
Page 1

DAP Spr.‘98 ©UCB 1

Lecture 18:
Multiprocessors 2:

Snooping v. Directory Coherency,
Memory Consistency Models

Professor David A. Patterson
Computer Science 252

Spring 1998

Page 2

DAP Spr.‘98 ©UCB 3

Review: Parallel Framework

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data

sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

Programming Model
Communication Abstraction
Interconnection SW/OS
Interconnection HW

DAP Spr.‘98 ©UCB 4

Distributed Directory MPs

Interconnection Network

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Page 3

DAP Spr.‘98 ©UCB 5

Example
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 ° A2

Processor 1 Processor 2 Bus Memory

Remote
Write

or Miss
Write Back

Remote Write
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

DAP Spr.‘98 ©UCB 6

Example: Step 1
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 ° A2.
Active arrow = Remote

Write
or Miss

Write Back

Remote Write
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

Page 4

DAP Spr.‘98 ©UCB 7

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Example: Step 2

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 ° A2

Remote
Write

or Miss
Write Back

Remote Write
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

DAP Spr.‘98 ©UCB 8

Example: Step 3
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 ° A2.

Remote
Write

or Miss
Write Back

Remote Write
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1

Page 5

DAP Spr.‘98 ©UCB 9

Example: Step 4
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 ° A2

Remote
Write

or Miss
Write Back

Remote Write
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1

DAP Spr.‘98 ©UCB 10

Remote
Write

or Miss
Write Back

Remote Write
or Miss

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

Example: Step 5
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

Assumes initial cache state
is invalid and A1 and A2 map
to same cache block,
but A1 ° A2

Page 6

DAP Spr.‘98 ©UCB 11

Snooping Coherncy
Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first,
and then write the same cache block!

– Two step process:
» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic:

can have multiple outstanding transactions for a block
» Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations DAP Spr.‘98 ©UCB 12

Implementing Snooping Caches
• Multiple processors must be on bus,

access to both addresses and data
• Add a few new commands to perform coherency,

in addition to read and write
• Processors continuously snoop on address bus

– If address matches tag, either invalidate or update
• Since every bus transaction checks cache tags,

could interfere with CPU just to check:
– solution 1: duplicate set of tags for L1 caches

to allow checks in parallel with CPU
– solution 2: L2 cache already duplicate and underutilized,

provided L2 obeys inclusion with L1 cache
» block size, associativity of L2 affects L1

Page 7

DAP Spr.‘98 ©UCB 13

Implementing Snooping Caches
• Bus serializes writes, getting bus ensures no one else

can perform memory operation
• On a miss in a write back cache, may have the desired

copy and its dirty, so must reply
• Add extra state bit to cache to determine shared or not
• Add 4th state (MESI)

DAP Spr.‘98 ©UCB 14

Larger MPs
• Separate Memory per Processor
• Local or Remote access via memory controller
• 1 Cache Coherency solution: non-cached pages
• Alternative: directory per cache that tracks state of every

block in every cache
– Which caches have a copies of block, dirty vs. clean, ...

• Info per memory block vs. per cache block?
– PLUS: In memory => simpler protocol (centralized/one location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

• Prevent directory as bottleneck?
distribute directory entries with memory, each keeping
track of which Procs have copies of their blocks

Page 8

DAP Spr.‘98 ©UCB 15

Directory Protocol
• Similar to Snoopy Protocol: Three states

– Shared: � 1 processors have data, memory up-to-date
– Uncached (no processor hasit; not valid in any cache)
– Exclusive: 1 processor (owner) has data;

memory out-of-date
• In addition to cache state, must track which

processors have data when in the shared state
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received

and acted upon in order sent
DAP Spr.‘98 ©UCB 16

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates
– Home node where the memory location

of an address resides
– Remote node has a copy of a cache

block, whether exclusive or shared
• Example messages on next slide:

P = processor number, A = address

Page 9

DAP Spr.‘98 ©UCB 17

Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A
– Processor P writes data at address A;

make P the exclusive owner and arrange to send data back
Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Home directory Local cache Data
– Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
– Write-back a data value for address A (invalidate response) DAP Spr.‘98 ©UCB 18

State Transition Diagram for an
Individual Cache Block in a

Directory Based System

• States identical to snoopy case;
transactions very similar.

• Transitions caused by read misses, write
misses, invalidates, data fetch requests

• Generates read miss & write miss msg
to home directory.

• Write misses that were broadcast on the
bus for snooping => explicit invalidate &
data fetch requests.

• Note: on a write, a cache block is bigger,
so need to read the full cache block

Page 10

DAP Spr.‘98 ©UCB 19

CPU -Cache State Machine
• State machine

for CPU requests
for each
memory block

• Invalid state
if in
memory

Fetch/Invalidate
send Data Write Back message

to home directory

InvalidateInvalidate
Invalid

Shared
(read/only)

Exclusive
(r/w)

CPU Read

CPU Read hit

Send R Miss msg

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:
Wr Miss msg to h.d.

