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Encoding instructions as binary numbers is natural and efficient for comput-
ers. Humans, however, have a great deal of difficulty understanding and
manipulating these numbers. People read and write symbols (words) much
better than long sequences of digits. Chapter 3 showed that we need not
choose between numbers and words because computer instructions can be
represented in many ways. Humans can write and read symbols, and com-
puters can execute the equivalent binary numbers. This appendix describes
the process by which a human-readable program is translated into a form that
a computer can execute, provides a few hints about writing assembly pro-
grams, and explains how to run these programs on SPIM, a simulator that
executes MIPS programs. Unix, Windows, and DOS versions of the SPIM sim-
ulator are available through 

 

www.mkp.com/cod2e.htm.
Assembly language

 

 is the symbolic representation of a computer’s binary en-
coding—

 

machine language

 

. Assembly language is more readable than machine
language because it uses symbols instead of bits. The symbols in assembly lan-
guage name commonly occurring bit patterns, such as opcodes and register
specifiers, so people can read and remember them. In addition, assembly lan-
guage permits programmers to use 

 

labels

 

 to identify and name particular
memory words that hold instructions or data. 
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A tool called an 

 

assembler

 

 translates assembly language into binary instruc-
tions. Assemblers provide a friendlier representation than a computer’s 0s and
1s that simplifies writing and reading programs. Symbolic names for opera-
tions and locations are one facet of this representation. Another facet is pro-
gramming facilities that increase a program’s clarity. For example, 

 

macros

 

,
discussed in section A.2, enable a programmer to extend the assembly lan-
guage by defining new operations.

An assembler reads a single assembly language 

 

source file

 

 and produces an

 

object file

 

 containing machine instructions and bookkeeping information that
helps combine several object files into a program. Figure A.1 illustrates how a
program is built. Most programs consist of several files—also called 

 

modules

 

—
that are written, compiled, and assembled independently. A program may also
use prewritten routines supplied in a 

 

program library

 

. A module typically con-
tains 

 

references

 

 to subroutines and data defined in other modules and in librar-
ies. The code in a module cannot be executed when it contains 

 

unresolved
references

 

 to labels in other object files or libraries. Another tool, called a 

 

linker,

 

combines a collection of object and library files into an 

 

executable file

 

, which a
computer can run.

To see the advantage of assembly language, consider the following se-
quence of figures, all of which contain a short subroutine that computes and
prints the sum of the squares of integers from 0 to 100. Figure A.2 shows the
machine language that a MIPS computer executes. With considerable effort,
you could use the opcode and instruction format tables in Chapters 3 and 4 to
translate the instructions into a symbolic program similar to Figure A.3. This
form of the routine is much easier to read because operations and operands are
written with symbols, rather than with bit patterns. However, this assembly

 

FIGURE A.1 The process that produces an executable file. 

 

An assembler translates a file of
assembly language into an object file, which is linked with other files and libraries into an executable
file.
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language is still difficult to follow because memory locations are named by
their address, rather than by a symbolic label.

Figure A.4 shows assembly language that labels memory addresses with
mnemonic names. Most programmers prefer to read and write this form.
Names that begin with a period, for example 

 

.data

 

 and 

 

.globl

 

, are 

 

assembler
directives

 

 that tell the assembler how to translate a program but do not produce
machine instructions. Names followed by a colon, such as 

 

str

 

 or 

 

main

 

, are la-
bels that name the next memory location. This program is as readable as most
assembly language programs (except for a glaring lack of comments), but it is
still difficult to follow because many simple operations are required to accom-
plish simple tasks and because assembly language’s lack of control flow con-
structs provides few hints about the program’s operation.

By contrast, the C routine in Figure A.5 is both shorter and clearer since
variables have mnemonic names and the loop is explicit rather than construct-
ed with branches. (If you are unfamiliar with C, you may wish to look at Web
Extension II at 

 

www.mkp.com/cod2e.htm.

 

) In fact, the C routine is the only one
that we wrote. The other forms of the program were produced by a C compiler
and assembler.

 

00100111101111011111111111100000
10101111101111110000000000010100
10101111101001000000000000100000
10101111101001010000000000100100
10101111101000000000000000011000
10101111101000000000000000011100
10001111101011100000000000011100
10001111101110000000000000011000
00000001110011100000000000011001
00100101110010000000000000000001
00101001000000010000000001100101
10101111101010000000000000011100
00000000000000000111100000010010
00000011000011111100100000100001
00010100001000001111111111110111
10101111101110010000000000011000
00111100000001000001000000000000
10001111101001010000000000011000
00001100000100000000000011101100
00100100100001000000010000110000
10001111101111110000000000010100
00100111101111010000000000100000
00000011111000000000000000001000
00000000000000000001000000100001

 

FIGURE A.2 MIPS machine language code for a routine to compute and print the sum of
the squares of integers between 0 and 100.
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In general, assembly language plays two roles (see Figure A.6). The first role
is the output language of compilers. A 

 

compiler

 

 translates a program written in
a 

 

high-level language

 

 (such as C or Pascal) into an equivalent program in ma-
chine or assembly language. The high-level language is called the 

 

source
language,

 

 and the compiler’s output is its 

 

target language

 

.
Assembly language’s other role is as a language in which to write programs.

This role used to be the dominant one. Today, however, because of larger main
memories and better compilers, most programmers write in a high-level lan-
guage and rarely, if ever, see the instructions that a computer executes. Never-
theless, assembly language is still important to write programs in which speed
or size are critical or to exploit hardware features that have no analogues in
high-level languages.

Although this appendix focuses on MIPS assembly language, assembly pro-
gramming on most other machines is very similar. The additional instructions
and address modes in CISC machines, such as the VAX (see Web Extension III
at 

 

www.mkp.com/cod2e.htm

 

), can make assembly programs shorter but do not
change the process of assembling a program or provide assembly language
with the advantages of high-level languages such as type-checking and struc-
tured control flow.

 

addiu $29, $29, -32
sw $31, 20($29)
sw $4,  32($29)
sw $5, 36($29)
sw $0,  24($29)
sw $0, 28($29)
lw $14, 28($29)
lw $24, 24($29)
multu $14, $14
addiu $8, $14, 1
slti $1, $8, 101
sw $8,  28($29)
mflo $15
addu $25, $24, $15
bne $1, $0, -9
sw $25, 24($29)
lui $4, 4096
lw $5, 24($29)
jal 1048812
addiu $4, $4, 1072
lw $31, 20($29)
addiu $29, $29, 32
jr $31
move $2,  $0

 

FIGURE A.3 The same routine written in assembly language. 

 

However, the code for the
routine does not label registers or memory locations nor include comments.
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When to Use Assembly Language

 

The primary reason to program in assembly language, as opposed to an avail-
able high-level language, is that the speed or size of a program is critically
important. For example, consider a computer that controls a piece of machin-
ery, such as a car’s brakes. A computer that is incorporated in another device,
such as a car, is called an 

 

embedded computer

 

. This type of computer needs to
respond rapidly and predictably to events in the outside world. Because a

 

.text

.align 2

.globl main
main:

subu $sp, $sp, 32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0,  28($sp)

loop:
lw $t6, 28($sp)
mul $t7, $t6, $t6
lw $t8, 24($sp)
addu $t9, $t8, $t7
sw $t9, 24($sp)
addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0, 100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addu $sp, $sp, 32
jr $ra

.data

.align 0
str:

.asciiz "The sum from 0 .. 100 is %d\n"

 

FIGURE A.4 The same routine written in assembly language with labels, but no com-
ments. 

 

The commands that start with periods are assembler directives (see pages A-51–A-53).

 

.text

 

 indicates that succeeding lines contain instructions. 

 

.data

 

 indicates that they contain
data. 

 

.align n

 

 indicates that the items on the succeeding lines should be aligned on a 2

 

n

 

 byte
boundary. Hence, 

 

.align 2

 

 means the next item should be on a word boundary. 

 

.globl main

 

declares that 

 

main

 

 is a global symbol that should be visible to code stored in other files. Finally,

 

.asciiz

 

 stores a null-terminated string in memory.
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compiler introduces uncertainty about the time cost of operations, program-
mers may find it difficult to ensure that a high-level language program
responds within a definite time interval—say, 1 millisecond after a sensor
detects that a tire is skidding. An assembly language programmer, on the
other hand, has tight control over which instructions execute. In addition, in
embedded applications, reducing a program’s size, so that it fits in fewer
memory chips, reduces the cost of the embedded computer.

A hybrid approach, in which most of a program is written in a high-level
language and time-critical sections are written in assembly language, builds
on the strengths of both languages. Programs typically spend most of their
time executing a small fraction of the program’s source code. This observation
is just the principle of locality that underlies caches (see section 7.2 in
Chapter 7).

Program profiling measures where a program spends its time and can find
the time-critical parts of a program. In many cases, this portion of the program
can be made faster with better data structures or algorithms. Sometimes, how-

 

#include <stdio.h>

int
main (int argc, char *argv[])
{
 int i;
 int sum = 0;

 for (i = 0; i <= 100; i = i + 1) sum = sum + i * i;
 printf ("The sum from 0 .. 100 is %d\n", sum);
}

 

FIGURE A.5 The routine written in the C programming language.

FIGURE A.6 Assembly language either is written by a programmer or is the output of a com-
piler.

LinkerCompilerProgram Assembler Computer

High-level language program

Assembly language program
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ever, significant performance improvements only come from recoding a criti-
cal portion of a program in assembly language.

This improvement is not necessarily an indication that the high-level
language’s compiler has failed. Compilers typically are better than program-
mers at producing uniformly high-quality machine code across an entire pro-
gram. Programmers, however, understand a program’s algorithms and
behavior at a deeper level than a compiler and can expend considerable effort
and ingenuity improving small sections of the program. In particular, pro-
grammers often consider several procedures simultaneously while writing
their code. Compilers typically compile each procedure in isolation and must
follow strict conventions governing the use of registers at procedure bound-
aries. By retaining commonly used values in registers, even across procedure
boundaries, programmers can make a program run faster.

Another major advantage of assembly language is the ability to exploit spe-
cialized instructions, for example, string copy or pattern-matching instruc-
tions. Compilers, in most cases, cannot determine that a program loop can be
replaced by a single instruction. However, the programmer who wrote the
loop can replace it easily with a single instruction.

In the future, a programmer’s advantage over a compiler is likely to become
increasingly difficult to maintain as compilation techniques improve and
machines’ pipelines increase in complexity (Chapter 6).

The final reason to use assembly language is that no high-level language is
available on a particular computer. Many older or specialized computers do
not have a compiler, so a programmer’s only alternative is assembly language.

 

Drawbacks of Assembly Language

 

Assembly language has many disadvantages that strongly argue against its
widespread use. Perhaps its major disadvantage is that programs written in
assembly language are inherently machine-specific and must be totally
rewritten to run on another computer architecture. The rapid evolution of
computers discussed in Chapter 1 means that architectures become obsolete.
An assembly language program remains tightly bound to its original archi-
tecture, even after the computer is eclipsed by new, faster, and more cost-
effective machines.

Another disadvantage is that assembly language programs are longer than
the equivalent programs written in a high-level language. For example, the C
program in Figure A.5 is 11 lines long, while the assembly program in
Figure A.4 is 31 lines long. In more complex programs, the ratio of assembly to
high-level language (its 

 

expansion factor

 

) can be much larger than the factor of
three in this example. Unfortunately, empirical studies have shown that pro-
grammers write roughly the same number of lines of code per day in assembly
as in high-level languages. This means that programmers are roughly 

 

x

 

 times
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more productive in a high-level language, where 

 

x

 

 is the assembly language
expansion factor.

To compound the problem, longer programs are more difficult to read and
understand and they contain more bugs. Assembly language exacerbates the
problem because of its complete lack of structure. Common programming id-
ioms, such as 

 

if-then

 

 statements and loops, must be built from branches and
jumps. The resulting programs are hard to read because the reader must recon-
struct every higher-level construct from its pieces and each instance of a state-
ment may be slightly different. For example, look at Figure A.4 and answer
these questions: What type of loop is used? What are its lower and upper
bounds?

 

Elaboration:

 

Compilers can produce machine language directly instead of relying on
an assembler. These compilers typically execute much faster than those that invoke an
assembler as part of compilation. However, a compiler that generates machine lan-
guage must perform many tasks that an assembler normally handles, such as resolv-
ing addresses and encoding instructions as binary numbers. The trade-off is between
compilation speed and compiler simplicity. 

 

Elaboration:

 

Despite these considerations, some embedded applications are writ-
ten in a high-level language. Many of these applications are large and complex pro-
grams that must be extremely reliable. Assembly language programs are longer and
more difficult to write and read than high-level language programs. This greatly
increases the cost of writing an assembly language program and makes it extremely dif-
ficult to verify the correctness of this type of program. In fact, these considerations led
the Department of Defense, which pays for many complex embedded systems, to
develop Ada, a new high-level language for writing embedded systems.

 

An assembler translates a file of assembly language statements into a file of
binary machine instructions and binary data. The translation process has two
major parts. The first step is to find memory locations with labels so the rela-
tionship between symbolic names and addresses is known when instructions
are translated. The second step is to translate each assembly statement by
combining the numeric equivalents of opcodes, register specifiers, and labels
into a legal instruction. As shown in Figure A.1, the assembler produces an
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output file, called an 

 

object file

 

, which contains the machine instructions, data,
and bookkeeping information.

An object file typically cannot be executed because it references procedures
or data in other files. A label is 

 

external

 

 (also called 

 

global

 

) if the labeled object
can be referenced from files other than the one in which it is defined. A label is

 

local

 

 if the object can be used only within the file in which it is defined. In most
assemblers, labels are local by default and must be explicitly declared global.
Subroutines and global variables require external labels since they are refer-
enced from many files in a program. Local labels hide names that should not
be visible to other modules—for example, static functions in C, which can only
be called by other functions in the same file. In addition, compiler-generated
names—for example, a name for the instruction at the beginning of a loop—
are local so the compiler need not produce unique names in every file.

