
1

Chapter 3
: MIPS

Downloaded from:
http://www.cs.umr.edu/~bsiever/cs234/

2

Instructions:

• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e.g., MIPS Arithmetic Instructions

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's
– used by NEC, Nintendo, Silicon Graphics, Sony

Design goals: maximize performance and minimize cost, reduce design time

3

MIPS arithmetic

• All instructions have 3 operands
• Operand order is fixed (destination first)

Example:

C code: A = B + C
MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

4

MIPS arithmetic

• Design Principle: simplicity favors regularity. Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code: add $t0, $s1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0

• Operands must be registers, only 32 registers provided
• Design Principle: smaller is faster. Why?

5

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers,
— only 32 registers provided

• Compiler associates variables with registers
• What about programs with lots of variables

6

Memory Organization

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of memory.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

7

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the least 2 significant bits of a word address?

0
4
8
12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

8

Instructions

• Load and store instructions
• Example:

C code: A[8] = h + A[8];
MIPS code: lw $t0, 32($s3)

add $t0, $s2, $t0
sw $t0, 32($s3)

• Store word has destination last
• Remember arithmetic operands are registers, not memory!

9

Our First Example

• Can we figure out the code?

swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

} swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

10

So far we’ve learned:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

11

• Instructions, like registers and words of data, are also 32 bits long
– Example: add $t0, $s1, $s2
– registers have numbers, $t0=9, $s1=17, $s2=18

• Instruction Format:

000000 10001 10010 01000 00000 100000
op rs rt rd shamt funct

• Can you guess what the field names stand for?

Machine Language

12

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

• Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

• Where's the compromise?

Machine Language

13

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

14

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Control

15

• MIPS unconditional branch instructions:
j label

• Example:

if (i!=j) beq $s4, $s5, Lab1
h=i+j; add $s3, $s4, $s5

else j Lab2
h=i-j; Lab1: sub $s3, $s4, $s5

Lab2: ...

• Can you build a simple for loop?

Control

16

So far:

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 ° $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

• Formats:

op rs rt rd shamt funct
op rs rt 16 bit address
op 26 bit address

R
I
J

17

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

2

Control Flow

18

Policy of Use Conventions

Name Register number Usage
$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

19

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

3

Constants

20

• We'd like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000
0000000000000000 1010101010101010

1010101010101010 1010101010101010
ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

21

• Assembly provides convenient symbolic representation
– much easier than writing down numbers
– e.g., destination first

• Machine language is the underlying reality
– e.g., destination is no longer first

• Assembly can provide 'pseudoinstructions'
– e.g., “move $t0, $t1” exists only in Assembly
– would be implemented using “add $t0,$t1,$zero”

• When considering performance you should count real instructions

Assembly Language vs. Machine Language

22

• Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions

• Some of these we'll talk about later
• We've focused on architectural issues

– basics of MIPS assembly language and machine code
– we’ll build a processor to execute these instructions.

Other Issues

23

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three instruction formats

• rely on compiler to achieve performance
— what are the compiler's goals?

• help compiler where we can

op rs rt rd shamt funct
op rs rt 16 bit address
op 26 bit address

R
I
J

Overview of MIPS

24

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

op rs rt 16 bit address
op 26 bit address

I
J

Addresses in Branches and Jumps

25

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches

26

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

27

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

28

• Design alternative:
– provide more powerful operations
– goal is to reduce number of instructions executed
– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”
– virtually all new instruction sets since 1982 have been RISC
– VAX: minimize code size, make assembly language easy

instructions from 1 to 54 bytes long!

• We’ll look at PowerPC and 80x86

Alternative Architectures

29

PowerPC

• Indexed addressing
– example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]
– What do we have to do in MIPS?

• Update addressing
– update a register as part of load (for marching through arrays)
– example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4
– What do we have to do in MIPS?

• Others:
– load multiple/store multiple
– a special counter register “bc Loop”

decrement counter, if not 0 goto loop

30

80x86

• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits, +instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
• 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

31

A dominant architecture: 80x86

• See your textbook for a more detailed description
• Complexity:

– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

32

• Instruction complexity is only one variable
– lower instruction count vs. higher CPI / lower clock rate

• Design Principles:
– simplicity favors regularity
– smaller is faster
– good design demands compromise
– make the common case fast

• Instruction set architecture
– a very important abstraction indeed!

Summary