CPU read hit
CPU write hit

Fetch: send
Data Write Back message
to home directory

Read miss
Miss msg

DAP Spr.‘98 ©UCB 20

State Transition Diagram for the
Directory

• Same states & structure as the transition
diagram for an individual cache

• 2 actions: update of directory state &
send msgs to statisfy requests

• Tracks all copies of memory block.
• Also indicates an action that updates the

sharing set, Sharers, as well as sending
a message.

Page 11

DAP Spr.‘98 ©UCB 21

Directory State Machine
• State machine

for Directory
requests for each
memory block

• Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(r/w)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

DAP Spr.‘98 ©UCB 22

Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the
current value; only possible requests for that block are:

– Read miss: requesting processor sent data from memory
&requestor made only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the
Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached. Sharers indicates the identity of the owner.

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from

memory & requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors

in the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
Exclusive.

Page 12

DAP Spr.‘98 ©UCB 23

Example Directory Protocol
• Block is Exclusive: current value of the block is held in

the cache of the processor identified by the set Sharers
(the owner) => three possible directory requests:

– Read miss: owner processor sent data fetch message, causing
state of block in owner’s cache to transition to Shared and
causes owner to send data to directory, where it is written to
memory & sent back to requesting processor.
Identity of requesting processor is added to set Sharers, which
still contains the identity of the processor that was the owner
(since it still has a readable copy). State is shared.

– Data write-back: owner processor is replacing the block and
hence must write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is
now Uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old
owner causing the cache to send the value of the block to the
directory from which it is sent to the requesting processor, which
becomes the new owner. Sharers is set to identity of new owner,
and state of block is made Exclusive. DAP Spr.‘98 ©UCB 24

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Page 13

DAP Spr.‘98 ©UCB 25

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

DAP Spr.‘98 ©UCB 26

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Page 14

DAP Spr.‘98 ©UCB 27

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

10
10

P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Write BackWrite Back

DAP Spr.‘98 ©UCB 28

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

Page 15

DAP Spr.‘98 ©UCB 29

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

Processor 1 Processor 2 Interconnect MemoryDirectory

A1

DAP Spr.‘98 ©UCB 30

Implementing a Directory

• We assume operations atomic, but they are
not; reality is much harder; must avoid
deadlock when run out of buffers in network
(see Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data

directly to requestor from owner vs. 1st to memory
and then from memory to requestor

Page 16

DAP Spr.‘98 ©UCB 31

Synchronization

• Why Synchronize? Need to know when it is safe for
different processes to use shared data

• Issues for Synchronization:
– Uninterruptible instruction to fetch and update memory

(atomic operation);
– User level synchronization operation using this primitive;
– For large scale MPs, synchronization can be a bottleneck;

techniques to reduce contention and latency of
synchronization

DAP Spr.‘98 ©UCB 32

Uninterruptible Instruction to
Fetch and Update Memory

• Atomic exchange: interchange a value in a register for
a value in memory

0 => synchronization variable is free
1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible
• Test-and-set: tests a value and sets it if the value

passes the test
• Fetch-and-increment: it returns the value of a memory

location and atomically increments it
– 0 => synchronization variable is free

Page 17

DAP Spr.‘98 ©UCB 33

Uninterruptible Instruction to
Fetch and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same

memory location since preceding load) and 0 otherwise
• Example doing atomic swap with LL & SC:

try: mov R3,R4 ; mov exchange value
ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0) DAP Spr.‘98 ©UCB 34

User Level Synchronization—
Operation Using this Primitive

• Spin locks: processor continuously tries to acquire,
spinning around a loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all
other copies; this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable;
when it changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

Page 18

DAP Spr.‘98 ©UCB 35

Another MP Issue:
Memory Consistency Models

• What is consistency? When must a processor see the
new value? e.g., seems that
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models:
what are the rules for such cases?

• Sequential consistency: result of any execution is the
same as if the accesses of each processor were kept in
order and the accesses among different processors
were interleaved => assignments before ifs above

– SC: delay all memory accesses until all invalidates done
DAP Spr.‘98 ©UCB 36

Memory Consistency Model
• Schemes faster execution to sequential consistency
• Not really an issue for most programs;

they are synchronized
– A program is synchronized if all access to shared data are

ordered by synchronization operations
write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are
not synchronized: “data race”: outcome f(proc. speed)

• Several Relaxed Models for Memory Consistency since
most programs are synchronized; characterized by their
attitude towards: RAR, WAR, RAW, WAW
to different addresses

Page 19

DAP Spr.‘98 ©UCB 37

Review

• Caches contain all information on state of
cached memory blocks

• Snooping and Directory Protocols similar;
bus makes snooping easier because of
broadcast (snooping => uniform memory
access)

• Directory has extra data structure to keep
track of state of all cache blocks

• Distributing directory => scalable shared
address multiprocessor
=> Cache coherent, Non uniform memory
access