Since the assembler processes each file in a program individually and in iso-
lation, it only knows the addresses of local labels. The assembler depends on
another tool, the linker, to combine a collection of object files and libraries into
an executable file by resolving external labels. The assembler assists the linker
by providing lists of labels and unresolved references.

However, even local labels present an interesting challenge to an assembler.
Unlike names in most high-level languages, assembly labels may be used be-
fore they are defined. In the example, in Figure A.4, the label 

 

str

 

 is used by the

 

la

 

 instruction before it is defined. The possibility of a 

 

forward reference

 

, like this
one, forces an assembler to translate a program in two steps: first find all la-
bels and then produce instructions. In the example, when the assembler sees
the 

 

la

 

 instruction, it does not know where the word labeled 

 

str

 

 is located or
even whether 

 

str

 

 labels an instruction or datum.

 

Local and Global Labels

 

Consider the program in Figure A.4 on page A-7. The subroutine has an
external (global) label 

 

main. It also contains two local labels—loop and
str—that are only visible with this assembly language file. Finally, the
routine also contains an unresolved reference to an external label printf,
which is the library routine that prints values. Which labels in Figure A.4
could be referenced from another file?

Only global labels are visible outside of a file, so the only label that could
be referenced from another file is main.

Example

Answer
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An assembler’s first pass reads each line of an assembly file and breaks it
into its component pieces. These pieces, which are called lexemes, are individ-
ual words, numbers, and punctuation characters. For example, the line

ble $t0, 100, loop

contains 6 lexemes: the opcode ble, the register specifier $t0, a comma, the
number 100, a comma, and the symbol loop.

If a line begins with a label, the assembler records in its symbol table the name
of the label and the address of the memory word that the instruction occupies.
The assembler then calculates how many words of memory the instruction on
the current line will occupy. By keeping track of the instructions’ sizes, the as-
sembler can determine where the next instruction goes. To compute the size of
a variable-length instruction, like those on the VAX, an assembler has to exam-
ine it in detail. Fixed-length instructions, like those on MIPS, on the other
hand, require only a cursory examination. The assembler performs a similar
calculation to compute the space required for data statements. When the as-
sembler reaches the end of an assembly file, the symbol table records the loca-
tion of each label defined in the file.

The assembler uses the information in the symbol table during a second
pass over the file, which actually produces machine code. The assembler again
examines each line in the file. If the line contains an instruction, the assembler
combines the binary representations of its opcode and operands (register spec-
ifiers or memory address) into a legal instruction. The process is similar to the
one used in section 3.4 in Chapter 3. Instructions and data words that reference
an external symbol defined in another file cannot be completely assembled
(they are unresolved) since the symbol’s address is not in the symbol table. An
assembler does not complain about unresolved references since the corre-
sponding label is likely to be defined in another file.

Assembly language is a programming language. Its
principal difference from high-level languages such
as BASIC, Java, and C is that assembly language pro-
vides only a few, simple types of data and control
flow. Assembly language programs do not specify the
type of value held in a variable. Instead, a program-

mer must apply the appropriate operations (e.g., integer or floating-
point addition) to a value. In addition, in assembly language, pro-
grams must implement all control flow with go tos. Both factors make
assembly language programming for any machine—MIPS or 80x86—
more difficult and error-prone than writing in a high-level language.

The Big 

Picture
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Elaboration: If an assembler’s speed is important, this two-step process can be
done in one pass over the assembly file with a technique known as backpatching. In its
pass over the file, the assembler builds a (possibly incomplete) binary representation
of every instruction. If the instruction references a label that has not yet been defined,
the assembler records the label and instruction in a table. When a label is defined, the
assembler consults this table to find all instructions that contain a forward reference to
the label. The assembler goes back and corrects their binary representation to incorpo-
rate the address of the label. Backpatching speeds assembly because the assembler
only reads its input once. However, it requires an assembler to hold the entire binary
representation of a program in memory so instructions can be backpatched. This
requirement can limit the size of programs that can be assembled.

Object File Format
Assemblers produce object files. An object file on Unix contains six distinct
sections (see Figure A.7):

� The object file header describes the size and position of the other pieces of
the file.

� The text segment contains the machine language code for routines in the
source file. These routines may be unexecutable because of unresolved
references.

� The data segment contains a binary representation of the data in the
source file. The data also may be incomplete because of unresolved ref-
erences to labels in other files.

� The relocation information identifies instructions and data words that de-
pend on absolute addresses. These references must change if portions
of the program are moved in memory.

� The symbol table associates addresses with external labels in the source
file and lists unresolved references. 

� The debugging information contains a concise description of the way in
which the program was compiled, so a debugger can find which in-
struction addresses correspond to lines in a source file and print the
data structures in readable form.

FIGURE A.7 Object file. A Unix assembler produces an object file with six distinct sections.

Object file
header

Text
segment

Data
segment

Relocation
information

Symbol
table

Debugging
information
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The assembler produces an object file that contains a binary representation
of the program and data and additional information to help link pieces of a
program. This relocation information is necessary because the assembler does
not know which memory locations a procedure or piece of data will occupy af-
ter it is linked with the rest of the program. Procedures and data from a file are
stored in a contiguous piece of memory, but the assembler does not know
where this memory will be located. The assembler also passes some symbol ta-
ble entries to the linker. In particular, the assembler must record which external
symbols are defined in a file and what unresolved references occur in a file.

Elaboration: For convenience, assemblers assume each file starts at the same
address (for example, location 0) with the expectation that the linker will relocate the
code and data when they are assigned locations in memory. The assembler produces
relocation information, which contains an entry describing each instruction or data
word in the file that references an absolute address. On MIPS, only the subroutine call,
load, and store instructions reference absolute addresses. Instructions that use PC-rel-
ative addressing, such as branches, need not be relocated.

Additional Facilities
Assemblers provide a variety of convenience features that help make assem-
bler programs short and easier to write, but do not fundamentally change
assembly language. For example, data layout directives allow a programmer to
describe data in a more concise and natural manner than its binary represen-
tation.

In Figure A.4, the directive 

 .asciiz “The sum from 0 .. 100 is %d\n”

stores characters from the string in memory. Contrast this line with the alter-
native of writing each character as its ASCII value (Figure 3.15 in Chapter 3
describes the ASCII encoding for characters):

.byte 84, 104, 101, 32, 115, 117, 109, 32

.byte 102, 114, 111, 109, 32, 48, 32, 46

.byte 46, 32, 49, 48, 48, 32, 105, 115

.byte 32, 37, 100, 10, 0

The .asciiz directive is easier to read because it represents characters as let-
ters, not binary numbers. An assembler can translate characters to their
binary representation much faster and more accurately than a human. Data
layout directives specify data in a human-readable form that the assembler
translates to binary. Other layout directives are described in section A.10 on
pages A-51–A-53.



A.2 Assemblers A-15

Macros are a pattern-matching and replacement facility that provide a sim-
ple mechanism to name a frequently used sequence of instructions. Instead of
repeatedly typing the same instructions every time they are used, a program-
mer invokes the macro and the assembler replaces the macro call with the cor-
responding sequence of instructions. Macros, like subroutines, permit a
programmer to create and name a new abstraction for a common operation.
Unlike subroutines, however, macros do not cause a subroutine call and return
when the program runs since a macro call is replaced by the macro’s body
when the program is assembled. After this replacement, the resulting assem-
bly is indistinguishable from the equivalent program written without macros.

String Directive

Define the sequence of bytes produced by this directive:

.asciiz “The quick brown fox jumps over the lazy dog”

.byte 84, 104, 101, 32, 113, 117, 105, 99

.byte 107, 32, 98, 114, 111, 119, 110, 32

.byte 102, 111, 120, 32, 106, 117, 109, 112

.byte 115, 32,  111, 118, 101, 114, 32, 116

.byte 104, 101, 32, 108, 97, 122, 121, 32

.byte 100, 111, 103, 0

Macros

As an example, suppose that a programmer needs to print many numbers.
The library routine printf accepts a format string and one or more values
to print as its arguments. A programmer could print the integer in register
$7 with the following instructions:

.data
int_str: .asciiz“%d”

.text
la $a0, int_str # Load string address

# into first arg
mov $a1, $7 # Load value into

# second arg
jal printf # Call the printf routine

Example

Answer

Example
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The .data directive tells the assembler to store the string in the program’s
data segment, and the .text directive tells the assembler to store the in-
structions in its text segment.

 However, printing many numbers in this fashion is tedious and pro-
duces a verbose program that is difficult to understand. An alternative is
to introduce a macro, print_int, to print an integer:

.data
int_str:.asciiz “%d”

.text

.macro print_int($arg)
la $a0, int_str # Load string address into

# first arg
mov $a1, $arg # Load macro’s parameter 

# ($arg) into second arg
jal printf # Call the printf routine
.end_macro

print_int($7)

The macro has a formal parameter, $arg, that names the argument to the
macro. When the macro is expanded, the argument from a call is substitut-
ed for the formal parameter throughout the macro’s body. Then the assem-
bler replaces the call with the macro’s newly expanded body. In the first
call on print_int, the argument is $7, so the macro expands to the code

la  $a0, int_str
mov $a1, $7
jal printf

In a second call on print_int, say, print_int($t0), the argument is
$t0, so the macro expands to

la  $a0, int_str 
mov $a1, $t0 
jal printf

What does the call print_int($a0) expand to?

la  $a0, int_str 
mov $a1, $a0 
jal printf

 This example illustrates a drawback of macros. A programmer who
uses this macro must be aware that print_int uses register $a0 and so
cannot correctly print the value in that register.

Answer
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Elaboration: Assemblers conditionally assemble pieces of code, which permits a
programmer to include or exclude groups of instructions when a program is assembled.
This feature is particularly useful when several versions of a program differ by a small
amount. Rather than keep these programs in separate files—which greatly complicates
fixing bugs in the common code—programmers typically merge the versions into a sin-
gle file. Code particular to one version is conditionally assembled, so it can be excluded
when other versions of the program are assembled.

If macros and conditional assembly are useful, why do assemblers for Unix systems
rarely, if ever, provide them? One reason is that most programmers on these systems
write programs in higher-level languages like C. Most of the assembly code is produced
by compilers, which find it more convenient to repeat code rather than define macros.
Another reason is that other tools on Unix—such as cpp, the C preprocessor, or m4, a
general macro processor—can provide macros and conditional assembly for assembly
language programs. 

Separate compilation permits a program to be split into pieces that are stored in
different files. Each file contains a logically related collection of subroutines
and data structures that form a module in a larger program. A file can be com-
piled and assembled independently of other files, so changes to one module
do not require recompiling the entire program. As we discussed above, sepa-
rate compilation necessitates the additional step of linking to combine object
files from separate modules and fix their unresolved references.

Some assemblers also implement pseudoinstructions, which
are instructions provided by an assembler but not imple-
mented in hardware. Chapter 3 contains many examples of
how the MIPS assembler synthesizes pseudoinstructions
and addressing modes from the spartan MIPS hardware
instruction set. For example, section 3.5 in Chapter 3
describes how the assembler synthesizes the blt instruction

from two other instructions: slt and bne. By extending the instruction set,
the MIPS assembler makes assembly language programming easier without
complicating the hardware. Many pseudoinstructions could also be simu-
lated with macros, but the MIPS assembler can generate better code for these
instructions because it can use a dedicated register ($at) and is able to opti-
mize the generated code.

A.3 Linkers A.3
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The tool that merges these files is the linker (see Figure A.8). It performs
three tasks:

� Searches the program libraries to find library routines used by the pro-
gram

� Determines the memory locations that code from each module will oc-
cupy and relocates its instructions by adjusting absolute references

� Resolves references among files

A linker’s first task is to ensure that a program contains no undefined labels.
The linker matches the external symbols and unresolved references from a pro-
gram’s files. An external symbol in one file resolves a reference from another
file if both refer to a label with the same name. Unmatched references mean a
symbol was used, but not defined anywhere in the program.

Unresolved references at this stage in the linking process do not necessarily
mean a programmer made a mistake. The program could have referenced a li-
brary routine whose code was not in the object files passed to the linker. After
matching symbols in the program, the linker searches the system’s program li-
braries to find predefined subroutines and data structures that the program

FIGURE A.8 The linker searches a collection of object files and program libraries to find non-
local routines used in a program, combines them into a single executable file, and resolves
references between routines in different files.
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references. The basic libraries contain routines that read and write data, allo-
cate and deallocate memory, and perform numeric operations. Other libraries
contain routines to access a database or manipulate terminal windows. A pro-
gram that references an unresolved symbol that is not in any library is errone-
ous and cannot be linked. When the program uses a library routine, the linker
extracts the routine’s code from the library and incorporates it into the pro-
gram text segment. This new routine, in turn, may depend on other library
routines, so the linker continues to fetch other library routines until no external
references are unresolved or a routine cannot be found.

If all external references are resolved, the linker next determines the memo-
ry locations that each module will occupy. Since the files were assembled in
isolation, the assembler could not know where a module’s instructions or data
will be placed relative to other modules. When the linker places a module in
memory, all absolute references must be relocated to reflect its true location.
Since the linker has relocation information that identifies all relocatable refer-
ences, it can efficiently find and backpatch these references.

The linker produces an executable file that can run on a computer. Typically,
this file has the same format as an object file, except that it contains no unre-
solved references or relocation information.

A program that links without an error can be run. Before being run, the pro-
gram resides in a file on secondary storage, such as a disk. On Unix systems,
the operating system kernel brings a program into memory and starts it run-
ning. To start a program, the operating system performs the following steps:

1. Reads the executable file’s header to determine the size of the text and
data segments.

2. Creates a new address space for the program. This address space is
large enough to hold the text and data segments, along with a stack seg-
ment (see section A.5).

3. Copies instructions and data from the executable file into the new
address space.

4. Copies arguments passed to the program onto the stack.

5. Initializes the machine registers. In general, most registers are cleared,
but the stack pointer must be assigned the address of the first free stack
location (see section A.5).

