: update of directory state & 
send msgs to statisfy requests 

• Tracks all copies of memory block. 
• Also indicates an action that updates the 

sharing set, Sharers, as well as sending 
a message.
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Directory State Machine
• State machine

for Directory 
requests for each 
memory block

• Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(r/w)

Read miss:
Sharers = {P}
send Data Value 
Reply

Write Miss: 
send Invalidate 
to Sharers;
then Sharers = {P};
send Data Value 
Reply msg

Write Miss:
Sharers = {P}; 
send Data 
Value Reply
msg

Read miss:
Sharers += {P}; 
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss: 
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P}; 
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache
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Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the 
current value; only possible requests for that block are:

– Read miss: requesting processor sent data from memory 
&requestor made only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the 
Sharing node. The block is made Exclusive to indicate that the only 
valid copy is cached. Sharers indicates the identity of the owner. 

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from 

memory & requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors 

in the set Sharers are sent invalidate messages, & Sharers is set to 
identity of requesting processor. The state of the block is made
Exclusive.
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Example Directory Protocol
• Block is Exclusive: current value of the block is held in 

the cache of the processor identified by the set Sharers 
(the owner) => three possible directory requests:

– Read miss: owner processor sent data fetch message, causing 
state of block in owner’s cache to transition to Shared and 
causes owner to send data to directory, where it is written to 
memory & sent back to requesting processor. 
Identity of requesting processor is added to set Sharers, which 
still contains the identity of the processor that was the owner 
(since it still has a readable copy).  State is shared.

– Data write-back: owner processor is replacing the block and 
hence must write it back, making memory copy up-to-date 
(the home directory essentially becomes the owner), the block is
now Uncached, and the Sharer set is empty. 

– Write miss: block has a new owner. A message is sent to old 
owner causing the cache to send the value of the block to the 
directory from which it is sent to the requesting processor, which 
becomes the new owner. Sharers is set to identity of new owner, 
and state of block is made Exclusive. DAP Spr.‘98 ©UCB 24

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1
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Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1
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Implementing a Directory

• We assume operations atomic, but they are 
not; reality is much harder; must avoid 
deadlock when run out of buffers in network 
(see Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data 

directly to requestor from owner vs. 1st to memory 
and then from memory to requestor
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Synchronization

• Why Synchronize? Need to know when it is safe for 
different processes to use shared data

• Issues for Synchronization:
– Uninterruptible instruction to fetch and update memory 

(atomic operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck; 

techniques to reduce contention and latency of 
synchronization

DAP Spr.‘98 ©UCB 32

Uninterruptible Instruction to 
Fetch and Update Memory

• Atomic exchange: interchange a value in a register for 
a value in memory

0 => synchronization variable is free 
1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible
• Test-and-set: tests a value and sets it if the value 

passes the test
• Fetch-and-increment: it returns the value of a memory 

location and atomically increments it
– 0 => synchronization variable is free 
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Uninterruptible Instruction to 
Fetch and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same 

memory location since preceding load) and 0 otherwise
• Example doing atomic swap with LL & SC:

try: mov R3,R4 ; mov exchange value
ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try  ; branch store fails (R3 = 0)
mov R4,R2  ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional 
beqz R2,try  ; branch store fails (R2 = 0) DAP Spr.‘98 ©UCB 34

User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire, 
spinning around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all 
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable; 
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?
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Another MP Issue: 
Memory Consistency Models

• What is consistency? When must a processor see the 
new value? e.g., seems that
P1: A = 0; P2: B = 0;

..... .....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models: 
what are the rules for such cases?

• Sequential consistency: result of any execution is the 
same as if the accesses of each processor were kept in 
order and the accesses among different processors 
were interleaved => assignments before ifs above

– SC: delay all memory accesses until all invalidates done
DAP Spr.‘98 ©UCB 36

Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not really an issue for most programs; 

they are synchronized
– A program is synchronized if all access to shared data are 

ordered by synchronization operations
write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are 
not synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since 
most programs are synchronized; characterized by their 
attitude towards: RAR, WAR, RAW, WAW 
to different addresses
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Review

• Caches contain all information on state of 
cached memory blocks 

• Snooping and Directory Protocols similar; 
bus makes snooping easier because of 
broadcast (snooping => uniform memory 
access)

• Directory has extra data structure to keep 
track of state of all cache blocks

• Distributing directory => scalable shared 
address multiprocessor 
=> Cache coherent, Non uniform memory 
access