A.4 Loading A.4
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6. Jumps to a start-up routine that copies the program’s arguments from
the stack to registers and calls the program’s main routine. If the main
routine returns, the start-up routine terminates the program with the
exit system call.

 

The next few sections elaborate the description of the MIPS architecture pre-
sented earlier in the book. Earlier chapters focused primarily on hardware
and its relationship with low-level software. These sections focus primarily
on how assembly language programmers use MIPS hardware. These sections
describe a set of conventions followed on many MIPS systems. For the most
part, the hardware does not impose these conventions. Instead, they represent
an agreement among programmers to follow the same set of rules so that soft-
ware written by different people can work together and make effective use of
MIPS hardware.

Systems based on MIPS processors typically divide memory into three parts
(see Figure A.9). The first part, near the bottom of the address space (starting
at address 400000hex), is the text segment, which holds the program’s instruc-
tions.

The second part, above the text segment, is the data segment, which is further
divided into two parts. Static data (starting at address 10000000hex) contains ob-
jects whose size is known to the compiler and whose lifetime—the interval
during which a program can access them—is the program’s entire execution.
For example, in C, global variables are statically allocated since they can be ref-
erenced anytime during a program’s execution. The linker both assigns static
objects to locations in the data segment and resolves references to these objects.

A.5 Memory Usage A.5

FIGURE A.9 Layout of memory.
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Immediately above static data is dynamic data. This data, as its name implies,
is allocated by the program as it executes. In C programs, the malloc library
routine finds and returns a new block of memory. Since a compiler cannot pre-
dict how much memory a program will allocate, the operating system expands
the dynamic data area to meet demand. As the upward arrow in the figure in-
dicates, malloc expands the dynamic area with the sbrk system call, which
causes the operating system to add more pages to the program’s virtual ad-
dress space (see section 7.3 in Chapter 7) immediately above the dynamic data
segment.

The third part, the program stack segment, resides at the top of the virtual ad-
dress space (starting at address 7fffffffhex). Like dynamic data, the maximum
size of a program’s stack is not known in advance. As the program pushes val-
ues on the stack, the operating system expands the stack segment down, to-
wards the data segment.

 This three-part division of memory is not the only possible one. However,
it has two important characteristics: the two dynamically expandable seg-
ments are as far apart as possible, and they can grow to use a program’s entire
address space.

Because the data segment begins far above the program at
address 10000000hex, load and store instructions cannot
directly reference data objects with their 16-bit offset fields
(see section 3.4 in Chapter 3). For example, to load the word
in the data segment at address 10010020hex into register $v0
requires two instructions:

lui $s0, 0x1001 # 0x1001 means 1001 base 16 
lw $v0, 0x0020($s0) # 0x10010000 + 0x0020 = 0x10010020

(The 0x before a number means that it is a hexadecimal value. For example,
0x8000 is 8000hex or 32,768ten.)

To avoid repeating the lui instruction at every load and store, MIPS sys-
tems typically dedicate a register ($gp) as a global pointer to the static data seg-
ment. This register contains address 10008000hex, so load and store
instructions can use their signed 16-bit offset fields to access the first 64 KB of
the static data segment. With this global pointer, we can rewrite the example
as a single instruction:

 lw $v0, 0x8020($gp)

Of course, a global pointer register makes addressing locations
10000000hex–10010000hex faster than other heap locations. The MIPS compiler
usually stores global variables in this area because these variables have fixed
locations and fit better than other global data, such as arrays.
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Conventions governing the use of registers are necessary when procedures in
a program are compiled separately. To compile a particular procedure, a com-
piler must know which registers it may use and which registers are reserved
for other procedures. Rules for using registers are called register use or proce-
dure call conventions. As the name implies, these rules are, for the most part,
conventions followed by software rather than rules enforced by hardware.
However, most compilers and programmers try very hard to follow these
conventions because violating them causes insidious bugs.

The calling convention described in this section is the one used by the gcc
compiler. The native MIPS compiler uses a more complex convention that is
slightly faster.

The MIPS CPU contains 32 general-purpose registers that are numbered 0–
31. Register $0 always contains the hardwired value 0. 

� Registers $at (1), $k0 (26), and $k1 (27) are reserved for the assembler
and operating system and should not be used by user programs or com-
pilers.

� Registers $a0–$a3 (4–7) are used to pass the first four arguments to rou-
tines (remaining arguments are passed on the stack). Registers $v0 and
$v1 (2, 3) are used to return values from functions.

� Registers $t0–$t9 (8–15, 24, 25) are caller-saved registers that are used
to hold temporary quantities that need not be preserved across calls (see
section 3.6 in Chapter 3).

� Registers $s0–$s7 (16–23) are callee-saved registers that hold long-
lived values that should be preserved across calls.

� Register $gp (28) is a global pointer that points to the middle of a 64K
block of memory in the static data segment.

� Register $sp (29) is the stack pointer, which points to the last location
on the stack. Register $fp (30) is the frame pointer. The jal instruction
writes register $ra (31), the return address from a procedure call. These
two registers are explained in the next section.

 The two-letter abbreviations and names for these registers—for example
$sp for the stack pointer—reflect the registers’ intended uses in the procedure
call convention. In describing this convention, we will use the names instead
of register numbers. Figure A.10 lists the registers and describes their intended
uses.

A.6 Procedure Call Convention A.6
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Procedure Calls
This section describes the steps that occur when one procedure (the caller)
invokes another procedure (the callee). Programmers who write in a high-
level language (like C or Pascal) never see the details of how one procedure
calls another because the compiler takes care of this low-level bookkeeping.
However, assembly language programmers must explicitly implement every
procedure call and return.

 Register name Number Usage

 $zero 00 constant 0

 $at 01 reserved for assembler 

 $v0 02 expression evaluation and results of a function

 $v1 03 expression evaluation and results of a function

 $a0 04 argument 1 

 $a1 05 argument 2 

 $a2 06 argument 3 

 $a3 07 argument 4 

 $t0 08 temporary (not preserved across call) 

 $t1 09 temporary (not preserved across call) 

 $t2 10 temporary (not preserved across call) 

 $t3 11 temporary (not preserved across call) 

 $t4 12 temporary (not preserved across call) 

 $t5 13 temporary (not preserved across call) 

 $t6 14 temporary (not preserved across call) 

 $t7 15 temporary (not preserved across call) 

 $s0 16 saved temporary (preserved across call) 

 $s1 17 saved temporary (preserved across call) 

 $s2 18 saved temporary (preserved across call) 

 $s3 19 saved temporary (preserved across call) 

 $s4 20 saved temporary (preserved across call) 

 $s5 21 saved temporary (preserved across call) 

 $s6 22 saved temporary (preserved across call) 

 $s7 23 saved temporary (preserved across call) 

 $t8 24 temporary (not preserved across call) 

 $t9 25 temporary (not preserved across call) 

 $k0 26 reserved for OS kernel 

 $k1 27 reserved for OS kernel 

 $gp 28 pointer to global area 

 $sp 29 stack pointer 

 $fp 30 frame pointer 

 $ra 31 return address (used by function call) 

FIGURE A.10 MIPS registers and usage convention.
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Most of the bookkeeping associated with a call is centered around a block
of memory called a procedure call frame. This memory is used for a variety of
purposes:

� To hold values passed to a procedure as arguments

� To save registers that a procedure may modify, but which the proce-
dure’s caller does not want changed

� To provide space for variables local to a procedure

 In most programming languages, procedure calls and returns follow a strict
last-in, first-out (LIFO) order, so this memory can be allocated and deallocated
on a stack, which is why these blocks of memory are sometimes called stack
frames.

Figure A.11 shows a typical stack frame. The frame consists of the memory
between the frame pointer ($fp), which points to the first word of the frame,
and the stack pointer ($sp), which points to the last word of the frame. The
stack grows down from higher memory addresses, so the frame pointer points
above the stack pointer. The executing procedure uses the frame pointer to
quickly access values in its stack frame. For example, an argument in the stack
frame can be loaded into register $v0 with the instruction

 lw $v0, 0($fp)

A stack frame may be built in many different ways; however, the caller and
callee must agree on the sequence of steps. The steps below describe the calling
convention used on most MIPS machines. This convention comes into play at
three points during a procedure call: immediately before the caller invokes the
callee, just as the callee starts executing, and immediately before the callee re-
turns to the caller. In the first part, the caller puts the procedure call arguments
in standard places and invokes the callee to do the following:

1. Pass arguments. By convention, the first four arguments are passed in
registers $a0–$a3. Any remaining arguments are pushed on the stack
and appear at the beginning of the called procedure’s stack frame.

2. Save caller-saved registers. The called procedure can use these registers
($a0–$a3 and $t0–$t9) without first saving their value. If the caller
expects to use one of these registers after a call, it must save its value
before the call.

3. Execute a jal instruction (see section 3.6 of Chapter 3), which jumps to
the callee’s first instruction and saves the return address in register $ra.

Before a called routine starts running, it must take the following steps to set
up its stack frame:

1. Allocate memory for the frame by subtracting the frame’s size from the
stack pointer.
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2. Save callee-saved registers in the frame. A callee must save the values
in these registers ($s0–$s7, $fp, and $ra) before altering them since the
caller expects to find these registers unchanged after the call. Register
$fp is saved by every procedure that allocates a new stack frame. How-
ever, register $ra only needs to be saved if the callee itself makes a call.
The other callee-saved registers that are used also must be saved.

3. Establish the frame pointer by adding the stack frame’s size minus four
to $sp and storing the sum in register $fp.

FIGURE A.11 Layout of a stack frame. The frame pointer ($fp) points to the first word in the
currently executing procedure’s stack frame. The stack pointer ($sp) points to the last word of
frame. The first four arguments are passed in registers, so the fifth argument is the first one stored
on the stack.

The MIPS register use convention provides callee- and
caller-saved registers because both types of registers are
advantageous in different circumstances. Callee-saved reg-
isters are better used to hold long-lived values, such as vari-
ables from a user’s program. These registers are only saved
during a procedure call if the callee expects to use the regis-
ter. On the other hand, caller-saved registers are better used

to hold short-lived quantities that do not persist across a call, such as immedi-
ate values in an address calculation. During a call, the callee can also use these
registers for short-lived temporaries.
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Finally, the callee returns to the caller by executing the following steps:

1. If the callee is a function that returns a value, place the returned value
in register $v0.

2. Restore all callee-saved registers that were saved upon procedure entry.

3. Pop the stack frame by adding the frame size to $sp.

4. Return by jumping to the address in register $ra.

Elaboration: A programming language that does not permit recursive procedures—
procedures that call themselves either directly or indirectly through a chain of calls—
need not allocate frames on a stack. In a nonrecursive language, each procedure’s
frame may be statically allocated since only one invocation of a procedure can be active
at a time. Older versions of Fortran prohibited recursion because statically allocated
frames produced faster code on some older machines. However, on load-store architec-
tures like MIPS, stack frames may be just as fast because a frame pointer register
points directly to the active stack frame, which permits a single load or store instruc-
tion to access values in the frame. In addition, recursion is a valuable programming
technique.

Procedure Call Example
As an example, consider the C routine

main ()
{

printf ("The factorial of 10 is %d\n", fact (10));
}

int fact (int n)
{

if (n < 1)
return (1);

else
return (n * fact (n - 1));

}

which computes and prints 10! (the factorial of 10, 10! = 10 × 9 × . . . × 1). fact
is a recursive routine that computes n! by multiplying n times (n – 1)!. The
assembly code for this routine illustrates how programs manipulate stack
frames.

Upon entry, the routine main creates its stack frame and saves the two
callee-saved registers it will modify: $fp and $ra. The frame is larger than re-
quired for these two registers because the calling convention requires the min-
imum size of a stack frame to be 24 bytes. This minimum frame can hold four



A.6 Procedure Call Convention A-27

argument registers ($a0–$a3) and the return address $ra, padded to a double-
word boundary (24 bytes). Since main also needs to save $fp, its stack frame
must be two words larger (remember: the stack pointer is kept doubleword
aligned).

.text

.globl main
main:

subu $sp,$sp,32 # Stack frame is 32 bytes long
sw $ra,20($sp) # Save return address
sw $fp,16($sp) # Save old frame pointer
addiu $fp,$sp,28 # Set up frame pointer

The routine main then calls the factorial routine and passes it the single argu-
ment 10. After fact returns, main calls the library routine printf and passes
it both a format string and the result returned from fact:

li $a0,10 # Put argument (10) in $a0
jal fact # Call factorial function

la $a0,$LC # Put format string in $a0
move $a1,$v0 # Move fact result to $a1
jal printf # Call the print function

Finally, after printing the factorial, main returns. But first, it must restore the
registers it saved and pop its stack frame:

lw $ra,20($sp) # Restore return address
lw $fp,16($sp) # Restore frame pointer
addiu $sp,$sp,32 # Pop stack frame
jr $ra # Return to caller

.rdata
$LC:

.ascii “The factorial of 10 is %d\n\000”

The factorial routine is similar in structure to main. First, it creates a stack
frame and saves the callee-saved registers it will use. In addition to saving
$ra and $fp, fact also saves its argument ($a0), which it will use for the
recursive call:

.text
fact:

subu $sp,$sp,32 # Stack frame is 32 bytes long
sw $ra,20($sp) # Save return address
sw $fp,16($sp) # Save frame pointer
addiu $fp,$sp,28 # Set up frame pointer
sw $a0,0($fp) # Save argument (n)
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The heart of the fact routine performs the computation from the C pro-
gram. It tests if the argument is greater than 0. If not, the routine returns the
value 1. If the argument is greater than 0, the routine recursively calls itself to
compute fact(n-1) and multiplies that value times n:

lw $v0,0($fp) # Load n
bgtz $v0,$L2 # Branch if n > 0
li $v0,1 # Return 1
jr $L1 # Jump to code to return

$L2:
lw $v1,0($fp) # Load n
subu $v0,$v1,1 # Compute n - 1
move $a0,$v0 # Move value to $a0
jal fact # Call factorial function

lw $v1,0($fp) # Load n
mul $v0,$v0,$v1 # Compute fact(n-1) * n

Finally, the factorial routine restores the callee-saved registers and returns
the value in register $v0:

$L1: # Result is in $v0
lw $ra, 20($sp) # Restore $ra
lw $fp, 16($sp) # Restore $fp
addiu $sp, $sp, 32 # Pop stack
jr $ra # Return to caller

Stack in Recursive Procedure

Figure A.12 shows the stack at the call fact(7). main runs first, so its
frame is deepest on the stack. main calls fact(10), whose stack frame is
next on the stack. Each invocation recursively invokes fact to compute
the next-lowest factorial. The stack frames parallel the LIFO order of these
calls. What does the stack look like when the call to fact(10) returns?

Example
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Elaboration: The difference between the MIPS compiler and the gcc compiler is that
the MIPS compiler usually does not use a frame pointer, so this register is available as
another callee-saved register, $s8. This change saves a couple of instructions in the
procedure call and return sequence. However, it complicates code generation because
a procedure must access its stack frame with $sp, whose value can change during a
procedure’s execution if values are pushed on the stack.

Another Procedure Call Example
As another example, consider the following routine that computes the tak
function, which is a widely used benchmark created by Ikuo Takeuchi. This
function does not compute anything useful, but is a heavily recursive pro-
gram that illustrates the MIPS calling convention.

FIGURE A.12 Stack frames during the call of fact(7).
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int tak (int x, int y, int z)
{

if (y < x)
return 1+ tak (tak (x - 1, y, z),

tak (y - 1, z, x),
tak (z - 1, x, y));

else
return z;

}

int main ()
{

tak(18, 12, 6);
}

The assembly code for this program is below. The tak function first saves its
return address in its stack frame and its arguments in callee-saved registers,
since the routine may make calls that need to use registers $a0–$a2 and $ra.
The function uses callee-saved registers since they hold values that persist
over the lifetime of the function, which includes several calls that could
potentially modify registers.

.text

.globl tak

tak:
subu $sp, $sp, 40
sw $ra, 32($sp)

sw $s0, 16($sp) # x
move $s0, $a0
sw $s1, 20($sp) # y
move $s1, $a1
sw $s2, 24($sp) # z
move $s2, $a2
sw $s3, 28($sp) # temporary

The routine then begins execution by testing if y < x. If not, it branches to
label L1, which is below.

bge $s1, $s0, L1 # if (y < x)

If y < x, then it executes the body of the routine, which contains four recursive
calls. The first call uses almost the same arguments as its parent:

addiu $a0, $s0, -1
move $a1, $s1
move $a2, $s2
jal tak # tak (x - 1, y, z)
move $s3, $v0
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Note that the result from the first recursive call is saved in register $s3, so that
it can be used later.

The function now prepares arguments for the second recursive call.

addiu $a0, $s1, -1
move $a1, $s2
move $a2, $s0
jal tak # tak (y - 1, z, x)

In the instructions below, the result from this recursive call is saved in register
$s0. But, first we need to read, for the last time, the saved value of the first
argument from this register.

addiu $a0, $s2, -1
move $a1, $s0
move $a2, $s1
move $s0, $v0
jal tak # tak (z - 1, x, y)

After the three inner recursive calls, we are ready for the final recursive call.
After the call, the function’s result is in $v0 and control jumps to the func-
tion’s epilogue.

move $a0, $s3
move $a1, $s0
move $a2, $v0
jal tak # tak (tak(...), tak(...), tak(...))
addiu $v0, $v0, 1
j L2

This code at label L1 is the consequent of the if-then-else statement. It just
moves the value of argument z into the return register and falls into the func-
tion epilogue.

L1:
move $v0, $s2

The code below is the function epilogue, which restores the saved registers
and returns the function’s result to its caller.

L2:
lw $ra, 32($sp)
lw $s0, 16($sp)
lw $s1, 20($sp)
lw $s2, 24($sp)
lw $s3, 28($sp)
addiu $sp, $sp, 40
jr $ra
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The main routine calls the tak function with its initial arguments, then takes
the computed result (7) and prints it using SPIM’s system call for printing
integers.

.globl main
main:

subu $sp, $sp, 24
sw $ra, 16($sp)

li $a0, 18
li $a1, 12
li $a2, 6
jal tak # tak(18, 12, 6)

move $a0, $v0
li $v0, 1 # print_int syscall
syscall

lw $ra, 16($sp)
addiu $sp, $sp, 24
jr $ra

Section 5.6 of Chapter 5 describes the MIPS exception facility, which responds
both to exceptions caused by errors during an instruction’s execution and to
external interrupts caused by I/O devices. This section describes exception
and interrupt handling in more detail. In MIPS processors, a part of the CPU
called coprocessor 0 records the information the software needs to handle
exceptions and interrupts. The MIPS simulator SPIM does not implement all
of coprocessor 0’s registers, since many are not useful in a simulator or are
part of the memory system, which SPIM does not implement. However, SPIM
does provide the following coprocessor 0 registers:

These four registers are part of coprocessor 0’s register set and are accessed by
the lwc0, mfc0, mtc0, and swc0 instructions. After an exception, register EPC

A.7 Exceptions and Interrupts A.7

Register
name

Register
number Usage

BadVAddr  08 register containing the memory address at which memory reference occurred 

 Status  12 interrupt mask and enable bits 

 Cause  13 exception type and pending interrupt bits 

 EPC  14 register containing address of instruction that caused exception
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contains the address of the instruction that was executing when the exception
occurred. If the instruction made a memory access that caused the exception,
register BadVAddr contains the referenced memory location’s address. The
two other registers contain many fields and are described below.

Figure A.13 shows the Status register fields implemented by the MIPS sim-
ulator SPIM. The interrupt mask field contains a bit for each of the five hard-
ware and three software possible interrupt levels. A bit that is 1 allows
interrupts at that level. A bit that is 0 disables interrupts at that level. The low
6 bits of the Status register implement a three-deep stack for the kernel/user
and interrupt enable bits. The kernel/user bit is 0 if a program was in the
kernel when an exception occurred and 1 if it was running in user mode. If the
interrupt enable bit is 1, interrupts are allowed. If it is 0, they are disabled.
When an interrupt occurs, these 6 bits are shifted left by 2 bits, so the current
bits become the previous bits and the previous bits become the old bits (the old
bits are discarded). The current bits are both set to 0 so the interrupt handler
runs in the kernel with interrupts disabled.

Figure A.14 shows the Cause register fields implemented by SPIM. The five
pending interrupt bits correspond to the five interrupt levels. A bit becomes
1 when an interrupt at its level has occurred but has not been serviced. The Ex-
ception code register describes the cause of an exception with the following
codes:

Number Name Description

00 INT external interrupt 

04 ADDRL address error exception (load or instruction fetch) 

05 ADDRS address error exception (store) 

06 IBUS bus error on instruction fetch 

07 DBUS bus error on data load or store 

08 SYSCALL syscall exception 

09 BKPT breakpoint exception 

10 RI reserved instruction exception

12 OVF arithmetic overflow exception

FIGURE A.13 The Status register.
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Exceptions and interrupts cause a MIPS processor to jump to a piece of
code, at address 80000080hex (in the kernel, not user address space), called an
interrupt handler. This code examines the exception’s cause and jumps to an ap-
propriate point in the operating system. The operating system responds to an
exception either by terminating the process that caused the exception or by
performing some action. A process that causes an error, such as executing an
unimplemented instruction, is killed by the operating system. On the other
hand, exceptions such as page faults are requests from a process to the operat-
ing system to perform a service, such as bringing in a page from disk. The op-
erating system processes these requests and resumes the process. The final
type of exceptions are interrupts from external devices. These generally cause
the operating system to move data to or from an I/O device and resume the
interrupted process. The code in the example below is a simple interrupt han-
dler, which invokes a routine to print a message at each exception (but not in-
terrupts). This code is similar to the interrupt handler used by the SPIM
simulator, except that it does not print an error message to report an exception.

FIGURE A.14 The Cause register. In actual MIPS processors, this register contains additional
fields that report: whether the instruction that caused the exception executed in a branch’s delay
slot, which coprocessor caused the exception, or that a software interrupt is pending.

Interrupt Handler

The interrupt handler first saves registers $a0 and $a1, which it later uses
to pass arguments. The interrupt handler cannot store the old values from
these registers on the stack, as would an ordinary routine, because the
cause of the interrupt might have been a memory reference that used a bad
value (such as 0) in the stack pointer. Instead the interrupt handler stores
these registers in two memory locations (save0 and save1). If the inter-
rupt routine itself could be interrupted, two locations would not be
enough since the second interrupt would overwrite values saved during
the first interrupt. However, this simple interrupt handler finishes running
before it enables interrupts, so the problem does not arise.
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.ktext 0x80000080
sw $a0, save0 # Handler is not re-entrant and can’t use
sw $a1, save1 # stack to save $a0, $a1

# Don’t need to save $k0/$k1

 The interrupt handler then moves the Cause and EPC registers into
CPU registers. The Cause and EPC registers are not part of the CPU regis-
ter set. Instead, they are registers in coprocessor 0, which is the part of the
CPU that handles interrupts. The instruction mfc0 $k0, $13 moves co-
processor 0’s register 13 (the Cause register) into CPU register $k0. Note
that the interrupt handler need not save registers $k0 and $k1 because
user programs are not supposed to use these registers. The interrupt han-
dler uses the value from the Cause register to test if the exception was
caused by an interrupt (see the preceding table). If so, the exception is ig-
nored. If the exception was not an interrupt, the handler calls print_excp
to print a warning message.

mfc0 $k0, $13 # Move Cause into $k0
mfc0 $k1, $14 # Move EPC into $k1

sgt $v0, $k0, 0x44 # Ignore interrupts
bgtz $v0, done

mov $a0, $k0 # Move Cause into $a0
mov $a1, $k1 # Move EPC into $a1
jal print_excp # Print exception error message

 Before returning, the interrupt handler restores registers $a0 and $a1.
It then executes the rfe (return from exception) instruction, which re-
stores the previous interrupt mask and kernel/user bits in the Status reg-
ister. This switches the processor state back to what it was before the
exception and prepares to resume program execution. The interrupt han-
dler then returns to the program by jumping to the instruction following
the one that caused the exception.

done:
lw $a0, save0

 lw $a1, save1
 addiu $k1, $k1, 4 # Do not reexecute

# faulting instruction
 rfe # Restore interrupt state
 jr $k1

.kdata
save0: .word 0
save1: .word 0
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Elaboration: On real MIPS processors, the return from an interrupt handler is more
complex. The rfe instruction must execute in the delay slot of the jr instruction (see
elaboration on page 444 of Chapter 6) that returns to the user program so that no inter-
rupt-handler instruction executes with the user program’s interrupt mask and ker-
nel/user bits. In addition, the interrupt handler cannot always jump to the instruction
following EPC. For example, if the instruction that caused the exception was in a branch
instruction’s delay slot (see Chapter 6), the next instruction may not be the following
instruction in memory.

SPIM simulates one I/O device: a memory-mapped terminal. When a pro-
gram is running, SPIM connects its own terminal (or a separate console win-
dow in the X-window version xspim) to the processor. A MIPS program
running on SPIM can read the characters that you type. In addition, if the
MIPS program writes characters to the terminal, they appear on SPIM’s termi-
nal or console window. One exception to this rule is control-C: this character
is not passed to the program, but instead causes SPIM to stop and return to
command mode. When the program stops running (for example, because you
typed control-C or because the program hit a breakpoint), the termi-
nal is reconnected to spim so you can type SPIM commands. To use mem-
ory-mapped I/O (see below), spim or xspim must be started with the
-mapped_io flag.

The terminal device consists of two independent units: a receiver and a
transmitter. The receiver reads characters from the keyboard. The transmitter
writes characters to the display. The two units are completely independent.
This means, for example, that characters typed at the keyboard are not auto-
matically echoed on the display. Instead, a program must explicitly echo a
character by reading it from the receiver and writing it to the transmitter.

A program controls the terminal with four memory-mapped device regis-
ters, as shown in Figure A.15. “Memory-mapped’’ means that each register
appears as a special memory location. The Receiver Control register is at location
ffff0000hex. Only two of its bits are actually used. Bit 0 is called “ready’’: if it is
1, it means that a character has arrived from the keyboard but has not yet been
read from the Receiver Data register. The ready bit is read-only: writes to it are
ignored. The ready bit changes from 0 to 1 when a character is typed at the key-
board, and it changes from 1 to 0 when the character is read from the Receiver
Data register.

Bit 1 of the Receiver Control register is the keyboard “interrupt enable.”
This bit may be both read and written by a program. The interrupt enable is
initially 0. If it is set to 1 by a program, the terminal requests an interrupt at lev-
el 0 whenever the ready bit is 1. However, for the interrupt to affect the proces-

A.8 Input and Output A.8
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sor, interrupts must also be enabled in the Status register (see section A.7). All
other bits of the Receiver Control register are unused.

The second terminal device register is the Receiver Data register (at address
ffff0004hex). The low-order 8 bits of this register contain the last character typed
at the keyboard. All other bits contain 0s. This register is read-only and chang-
es only when a new character is typed at the keyboard. Reading the Receiver
Data register resets the ready bit in the Receiver Control register to 0.

The third terminal device register is the Transmitter Control register (at ad-
dress ffff0008hex). Only the low-order 2 bits of this register are used. They be-
have much like the corresponding bits of the Receiver Control register. Bit 0 is
called “ready’’ and is read-only. If this bit is 1, the transmitter is ready to accept
a new character for output. If it is 0, the transmitter is still busy writing the pre-
vious character. Bit 1 is “interrupt enable’’ and is readable and writable. If this
bit is set to 1, then the terminal requests an interrupt on level 1 whenever the
ready bit is 1.

The final device register is the Transmitter Data register (at address
ffff000chex). When a value is written into this location, its low-order 8 bits (i.e.,

FIGURE A.15 The terminal is controlled by four device registers, each of which appears
as a memory location at the given address. Only a few bits of these registers are actually
used. The others always read as 0s and are ignored on writes.
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an ASCII character as in Figure 3.15 in Chapter 3) are sent to the console. When
the Transmitter Data register is written, the ready bit in the Transmitter Con-
trol register is reset to 0. This bit stays 0 until enough time has elapsed to trans-
mit the character to the terminal; then the ready bit becomes 1 again. The
Transmitter Data register should only be written when the ready bit of the
Transmitter Control register is 1. If the transmitter is not ready, writes to the
Transmitter Data register are ignored (the write appears to succeed but the
character is not output).

Real computers require time to send characters over the serial lines that con-
nect terminals to computers. These time lags are simulated by SPIM. For exam-
ple, after the transmitter starts to write a character, the transmitter’s ready bit
becomes 0 for a while. SPIM measures time in instructions executed, not in real
clock time. This means that the transmitter does not become ready again until
the processor executes a certain number of instructions. If you stop the ma-
chine and look at the ready bit, it will not change. However, if you let the ma-
chine run, the bit eventually changes back to 1.
 

SPIM is a software simulator that runs programs written for MIPS
R2000/R3000 processors. SPIM’s name is just MIPS spelled backwards. SPIM
can read and immediately execute assembly language files or (on some sys-
tems) MIPS executable files. SPIM is a self-contained system for running
MIPS programs. It contains a debugger and provides a few operating system-
like services. SPIM is much slower than a real computer (100 or more times).
However, its low cost and wide availability cannot be matched by real hard-
ware!

An obvious question is, Why use a simulator when many people have
workstations that contain MIPS chips that are significantly faster than SPIM?
One reason is that these workstations are not universally available. Another
reason is rapid progress toward new and faster computers may render these
machines obsolete (see Chapter 1). The current trend is to make computers
faster by executing several instructions concurrently. This trend makes archi-
tectures more difficult to understand and program. The MIPS architecture may
be the epitome of a simple, clean RISC machine.

In addition, simulators can provide a better environment for programming
than an actual machine because they can detect more errors and provide more
features than an actual computer. For example, SPIM has an X-window inter-
face that works better than most debuggers on the actual machines.

Finally, simulators are a useful tool in studying computers and the pro-
grams that run on them. Because they are implemented in software, not sili-
con, simulators can be easily modified to add new instructions, build new
systems such as multiprocessors, or simply to collect data.

A.9 SPIM A.9
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Simulation of a Virtual Machine
The MIPS architecture, like that of many RISC computers, is difficult to pro-
gram directly because of delayed branches, delayed loads, and restricted
address modes. This difficulty is tolerable since these computers were
designed to be programmed in high-level languages and present an interface
appropriate for compilers rather than assembly language programmers. A
good part of the programming complexity results from delayed instructions.
A delayed branch requires two cycles to execute (see elaborations on pages 444
and 502 of Chapter 6). In the second cycle, the instruction immediately fol-
lowing the branch executes. This instruction can perform useful work that
normally would have been done before the branch. It can also be a nop (no
operation). Similarly, delayed loads require two cycles so the instruction imme-
diately following a load cannot use the value loaded from memory (see
section 6.2 of Chapter 6).

MIPS wisely chose to hide this complexity by having its assembler imple-
ment a virtual machine. This virtual computer appears to have nondelayed
branches and loads and a richer instruction set than the actual hardware. The
assembler reorganizes (rearranges) instructions to fill the delay slots. The virtu-
al computer also provides pseudoinstructions, which appear as real instructions
in assembly language programs. The hardware, however, knows nothing
about pseudoinstructions, so the assembler must translate them into equiva-
lent sequences of actual, machine instructions. For example, the MIPS hard-
ware only provides instructions to branch when a register is equal to or not
equal to 0. Other conditional branches, such as when one register is greater
than another, are synthesized by comparing the two registers and branching
when the result of the comparison is true (nonzero).

By default, SPIM simulates the richer virtual machine. However, it can also
simulate the bare hardware. Below, we describe the virtual machine and only
mention in passing features that do not belong to the actual hardware. In doing
so, we follow the convention of MIPS assembly language programmers (and
compilers), who routinely use the extended machine. (For a description of the
real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture, Pren-
tice Hall, Englewood Cliff, NJ, 1992.)

Getting Started with SPIM
The rest of this appendix contains a complete and rather detailed description
of SPIM. Many details should never concern you; however, the sheer volume
of information can obscure the fact that SPIM is a simple, easy-to-use pro-
gram. This section contains a quick tutorial on SPIM that should enable you
to load, debug, and run simple MIPS programs.
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SPIM comes in multiple versions. One version, called spim, is a command-
line-driven program and requires only an alphanumeric terminal to display it.
It operates like most programs of this type: you type a line of text, hit the re-
turn key, and spim executes your command.

A fancier version, called xspim, runs in the X-windows environment of the
Unix system and therefore requires a bit-mapped display to run it. xspim,
however, is a much easier program to learn and use because its commands are
always visible on the screen and because it continually displays the machine’s
registers. Another version, PCspim, is compatible with Windows 3.1, Windows
95, and Windows NT. The Unix, Windows, and DOS versions of SPIM are
available through www.mkp.com/cod2e.htm.

Since many people use and prefer xspim, this section only discusses that
program. If you plan to use any version of spim, do not skip this section. Read
it first and then look at the "SPIM Command-Line Options" section (starting on
page A-44) to see how to accomplish the same thing with spim commands.
Check www.mkp.com/cod2e.htm for more information on using PCspim.

To start xspim, type xspim in response to your system’s prompt (%):

% xspim

 On your system, xspim may be kept in an unusual place, and you may need
to execute a command first to add that place to your search path. Your instruc-
tor should tell you how to do this.

When xspim starts up, it pops up a large window on your screen (see
Figure A.16). The window is divided into five panes:

� The top pane is called the register display. It shows the values of all reg-
isters in the MIPS CPU and FPU. This display is updated whenever
your program stops running.

� The pane below contains the control buttons to operate xspim. These but-
tons are discussed below, so we can skip the details for now.

� The next pane, called the text segments, displays instructions both from
your program and the system code that is loaded automatically when
xspim starts running. Each instruction is displayed on a line that looks like

[0x00400000] 0x8fa40000 lw $4, 0($29) ; 89: lw $a0, 0($sp)

The first number on the line, in square brackets, is the hexadecimal
memory address of the instruction. The second number is the instruc-
tion’s numerical encoding, again displayed as a hexadecimal number.
The third item is the instruction’s mnemonic description. Everything
following the semicolon is the actual line from your assembly file that
produced the instruction. The number 89 is the line number in that file.
Sometimes nothing is on the line after the semicolon. This means that
the instruction was produced by SPIM as part of translating a pseudo-
instruction.



A.9 SPIM A-41

FIGURE A.16 SPIM’s X-window interface: xspim.
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� The next pane, called the data and stack segments, displays the data load-
ed into your program’s memory and the data on the program’s stack.

� The bottom pane is the SPIM messages that xspim uses to write mes-
sages. This is where error messages appear.

Let’s see how to load and run a program. The first thing to do is to click on
the load button (the second one in the first row of buttons) with the left mouse
key. Your click tells xspim to pop up a small prompt window that contains a
box and two or three buttons. Move your mouse so the cursor is over the box,
and type the name of your file of assembly code. Then click on the button
labeled assembly file within that prompt window. If you change your mind,
click on the button labeled abort command, and xspim gets rid of the prompt
window. When you click on assembly file, xspim gets rid of the prompt win-
dow, then loads your program and redraws the screen to display its instruc-
tions and data. Now move the mouse to put the cursor over the scrollbar to the
left of the text segments, and click the left mouse button on the white part of
this scrollbar. A click scrolls the text pane down so you can find all the instruc-
tions in your program.

To run your program, click on the run button in xspim’s control button
pane. It pops up a prompt window with two boxes and two buttons. Most of
the time, these boxes contain the correct values to run your program, so you
can ignore them and just click on ok. This button tells xspim to run your pro-
gram. Notice that when your program is running, xspim blanks out the regis-
ter display pane because the registers are continually changing. You can
always tell whether xspim is running by looking at this pane. If you want to
stop your program, make sure the mouse cursor is somewhere over xspim’s
window and type control-C. This causes xspim to pop up a prompt window
with two buttons. Before doing anything with this prompt window, you can
look at registers and memory to find out what your program was doing. When
you understand what happened, you can either continue the program by click-
ing on continue or stop your program by clicking on abort command.

If your program reads or writes from the terminal, xspim pops up another
window called the console. All characters that your program writes appear on
the console, and everything that you type as input to your program should be
typed in this window.

Suppose your program does not do what you expect. What can you do?
SPIM has two features that help debug your program. The first, and perhaps
the most useful, is single-stepping, which allows you to run your program an
instruction at a time. Click on the button labeled step and another prompt
window pops up. This prompt window contains two boxes and three buttons.
The first box asks for the number of instructions to step every time you click
the mouse. Most of the time, the default value of 1 is a good choice. The other
box asks for arguments to pass to the program when it starts running. Again,
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most of the time you can ignore this box because it contains an appropriate
value. The button labeled step runs your program for the number of instruc-
tions in the top box. If that number is 1, xspim executes the next instruction in
your program, updates the display, and returns control to you. The button la-
beled continue stops single-stepping and continues running your program.
Finally, abort command stops single-stepping and leaves your program
stopped.

What do you do if your program runs for a long time before the bug arises?
You could single-step until you get to the bug, but that can take a long time,
and it is easy to get so bored and inattentive that you step past the problem. A
better alternative is to use a breakpoint, which tells xspim to stop your program
immediately before it executes a particular instruction. Click on the button in
the second row of buttons marked breakpoints. The xspim program pops up
a prompt window with one box and many buttons. Type in this box the ad-
dress of the instruction at which you want to stop. Or, if the instruction has a
global label, you can just type the name of the label. Labeled breakpoints are a
particularly convenient way to stop at the first instruction of a procedure. To
actually set the breakpoint, click on add. You can then run your program. 

When SPIM is about to execute the breakpointed instruction, xspim pops
up a prompt with the instruction’s address and two buttons. The continue
button continues running your program and abort command stops your pro-
gram. If you want to delete a breakpoint, type in its address and click on de-
lete. Finally, list tells xspim to print (in the bottom pane) a list of all
breakpoints that are set.

Single-stepping and setting breakpoints will probably help you find a bug
in your program quickly. How do you fix it? Go back to the editor that you
used to create your program and change it. To run the program again, you
need a fresh copy of SPIM, which you get in two ways. Either you can exit from
xspim by clicking on the quit button, or you can clear xspim and reload your
program. If you reload your program, you must clear the memory, so remnants
of your previous program do not interfere with your new program. To do this,
click on the button labeled clear. Hold the left mouse key down and a two-
item menu will pop up. Move the mouse so the cursor is over the item labeled
memory & registers and release the key. This causes xspim to clear its mem-
ory and registers and return the processor to the state it was in when xspim
first started. You can now load and run your new program.

The other buttons in xspim perform functions that are occasionally useful.
When you are more comfortable with xspim, you should look at the descrip-
tion below to see what they do and how they can save you time and effort.
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SPIM Command-Line Options
Both Unix versions of SPIM—spim, the terminal version, and xspim, the X
version—accept the following command-line options:

-bare Simulate a bare MIPS machine without pseudoinstruc-
tions or the additional addressing modes provided by the
assembler. Implies -quiet.

-asm Simulate the virtual MIPS machine provided by the
assembler. This is the default.

-pseudo Allow the input assembly code to contain pseudoinstruc-
tions. This is the default.

-nopseudo Do not allow pseudoinstructions in the input assembly
code.

-notrap Do not load the standard exception handler and start-up
code. This exception handler handles exceptions. When an
exception occurs, SPIM jumps to location 80000080hex,
which must contain code to service the exception. In addi-
tion, this file contains start-up code that invokes the rou-
tine main. Without the start-up routine, SPIM begins
execution at the instruction labeled __start.

-trap Load the standard exception handler and start-up code.
This is the default.

-noquiet Print a message when an exception occurs. This is the
default.

-quiet Do not print a message at exceptions.

-nomapped_io Disable the memory-mapped I/O facility (see section A.8).
This is the default.

-mapped_io Enable the memory-mapped I/O facility (see section A.8).
Programs that use SPIM syscalls (see section on "System
Calls," page A-48) to read from the terminal cannot also use
memory-mapped I/O.

-file Load and execute the assembly code in the file.

-execute Load and execute the code in the MIPS executable file
a.out. This command is only available when SPIM runs on
a system containing a MIPS processor.



A.9 SPIM A-45

-s <seg> size Sets the initial size of memory segment seg to be size bytes.
The memory segments are named: text, data, stack,
ktext, and kdata. The text segment contains instruc-
tions from a program. The data segment holds the pro-
gram’s data. The stack segment holds its runtime stack.
In addition to running a program, SPIM also executes sys-
tem code that handles interrupts and exceptions. This code
resides in a separate part of the address space called the
kernel. The ktext segment holds this code’s instructions,
and kdata holds its data. There is no kstack segment
since the system code uses the same stack as the program.
For example, the pair of arguments -sdata 2000000 starts
the user data segment at 2,000,000 bytes.

-l <seg> size Sets the limit on how large memory segment seg can grow
to be size bytes. The memory segments that can grow are
data, stack, and kdata.

Terminal Interface (spim)
The simpler Unix version of SPIM is called spim. It does not require a bit-
mapped display and can be run from any terminal. Although spim may be
more difficult to learn, it operates just like xspim and provides the same func-
tionality.

The spim terminal interface provides the following commands:

exit Exit the simulator.

read “file” Read file of assembly language into SPIM. If the file has
already been read into SPIM, the system must be cleared
(see reinitialize, below) or global labels will be multi-
ply defined.

 load “file” Synonym for read.

 execute “a.out” Read the MIPS executable file a.out into SPIM. This
command is only available when SPIM runs on a system
containing a MIPS processor.

 run <addr> Start running a program. If the optional address addr is
provided, the program starts at that address. Otherwise,
the program starts at the global label __start, which is
usually the default start-up code that calls the routine at
the global label main.
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 step <N> Step the program for N (default: 1) instructions. Print
instructions as they execute.

 continue Continue program execution without stepping.

 print $N Print register N.

 print $fN Print floating point register N.

 print addr Print the contents of memory at address addr.

 print_sym Print the names and addresses of the global labels known
to SPIM. Labels are local by default and become global
only when declared in a .globl assembler directive (see
"Assember Syntax" section on page A-51).

 reinitialize Clear the memory and registers.

 breakpoint addr Set a breakpoint at address addr. addr can be either a
memory address or symbolic label.

 delete addr Delete all breakpoints at address addr.

 list List all breakpoints.

 . Rest of line is an assembly instruction that is stored in
memory.

 <nl> A newline reexecutes previous command.

? Print a help message.

Most commands can be abbreviated to their unique prefix (e.g., ex, re, l, ru,
s, p). More dangerous commands, such as reinitialize, require a longer
prefix.

X-Window Interface (xspim)
The tutorial, “Getting Started with SPIM” (page A-39), explains the most
common xspim commands. However, xspim has other commands that are
occasionally useful. This section provides a complete list of the commands.

The X version of SPIM, xspim, looks different but operates in the same man-
ner as spim. The X-window has five panes (see Figure A.16). The top pane dis-
plays the registers. These values are continually updated, except while a
program is running.

The next pane contains buttons that control the simulator:

  quit Exit from the simulator.

  load Read a source or executable file into SPIM.
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  run Start the program running.

  step Single-step a program.

  clear Reinitialize registers or memory.

  set value Set the value in a register or memory location.

  print Print the value in a register or memory location.

  breakpoint Set or delete a breakpoint or list all breakpoints.

  help Print a help message.

  terminal Raise or hide the console window.

  mode Set SPIM operating modes.

The next two panes display the memory. The top one shows instructions
from the user and kernel text segments. (These instructions are real—not
pseudo—MIPS instructions. SPIM translates assembler pseudoinstructions
into one to three MIPS instructions. Each source instruction appears as a com-
ment on the first instruction into which it is translated.) The first few instruc-
tions in the text segment are the default start-up code (__start) that loads
argc and argv into registers and invokes the main routine. The lower of these
two panes displays the data and stack segments. Both panes are updated as a
program executes.

The bottom pane is used to display SPIM messages. It does not display out-
put from a program. When a program reads or writes, its I/O appears in a sep-
arate window, called the console, which pops up when needed.

Surprising Features
Although SPIM faithfully simulates the MIPS computer, SPIM is a simulator
and certain things are not identical to an actual computer. The most obvious
differences are that instruction timing and the memory systems are not identi-
cal. SPIM does not simulate caches or memory latency, nor does it accurately
reflect floating-point operation or multiply and divide instruction delays.

Another surprise (which occurs on the real machine as well) is that a
pseudoinstruction expands to several machine instructions. When you single-
step or examine memory, the instructions that you see are different from the
source program. The correspondence between the two sets of instructions is
fairly simple since SPIM does not reorganize instructions to fill delay slots.

Byte Order
Processors can number bytes within a word so the byte with the lowest num-
ber is either the leftmost or rightmost one. The convention used by a machine
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is called its byte order. MIPS processors can operate with either big-endian or
little-endian byte order. For example, in a big-endian machine, the directive
.byte 0, 1, 2, 3 would result in a memory word containing

while in a little-endian machine, the word would contain

SPIM operates with both byte orders. SPIM’s byte order is the same as the
byte order of the underlying machine that runs the simulator. For example, on
a DECstation 3100 or Intel 80x86, SPIM is little-endian, while on a Macintosh
or Sun SPARC, SPIM is big-endian.

System Calls
SPIM provides a small set of operating-system-like services through the sys-
tem call (syscall) instruction. To request a service, a program loads the sys-
tem call code (see Figure A.17) into register $v0 and arguments into registers
$a0–$a3 (or $f12 for floating-point values). System calls that return values
put their results in register $v0 (or $f0 for floating-point results). For exam-
ple, the following code prints “the answer = 5’’:

.data
str:

.asciiz "the answer = "

.text
li $v0, 4 # system call code for print_str
la $a0, str # address of string to print 
syscall # print the string

li $v0, 1 # system call code for print_int
li $a0, 5 # integer to print 
syscall # print it

The print_int system call is passed an integer and prints it on the console.
print_float prints a single floating-point number; print_double prints a
double precision number; and print_string is passed a pointer to a null-ter-
minated string, which it writes to the console.

Byte #

0 1 2 3

Byte #

3 2 1 0
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The system calls read_int, read_float, and read_double read an entire
line of input up to and including the newline. Characters following the num-
ber are ignored. read_string has the same semantics as the Unix library rou-
tine fgets. It reads up to n – 1 characters into a buffer and terminates the string
with a null byte. If fewer than n – 1 characters are on the current line,
read_string reads up to and including the newline and again null-termi-
nates the string. Warning: Programs that use these syscalls to read from the
terminal should not use memory-mapped I/O (see section A.8).

Finally, sbrk returns a pointer to a block of memory containing n additional
bytes, and exit stops a program from running.

A MIPS processor consists of an integer processing unit (the CPU) and a col-
lection of coprocessors that perform ancillary tasks or operate on other types
of data such as floating-point numbers (see Figure A.18). SPIM simulates two
coprocessors. Coprocessor 0 handles exceptions, interrupts, and the virtual
memory system. SPIM simulates most of the first two and entirely omits
details of the memory system. Coprocessor 1 is the floating-point unit. SPIM
simulates most aspects of this unit.

Addressing Modes
MIPS is a load-store architecture, which means that only load and store
instructions access memory. Computation instructions operate only on values
in registers. The bare machine provides only one memory-addressing
mode: c(rx), which uses the sum of the immediate c and register rx as the
address. The virtual machine provides the following addressing modes for
load and store instructions:

Service System call code Arguments Result

print_int 01 $a0 = integer

print_float 02 $f12 = float

print_double 03 $f12 = double

print_string 04 $a0 = string

read_int 05 integer (in $v0) 

read_float 06 float (in $f0) 
read_double 07 double (in $f0) 
read_string 08 $a0 = buffer, $a1 = length

sbrk 09 $a0 = amount address (in $v0) 

exit 10

FIGURE A.17 System services.

A.10 MIPS R2000 Assembly Language A.10
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Most load and store instructions operate only on aligned data. A quantity is
aligned if its memory address is a multiple of its size in bytes. Therefore, a half-
word object must be stored at even addresses and a full word object must be
stored at addresses that are a multiple of four. However, MIPS provides some
instructions to manipulate unaligned data (lwl, lwr, swl, and swr).

FIGURE A.18 MIPS R2000 CPU and FPU.

Format Address computation

(register) contents of register 

imm immediate 

imm (register) immediate + contents of register 

label address of label 

label ± imm address of label + or – immediate 

label ± imm (register) address of label + or – (immediate + contents of register)

CPU

Registers

$0

$31

Arithmetic
unit

Multiply
divide

Lo Hi

Coprocessor 1 (FPU)

Registers

$0

$31

Arithmetic
unit

Registers

BadVAddr

Coprocessor 0 (traps and memory)

Status

Cause

EPC

Memory
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Elaboration: The MIPS assembler (and SPIM) synthesizes the more complex
addressing modes by producing one or more instructions before the load or store to
compute a complex address. For example, suppose that the label table referred to
memory location 0x10000004 and a program contained the instruction

ld $a0, table + 4($a1)

The assembler would translate this instruction into the instructions

lui $at, 4096
addu $at, $at, $a1
lw $a0, 8($at)

The first instruction loads the upper bits of the label’s address into register $at, which
the register that the assemble reserves for its own use. The second instruction adds
the contents of register $a1 to the label’s partial address. Finally, the load instruction
uses the hardware address mode to add the sum of the lower bits of the label’s
address and the offset from the original instruction to the value in register $at.

Assembler Syntax
Comments in assembler files begin with a sharp sign (#). Everything from the
sharp sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and
dots (.) that do not begin with a number. Instruction opcodes are reserved
words that cannot be used as identifiers. Labels are declared by putting them
at the beginning of a line followed by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Numbers are base 10 by default. If they are preceded by 0x, they are inter-
preted as hexadecimal. Hence, 256 and 0x100 denote the same value.

Strings are enclosed in doublequotes (”). Special characters in strings follow
the C convention:

�  newline\n

� tab \t

� quote\"

SPIM supports a subset of the MIPS assembler directives:

.align n Align the next datum on a 2n byte boundary. For example,
.align 2 aligns the next value on a word boundary.
.align 0 turns off automatic alignment of .half, .word,
.float, and .double directives until the next .data or
.kdata directive.

.ascii str Store the string str in memory, but do not null-terminate it.
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.asciiz str Store the string str in memory and null-terminate it.

.byte b1,..., bn Store the n values in successive bytes of memory.

.data <addr> Subsequent items are stored in the data segment. If the
optional argument addr is present, subsequent items are
stored starting at address addr.

.double d1, ..., dn Store the n floating-point double precision num-
bers in successive memory locations.

.extern sym size Declare that the datum stored at sym is size bytes
large and is a global label. This directive enables the
assembler to store the datum in a portion of the data seg-
ment that is efficiently accessed via register $gp.

.float f1,..., fn Store the n floating-point single precision numbers
in successive memory locations.

.globl sym Declare that label sym is global and can be referenced from
other files.

.half h1, ..., hn Store the n 16-bit quantities in successive memory
halfwords.

.kdata <addr> Subsequent data items are stored in the kernel data seg-
ment. If the optional argument addr is present, subsequent
items are stored starting at address addr.

.ktext <addr> Subsequent items are put in the kernel text segment. In
SPIM, these items may only be instructions or words (see
the .word directive below). If the optional argument addr
is present, subsequent items are stored starting at address
addr.

.set noat and .set at The first directive prevents SPIM from com-
plaining about subsequent instructions that use register
$at. The second directive reenables the warning. Since
pseudoinstructions expand into code that uses register
$at, programmers must be very careful about leaving val-
ues in this register.

 .space n Allocate n bytes of space in the current segment (which
must be the data segment in SPIM).

  .text <addr> Subsequent items are put in the user text segment. In
SPIM, these items may only be instructions or words (see
the .word directive below). If the optional argument addr
is present, subsequent items are stored starting at address
addr.
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  .word w1,..., wn Store the n 32-bit quantities in successive memory
words. 

SPIM does not distinguish various parts of the data segment (.data, .rdata,
and .sdata).

Encoding MIPS Instructions
Figure A.19 explains how a MIPS instruction is encoded in a binary number.
Each column contains instruction encodings for a field (a contiguous group of
bits) from an instruction. The numbers at the left margin are values for a field.
For example, the j opcode has a value of 2 in the opcode field. The text at the
top of a column names a field and specifies which bits it occupies in an
instruction. For example, the op field is contained in bits 26–31 of an instruc-
tion. This field encodes most instructions. However, some groups of instruc-
tions use additional fields to distinguish related instructions. For example, the
different floating-point instructions are specified by bits 0–5. The arrows from
the first column show which opcodes use these additional fields.

Instruction Format
The rest of this appendix describes both the instructions implemented by
actual MIPS hardware and the pseudoinstructions provided by the MIPS
assembler. The two types of instructions are easily distinguished. Actual
instructions depict the fields in their binary representation. For example, in

Addition (with overflow)

the add instruction consists of six fields. Each field’s size in bits is the small
number below the field. This instruction begins with 6 bits of 0s. Register
specifiers begin with an r, so the next field is a 5-bit register specifier called rs.
This is the same register that is the second argument in the symbolic assembly
at the left of this line. Another common field is imm16, which is a 16-bit imme-
diate number.

Pseudoinstructions follow roughly the same conventions, but omit instruc-
tion encoding information. For example:

Multiply (without overflow)

In pseudoinstructions, rdest and rsrc1 are registers and src2 is either a reg-
ister or an immediate value. In general, the assembler and SPIM translate a
more general form of an instruction (e.g., add $v1, $a0, 0x55) to a special-
ized form (e.g., addi $v1, $a0, 0x55).

add rd, rs, rt 0 rs rt rd 0 0x20
6 5 5 5 5 6

mul rdest, rsrc1, src2 pseudoinstruction



FIGURE A.19 MIPS opcode map. The values of each field are shown to its left. The first column shows the values in base 10
and the second shows base 16 for the op field (bits 31 to 26) in the third column. This op field completely specifies the MIPS
operation except for 6 op values: 0, 1, 16, 17, 18, and 19. These operations are determined by other fields, identified by point-
ers. The last field (funct) uses “f” to mean “s” if rs = 16 and op = 17 or “d” if rs = 17 and op = 17. The second field (rs) uses “z”
to mean “0”, “1”, “2”, or “3” if op = 16, 17, 18, or 19, respectively. If rs = 16, the operation is specified elsewhere: if z = 0, the
operations are specified in the fourth field (bits 4 to 0); if z = 1, then the operations are in the last field with f = s. If rs = 17 and
z = 1, then the operations are in the last field with f = d. (page A-54)
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00
01
02
03
04
05
06
07
08
09
0a
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0c
0d
0e
0 f
10
11
12
13
14
15
16
17
18
19
1a
1b
1c
1d
1e
1 f
20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2 f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3 f

op(31:26)

j
jal
beq
bne
blez
bgtz
addi
addiu
slti
sltiu
andi
ori
xori
lui
z = 0
z = 1
z = 2
z = 3

lb
lh
lwl
lw
lbu
lhu
lwr

sb
sh
swl
sw

swr

lwc0
lwc1
lwc2
lwc3

swc0
swc1
swc2
swc3

    rs
(25:21)
mfcz

cfcz

mtcz

ctcz

copz
copz

(16:16)
bczf
bczt

               

tlbr
tlbwi

tlbwr

tlbp

rfe

            rt
             (20:16)

bltz
bgez

bltzal
bgezal

cvt.s.f
cvt.d.f

cvt.w.f

c.f.f
c.un.f
c.eq.f
c.ueq.f
c.olt.f
c.ult.f
c.ole.f
c.ule.f
c.st.f
c.ngle.f
c.seq.f
c.ngl.f
c.lt.f
c.nge.f
c.le.f
c.ngt.f

funct(5:0)
add.f
sub.f
mul.f
div.f

abs.f
mov.f
neg.f

funct(5:0)
sll

srl
sra
sllv

srlv
srav
jr
jalr

syscall
break

mfhi
mthi
mflo
mtlo

mult
multu
div
divu

add
addu
sub
subu
and
or
xor
nor

slt
sltu

if z = l,
f = d

if z = l,
f = s

if z = 0

0
1

funct
(4:0)
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Arithmetic and Logical Instructions

Absolute value

Put the absolute value of register rsrc in register rdest.

Addition (with overflow)

Addition (without overflow)

Put the sum of registers rs and rt into register rd.

Addition immediate (with overflow)

Addition immediate (without overflow)

Put the sum of register rs and the sign-extended immediate into register rt.

AND

Put the logical AND of registers rs and rt into register rd.

AND immediate

Put the logical AND of register rs and the zero-extended immediate into
register rt.

abs rdest, rsrc pseudoinstruction

add rd, rs, rt 0 rs rt rd 0 0x20
6 5 5 5 5 6

addu rd, rs, rt 0 rs rt rd 0 0x21
6 5 5 5 5 6

addi rt, rs, imm 8 rs rt imm
6 5 5 16

addiu rt, rs, imm 9 rs rt imm
6 5 5 16

and rd, rs, rt 0 rs rt rd 0 0x24
6 5 5 5 5 6

andi rt, rs, imm 0xc rs rt imm
6 5 5 16
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Divide (with overflow)

Divide (without overflow)

Divide register rs by register rt. Leave the quotient in register lo and the re-
mainder in register hi. Note that if an operand is negative, the remainder is
unspecified by the MIPS architecture and depends on the convention of the
machine on which SPIM is run.

Divide (with overflow)

Divide (without overflow)

Put the quotient of register rsrc1 and src2 into register rdest.

Multiply

Unsigned multiply

Multiply registers rs and rt. Leave the low-order word of the product in reg-
ister lo and the high-order word in register hi.

Multiply (without overflow)

Multiply (with overflow)

div rs, rt 0 rs rt 0 0x1a
6 5 5 10 6

divu rs, rt 0 rs rt 0 0x1b
6 5 5 10 6

div rdest, rsrc1, src2 pseudoinstruction

divu rdest, rsrc1, src2 pseudoinstruction

mult rs, rt 0 rs rt 0 0x18
6 5 5 10 6

multu rs, rt 0 rs rt 0 0x19
6 5 5 10 6

mul rdest, rsrc1, src2 pseudoinstruction

mulo rdest, rsrc1, src2 pseudoinstruction
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Unsigned multiply (with overflow)

Put the product of register rsrc1 and src2 into register rdest.

Negate value (with overflow)

Negate value (without overflow)

Put the negative of register rsrc into register rdest.

NOR

Put the logical NOR of registers rs and rt into register rd.

NOT

Put the bitwise logical negation of register rsrc into register rdest.

OR

Put the logical OR of registers rs and rt into register rd.

OR immediate

Put the logical OR of register rs and the zero-extended immediate into register
rt.

Remainder

mulou rdest, rsrc1, src2 pseudoinstruction

neg rdest, rsrc pseudoinstruction

negu rdest, rsrc pseudoinstruction

nor rd, rs, rt 0 rs rt rd 0 0x27
6 5 5 5 5 6

not rdest, rsrc pseudoinstruction

or rd, rs, rt 0 rs rt rd 0 0x25
6 5 5 5 5 6

ori rt, rs, imm 0xd rs rt imm
6 5 5 16

rem rdest, rsrc1, rsrc2 pseudoinstruction
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Unsigned remainder

Put the remainder of register rsrc1 divided by register rsrc2 into register
rdest. Note that if an operand is negative, the remainder is unspecified by the
MIPS architecture and depends on the convention of the machine on which
SPIM is run.

Shift left logical

Shift left logical variable

Shift right arithmetic

Shift right arithmetic variable

Shift right logical

Shift right logical variable

Shift register rt left (right) by the distance indicated by immediate shamt or
the register rs and put the result in register rd. Note that argument rs is ig-
nored for sll, sra, and srl.

Rotate left

remu rdest, rsrc1, rsrc2 pseudoinstruction

sll rd, rt, shamt 0 rs rt rd shamt 0
6 5 5 5 5 6

sllv rd, rt, rs 0 rs rt rd 0 4
6 5 5 5 5 6

sra rd, rt, shamt 0 rs rt rd shamt 3
6 5 5 5 5 6

srav rd, rt, rs 0 rs rt rd 0 7
6 5 5 5 5 6

srl rd, rt, shamt 0 rs rt rd shamt 2
6 5 5 5 5 6

srlv rd, rt, rs 0 rs rt rd 0 6
6 5 5 5 5 6

rol rdest, rsrc1, rsrc2 pseudoinstruction
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Rotate right

Rotate register rsrc1 left (right) by the distance indicated by rsrc2 and put
the result in register rdest.

Subtract (with overflow)

Subtract (without overflow)

Put the difference of registers rs and rt into register rd.

Exclusive OR

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

Put the logical XOR of register rs and the zero-extended immediate into reg-
ister rt.

Constant-Manipulating Instructions

Load upper immediate

Load the lower halfword of the immediate imm into the upper halfword of reg-
ister rt. The lower bits of the register are set to 0.

Load immediate

Move the immediate imm into register rdest.

ror rdest, rsrc1, rsrc2 pseudoinstruction

sub rd, rs, rt 0 rs rt rd 0 0x22
6 5 5 5 5 6

subu rd, rs, rt 0 rs rt rd 0 0x23
6 5 5 5 5 6

xor rd, rs, rt 0 rs rt rd 0 0x26
6 5 5 5 5 6

xori rt, rs, imm 0xe rs rt Imm
6 5 5 16

lui rt, imm 0xf O rt imm
6 5 5 16

li rdest, imm pseudoinstruction
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Comparison Instructions

Set less than

Set less than unsigned

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

Set less than immediate

Set less than unsigned immediate

Set register rt to 1 if register rs is less than the sign-extended immediate, and
to 0 otherwise.

Set equal

Set register rdest to 1 if register rsrc1 equals rsrc2, and to 0 otherwise.

Set  greater than equal

Set greater than equal unsigned

Set register rdest to 1 if register rsrc1 is greater than or equal to rsrc2, and
to 0 otherwise.

slt rd, rs, rt 0 rs rt rd 0 0x2a
6 5 5 5 5 6

sltu rd, rs, rt 0 rs rt rd 0 0x2b
6 5 5 5 5 6

slti rt, rs, imm 0xa rs rt imm
6 5 5 16

sltiu rt, rs, imm 0xb rs rt imm
6 5 5 16

seq rdest, rsrc1, rsrc2 pseudoinstruction

sge rdest, rsrc1, rsrc2 pseudoinstruction

sgeu rdest, rsrc1, rsrc2 pseudoinstruction
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Set  greater than

Set greater than unsigned

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 other-
wise.

Set  less than equal

Set less than equal unsigned

Set register rdest to 1 if register rsrc1 is less than or equal to rsrc2, and to 0
otherwise.

Set  not equal

Set register rdest to 1 if register rsrc1 is not equal to rsrc2, and to 0 other-
wise.

Branch Instructions
Branch instructions use a signed 16-bit instruction offset field; hence they can
jump 215 – 1 instructions (not bytes) forward or 215 instructions backwards.
The jump instruction contains a 26-bit address field.

In the descriptions below, the offsets are not specified. Instead, the instruc-
tions branch to a label. This is the form used in most assembly language pro-
grams because the distance between instructions is difficult to calculate when
pseudoinstructions expand into several real instructions.

Branch instruction

Unconditionally branch to the instruction at the label.

sgt rdest, rsrc1, rsrc2 pseudoinstruction

sgtu rdest, rsrc1, rsrc2 pseudoinstruction

sle rdest, rsrc1, rsrc2 pseudoinstruction

sleu rdest, rsrc1, rsrc2 pseudoinstruction

sne rdest, rsrc1, rsrc2 pseudoinstruction

b label pseudoinstruction
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Branch coprocessor z true

Branch coprocessor z false

Conditionally branch the number of instructions specified by the offset if z’s
condition flag is true (false). z is 0, 1, 2, or 3. The floating-point unit is z = 1.

Branch on equal

Conditionally branch the number of instructions specified by the offset if
register rs equals rt.

Branch on greater than equal zero

Conditionally branch the number of instructions specified by the offset if
register rs is greater than or equal to 0.

Branch on greater than equal zero and link

Conditionally branch the number of instructions specified by the offset if
register rs is greater than or equal to 0. Save the address of the next instruction
in register 31.

Branch on greater than zero

Conditionally branch the number of instructions specified by the offset if
register rs is greater than 0.

bczt label 0x1z 8 1 Offset
6 5 5 16

bczf label 0x1z 8 0 Offset
6 5 5 16

beq rs, rt, label 4 rs rt Offset
6 5 5 16

bgez rs, label 1 rs 1 Offset
6 5 5 16

bgezal rs, label 1 rs 0x11 Offset
6 5 5 16

bgtz rs, label 7 rs 0 Offset
6 5 5 16
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Branch on less than equal zero

Conditionally branch the number of instructions specified by the offset if
register rs is less than or equal to 0.

Branch on less than and link

Conditionally branch the number of instructions specified by the offset if
register rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

Conditionally branch the number of instructions specified by the offset if
register rs is less than 0.

Branch on not equal

Conditionally branch the number of instructions specified by the offset if
register rs is not equal to rt.

Branch on equal zero

Conditionally branch to the instruction at the label if rsrc equals 0.

Branch on greater than equal

Branch on greater than equal unsigned

Conditionally branch to the instruction at the label if register rsrc1 is greater
than or equal to rsrc2.

blez rs, label 6 rs 0 Offset
6 5 5 16

bltzal rs, label 1 rs 0x10 Offset
6 5 5 16

bltz rs, label 1 rs 0 Offset
6 5 5 16

bne rs, rt, label 5 rs rt Offset
6 5 5 16

beqz rsrc, label pseudoinstruction

bge rsrc1, rsrc2, label pseudoinstruction

bgeu rsrc1, rsrc2, label pseudoinstruction
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Branch on greater than

Branch on greater than unsigned

Conditionally branch to the instruction at the label if register rsrc1 is greater
than src2.

Branch on less than equal

Branch on less than equal unsigned

Conditionally branch to the instruction at the label if register rsrc1 is less than
or equal to src2.

Branch on less than

Branch on less than unsigned

Conditionally branch to the instruction at the label if register rsrc1 is less than
rsrc2.

Branch on not equal zero

Conditionally branch to the instruction at the label if register rsrc is not equal
to 0.

bgt rsrc1, src2, label pseudoinstruction

bgtu rsrc1, src2, label pseudoinstruction

ble rsrc1, src2, label pseudoinstruction

bleu rsrc1, src2, label pseudoinstruction

blt rsrc1, rsrc2, label pseudoinstruction

bltu rsrc1, rsrc2, label pseudoinstruction

bnez rsrc, label pseudoinstruction
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Jump Instructions

Jump

Unconditionally jump to the instruction at target.

Jump and link

Unconditionally jump to the instruction at target. Save the address of the next
instruction in register $ra.

Jump and link register

Unconditionally jump to the instruction whose address is in register rs. Save
the address of the next instruction in register rd (which defaults to 31).

Jump register

Unconditionally jump to the instruction whose address is in register rs.

Load Instructions

Load address

Load computed address—not the contents of the location—into register rdest.

Load byte

j target 2 target
6 26

jal target 3 target
6 26

jalr rs, rd 0 rs 0 rd 0 9
6 5 5 5 5 6

jr rs 0 rs 0 8
6 5 15 6

la rdest, address pseudoinstruction

lb rt, address 0x20 rs rt Offset
6 5 5 16
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Load unsigned byte

Load the byte at address into register rt. The byte is sign-extended by lb, but
not by lbu.

Load halfword

Load unsigned halfword

Load the 16-bit quantity (halfword) at address into register rt. The halfword is
sign-extended by lh, but not by lhu.

Load word

Load the 32-bit quantity (word) at address into register rt.

Load word coprocessor

Load the word at address into register rt of coprocessor z (0–3). The floating-
point unit is z = 1.

Load word left

Load word right

Load the left (right) bytes from the word at the possibly unaligned address into
register rt.

lbu rt, address 0x24 rs rt Offset
6 5 5 16

lh rt, address 0x21 rs rt Offset
6 5 5 16

lhu rt, address 0x25 rs rt Offset
6 5 5 16

lw rt, address 0x23 rs rt Offset
6 5 5 16

lwcz rt, address 0x3z rs rt Offset
6 5 5 16

lwl rt, address 0x22 rs rt Offset
6 5 5 16

lwr rt, address 0x26 rs rt Offset
6 5 5 16
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Load doubleword

Load the 64-bit quantity at address into registers rdest and rdest + 1.

Unaligned load halfword

Unaligned load halfword unsigned

Load the 16-bit quantity (halfword) at the possibly unaligned address into
register rdest. The halfword is sign-extended by ulh, but not ulhu.

Unaligned load word

Load the 32-bit quantity (word) at the possibly unaligned address into register
rdest.

Store Instructions

Store byte

Store the low byte from register rt at address.

Store halfword

Store the low halfword from register rt at address.

Store word

Store the word from register rt at address.

ld rdest, address pseudoinstruction

ulh rdest, address pseudoinstruction

ulhu rdest, address pseudoinstruction

ulw rdest, address pseudoinstruction

sb rt, address 0x28 rs rt Offset
6 5 5 16

sh rt, address 0x29 rs rt Offset
6 5 5 16

sw rt, address 0x2b rs rt Offset
6 5 5 16
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Store word coprocessor

Store the word from register rt of coprocessor z at address. The floating-point
unit is z = 1.

Store word left

Store word right

Store the left (right) bytes from register rt at the possibly unaligned address.

Store doubleword

Store the 64-bit quantity in registers rsrc and rsrc + 1 at address.

Unaligned store halfword

Store the low halfword from register rsrc at the possibly unaligned address.

Unaligned store word

Store the word from register rsrc at the possibly unaligned address.

Data Movement Instructions

Move

Move register rsrc to rdest.

Move from hi

swcz rt, address 0x32 rs rt Offset
6 5 5 16

swl rt, address 0x2a rs rt Offset
6 5 5 16

swr rt, address 0x2e rs rt Offset  
6 5 5 16

sd rsrc, address pseudoinstruction

ush rsrc, address pseudoinstruction

usw rsrc, address pseudoinstruction

move rdest, rsrc pseudoinstruction

mfhi rd 0 0 rd 0 0x10
6 10 5 5 6
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Move from lo

The multiply and divide unit produces its result in two additional registers, hi
and lo. These instructions move values to and from these registers. The mul-
tiply, divide, and remainder pseudoinstructions that make this unit appear to
operate on the general registers move the result after the computation finishes.

Move the hi (lo) register to register rd.

Move to hi

Move to lo

Move register rs to the hi (lo) register.

Move from coprocessor z

Coprocessors have their own register sets. These instructions move values be-
tween these registers and the CPU’s registers.

Move coprocessor z’s register rd to CPU register rt. The floating-point unit is
coprocessor z = 1.

Move double from coprocessor 1

Move floating-point registers frsrc1 and frsrc1 + 1 to CPU registers rdest
and rdest + 1.

Move to coprocessor z

Move CPU register rt to coprocessor z’s register rd.

mflo rd 0 0 rd 0 0x12
6 10 5 5 6

mthi rs 0 rs 0 0x11
6 5 15 6

mtlo rs 0 rs 0 0x13
6 5 15 6

mfcz rt, rd 0x1z 0 rt rd 0
6 5 5 5 11

mfc1.d rdest, frsrc1 pseudoinstruction

mtcz rd, rt 0x1z 4 rt rd 0
6 5 5 5 11
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Floating-Point Instructions
The MIPS has a floating-point coprocessor (numbered 1) that operates on sin-
gle precision (32-bit) and double precision (64-bit) floating-point numbers.
This coprocessor has its own registers, which are numbered $f0–$f31.
Because these registers are only 32 bits wide, two of them are required to hold
doubles, so only floating-point registers with even numbers can hold double
precision values.

Values are moved in or out of these registers one word (32 bits) at a time by
lwc1, swc1, mtc1, and mfc1 instructions described above or by the l.s, l.d,
s.s, and s.d pseudoinstructions described below. The flag set by floating-
point comparison operations is read by the CPU with its bc1t and bc1f in-
structions.

In the actual instructions below, bits 21–26 are 0 for single precision and 1
for double precision. In the pseudoinstructions below, fdest is a floating-
point register (e.g., $f2).

Floating-point absolute value double

Floating-point absolute value single

Compute the absolute value of the floating-point double (single) in register fs
and put it in register fd.

Floating-point addition double

Floating-point addition single

Compute the sum of the floating-point doubles (singles) in registers fs and ft
and put it in register fd.

abs.d fd, fs 0x11 1 0 fs fd 5
6 5 5 5 5 6

abs.s fd, fs 0x11 0 0 fs fd 5
6 5 5 5 5 6

add.d fd, fs, ft 0x11 1 ft fs fd 0
6 5 5 5 5 6

add.s fd, fs, ft 0x11 0 ft fs fd 0
6 5 5 5 5 6
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Compare equal double

Compare equal single

Compare the floating-point double in register fs against the one in ft and set
the floating-point condition flag true if they are equal. Use the bc1t or bc1f
instructions to test the value of this flag.

Compare less than equal double

Compare less than equal single

Compare the floating-point double in register fs against the one in ft and set
the floating-point condition flag true if the first is less than or equal to the sec-
ond. Use the bc1t or bc1f instructions to test the value of this flag.

Compare less than double

Compare less than single

Compare the floating-point double in register fs against the one in ft and set
the condition flag true if the first is less than the second. Use the bc1t or bc1f
instructions to test the value of this flag.

Convert single to double

c.eq.d fs, ft 0x11 1 ft fs 0 FC 2
6 5 5 5 5 2 4

c.eq.s fs, ft 0x11 0 ft fs 0 FC 2
6 5 5 5 5 2 4

c.le.d fs, ft 0x11 1 ft fs 0 FC 0xe
6 5 5 5 5 2 4

c.le.s fs, ft 0x11 0 ft fs 0 FC 0xe
6 5 5 5 5 2 4

c.lt.d fs, ft 0x11 1 ft fs 0 FC 0xc
6 5 5 5 5 2 4

c.lt.s fs, ft 0x11 0 ft fs 0 FC 0xc
6 5 5 5 5 2 4

cvt.d.s fd, fs 0x11 1 0 fs fd 0x21
6 5 5 5 5 6
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Convert integer to double

Convert the single precision floating-point number or integer in register fs to
a double precision number and put it in register fd.

Convert double to single

Convert integer to single

Convert the double precision floating-point number or integer in register fs to
a single precision number and put it in register fd.

Convert double to integer

Convert single to integer

Convert the double or single precision floating-point number in register fs to
an integer and put it in register fd.

Floating-point divide double

Floating-point divide single

Compute the quotient of the floating-point doubles (singles) in registers fs
and ft and put it in register fd.

cvt.d.w fd, fs 0x11 0 0 fs fd 0x21
6 5 5 5 5 6

cvt.s.d fd, fs 0x11 1 0 fs fd 0x20
6 5 5 5 5 6

cvt.s.w fd, fs 0x11 0 0 fs fd 0x20
6 5 5 5 5 6

cvt.w.d fd, fs 0x11 1 0 fs fd 0x24
6 5 5 5 5 6

cvt.w.s fd, fs 0x11 0 0 fs fd 0x24
6 5 5 5 5 6

div.d fd, fs, ft 0x11 1 ft fs fd 3
6 5 5 5 5 6

div.s fd, fs, ft 0x11 0 ft fs fd 3
6 5 5 5 5 6
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Load floating-point double

Load floating-point single

Load the floating-point double (single) at address into register fdest.

Move floating-point double

Move floating-point single

Move the floating-point double (single) from register fs to register fd.

Floating-point multiply double

Floating-point multiply single

Compute the product of the floating-point doubles (singles) in registers fs and
ft and put it in register fd.

Negate double

Negate single

Negate the floating-point double (single) in register fs and put it in register
fd.

l.d fdest, address pseudoinstruction

l.s fdest, address pseudoinstruction

mov.d fd, fs 0x11 1 0 fs fd 6
6 5 5 5 5 6

mov.s fd, fs 0x11 0 0 fs fd 6
6 5 5 5 5 6

mul.d fd, fs, ft 0x11 1 ft fs fd 2
6 5 5 5 5 6

mul.s fd, fs, ft 0x11 0 ft fs fd 2
6 5 5 5 5 6

neg.d fd, fs 0x11 1 0 fs fd 7
6 5 5 5 5 6

neg.s fd, fs 0x11 0 0 fs fd 7
6 5 5 5 5 6
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Store floating-point double

Store floating-point single

Store the floating-point double (single) in register fdest at address.

Floating-point subtract double

Floating-point subtract single

Compute the difference of the floating-point doubles (singles) in registers fs
and ft and put it in register fd.

Exception and Interrupt Instructions

Return from exception

Restore the Status register.

System call

Register $v0 contains the number of the system call (see Figure A.17) provided
by SPIM.

s.d fdest, address pseudoinstruction

s.s fdest, address pseudoinstruction

sub.d fd, fs, ft 0x11 1 ft fs fd 1
6 5 5 5 5 6

sub.s fd, fs, ft 0x11 0 ft fs fd 1
6 5 5 5 5 6

rfe 0x10 1 0 0x20
6 1 19 6

syscall 0 0 0xc
6 20 6
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Break

Cause exception code. Exception 1 is reserved for the debugger.

No operation

Do nothing.
 

Programming in assembly language requires a programmer to trade off help-
ful features of high-level languages—such as data structures, type checking,
and control constructs—for complete control over the instructions that a com-
puter executes. External constraints on some applications, such as response
time or program size, require a programmer to pay close attention to every
instruction. However, the cost of this level of attention is assembly language
programs that are longer, more time-consuming to write, and more difficult to
maintain than high-level language programs.

Moreover, three trends are reducing the need to write programs in assembly
language. The first trend is toward the improvement of compilers. Modern
compilers produce code that is typically comparable to the best handwritten
code and is sometimes better. The second trend is the introduction of new pro-
cessors that are not only faster, but in the case of processors that execute mul-
tiple instructions simultaneously, also more difficult to program by hand. In
addition, the rapid evolution of the modern computer favors high-level lan-
guage programs that are not tied to a single architecture. Finally, we witness a
trend toward increasingly complex applications—characterized by complex
graphic interfaces and many more features than their predecessors. Large ap-
plications are written by teams of programmers and require the modularity
and semantic checking features provided by high-level languages.

To Probe Further

Kane, G., and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJ.

The last word on the MIPS instruction set and assembly language programming on these machines.

Aho, A., R. Sethi, and J. Ullman [1985]. Compilers: Principles, Techniques, and Tools, Addison-
Wesley, Reading, MA.

Slightly dated and lacking in coverage of modern architectures, but still the standard reference on compilers.

break code 0 code 0xd
6 20 6

nop 0 0 0 0 0 0
6 5 5 5 5 6

A.11 Concluding Remarks A.11
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A number of key terms have been introduced in this appendix. Check the
Glossary for definitions of terms you are uncertain of. 

A.1  [5] <§A.5> Section A.5 described how memory is partitioned on most
MIPS systems. Propose another way of dividing memory that meets the same
goals.

A.2 [20] <§A.6> Rewrite the code for fact to use fewer instructions.

A.3 [5] <§A.7> Is it ever safe for a user program to use registers $k0 or $k1?

A.4 [25] <§A.7> Section A.7 contains code for a very simple exception han-
dler. One serious problem with this handler is that it disables interrupts for a
long time. This means that interrupts from a fast I/O device may be lost. Write
a better exception handler that is interruptable and enables interrupts as
quickly as possible.

A.5 [15] <§A.7> The simple exception handler always jumps back to the in-
struction following the exception. This works fine unless the instruction that
causes the exception is in the delay slot of a branch. In that case, the next in-
struction is the target of the branch. Write a better handler that uses the EPC
register to determine which instruction should be executed after the exception.

A.6 [5] <§A.9> Using SPIM, write and test an adding machine program that
repeatedly reads in integers and adds them into a running sum. The program
should stop when it gets an input that is 0, printing out the sum at that point.
Use the SPIM system calls described on pages A-48 and A-49.

A.12 Key Terms A.12

A.13 Exercises A.13

absolute address
assembler directive
backpatching
callee-saved register
caller-saved register
data segment
external or global label
formal parameter
forward reference

interrupt handler
local label
machine language
macros
procedure call or stack frame
recursive procedures
register-use or procedure-call 

convention
relocation information

separate compilation
source language
stack segment
static data
symbol table
text segment
unresolved reference
virtual machine
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A.7 [5] <§A.9> Using SPIM, write and test a program that reads in three inte-
gers and prints out the sum of the largest two of the three. Use the SPIM sys-
tem calls described on pages A-48 and A-49. You can break ties arbitrarily.

A.8 [5] <§A.9> Using SPIM, write and test a program that reads in a positive
integer using the SPIM system calls. If the integer is not positive, the program
should terminate with the message “Invalid Entry”; otherwise the program
should print out the names of the digits of the integers, delimited by exactly
one space. For example, if the user entered “728,” the output would be “Seven
Two Eight.”

A.9 [25] <§A.9> Write and test a MIPS assembly language program to com-
pute and print the first 100 prime numbers. A number n is prime if no numbers
except 1 and n divide it evenly. You should implement two routines:

� test_prime (n)  Return 1 if n is prime and 0 if n is not prime.

�  main ()  Iterate over the integers, testing if each is prime. Print the
first 100 numbers that are prime.

Test your programs by running them on SPIM.

A.10 A.10 [10] <§§A.6, A.9> Using SPIM, write and test a recursive program
for solving the classic mathematical recreation, the Towers of Hanoi puzzle.
(This will require the use of stack frames to support recursion.) The puzzle
consists of three pegs (1, 2, and 3) and n disks (the number n can vary; typical
values might be in the range from 1 to 8). Disk 1 is smaller than disk 2, which
is in turn smaller than disk 3, and so forth, with disk n being the largest. Ini-
tially, all the disks are on peg 1, starting with disk n on the bottom, disk n – 1
on top of that, and so forth, up to disk 1 on the top. The goal is to move all the
disks to peg 2. You may only move one disk at a time, that is, the top disk from
any of the three pegs onto the top of either of the other two pegs. Moreover,
there is a constraint: You must not place a larger disk on top of a smaller disk.

The C program on the next page can be used to help write your assembly lan-
guage program.
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/* move n smallest disks from start to finish using extra */

void hanoi(int n, int start, int finish, int extra){
if(n != 0){

hanoi(n-1, start, extra, finish);
print_string(“Move disk”);
print_int(n);
print_string(“from peg”);
print_int(start);
print_string(“to peg”);
print_int(finish);
print_string(“.\n”);
hanoi(n-1, extra, finish, start);

}
}
main(){

int n;
print_string(“Enter number of disks>“);
n = read_int();
hanoi(n, 1, 2, 3);
return 0;

}
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