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Shared Memory Multiprocessors
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Uniprocessor View
• Performance depends heavily on memory 

hierarchy
• Managed by hardware
• Time spent by a program

– Timeprog(1) = Busy(1) + Data Access(1)
– Divide by cycles to get CPI equation

• Data access time can be reduced by:
– Optimizing machine

» bigger caches, lower latency...
– Optimizing program

» temporal and spatial locality

Busy-useful

Data-local
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Same Processor-Centric Perspective

P 0 P 1 P 2 P 3

Busy-overhead Busy-useful

Data-local

Synchronization

Data-remote
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(a) Sequential essors(b) Parallel with four proc
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What is a Multiprocessor?

• A collection of communicating processors
– Goals: balance load, reduce inherent communication and 

extra work

• A multi-cache, multi-memory system
– Role of these components essential regardless of  

programming model
– Prog. model  and comm. abstr. affect specific performance 

tradeoffs

P P P

P P P

...

...
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Relationship between Perspectives

Synch wait

Data-r emote

Data-localOr chestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Or chestration/
mapping

Load imbalance and 
synchr onization

Inher ent 
communication 
volume

Artifactual 
communication 
and data locality

Communication 
structur e

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <
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Back to Basics
• Parallel Architecture = Computer Architecture + 

Communication Architecture
• Small-scale shared memory

– extend the memory system to support multiple processors
– good for multiprogramming throughput and parallel computing
– allows fine-grain sharing of resources

• Naming & synchronization
– communication is implicit in store/load of shared address
– synchronization is performed by operations on shared addresses

• Latency & Bandwidth
– utilize the normal migration within the storage to avoid long latency 

operations and to reduce bandwidth
– economical medium with fundamental BW limit
=> focus on eliminating unnecessary traffic
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Natural Extensions of Memory System
P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

First-level $

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem MemShared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale
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Bus-Based Symmetric Shared Memory

• Dominate the server market
– Building blocks for larger systems; arriving to desktop

• Attractive as throughput servers and for parallel programs
– Fine-grain resource sharing
– Uniform access via loads/stores
– Automatic  data movement and coherent replication in caches
– Cheap and powerful extension

• Normal uniprocessor mechanisms to access data
– Key is extension of memory hierarchy to support multiple processors

I/O devicesMem

P1

$ $

Pn

Bus
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Caches are Critical for Performance

• Reduce average latency
– automatic replication closer to 

processor

• Reduce average bandwidth
• Data is logically transferred 

from producer to consumer 
to memory

– store reg --> mem
– load  reg <-- mem P P P

• What happens when store & load are executed  
on different processors?

• Many processors can 
shared data efficiently
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Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on 

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7
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Caches and Cache Coherence

• Caches play key role in all cases
– Reduce average data access time
– Reduce bandwidth demands placed on shared interconnect

• private processor caches create a problem
– Copies of a variable can be present in multiple caches 
– A write by one processor may not become visible to others

» They’ll keep accessing stale value in their caches
=> Cache coherence problem

• What do we do about it?
– Organize the mem hierarchy to make it go away 
– Detect and take actions to eliminate the problem

4/11/02 CS252 S02.21 12

Shared Cache: Examples
• Alliant FX-8

– early 80’s
– eight 68020s with x-bar to 512 KB interleaved cache

• Encore & Sequent
– first 32-bit micros (N32032)
– two to a board with a shared cache

• coming soon to microprocessors near you...

Year

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000 2005

i80286

i80486

Pentium

i80386

i8086

i4004

R10000

R4400

R3010

SU MIPS
i80x86

M68K

MIPS

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory
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Advantages

• Cache placement identical to single cache
– only one copy of any cached block

• fine-grain sharing
– communication latency determined level in the storage 

hierarchy where the access paths meet
» 2-10 cycles
» Cray Xmp has shared registers!

• Potential for positive interference
– one proc prefetches data for another

• Smaller total storage
– only one copy of code/data used by both proc.

• Can share data within a line without “ping-pong”
– long lines without false sharing

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

4/11/02 CS252 S02.21 14

Disadvantages

• Fundamental BW limitation
• Increases latency of all accesses

– X-bar
– Larger cache
– L1 hit time determines proc. cycle time !!!

• Potential for negative interference
– one proc flushes data needed by another

• Many L2 caches are shared today

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory
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P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Reading an address should return the last value 
written to that address

• Easy in uniprocessors
– except for I/O

• Cache coherence problem in MPs is more 
pervasive and more performance critical
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Snoopy Cache-Coherence Protocols

• Bus is a broadcast medium & Caches know what 
they have

• Cache Controller “snoops” all transactions on 
the shared bus

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Example: Write-thru Invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7
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Architectural Building Blocks

• Bus Transactions
– fundamental system design abstraction
– single set of wires connect several devices
– bus protocol: arbitration, command/addr, data
=> Every device observes every transaction

• Cache block state transition diagram
– FSM specifying how disposition of block changes

» invalid, valid, dirty
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Design Choices

• Controller updates state 
of blocks in response to 
processor and snoop 
events and generates 
bus transactions

• Snoopy protocol
– set of states
– state-transition diagram
– actions

• Basic Choices
– Write-through vs Write-back
– Invalidate vs. Update

Snoop

State  Tag   Data

° ° °

Cache Controller

Processor
Ld/St
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Write-through Invalidate Protocol

• Two states per block in each 
cache
– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with 

blocks that are in the cache 
– other blocks can be seen as being in 

invalid (not-present) state in that 
cache

• Writes invalidate all other 
caches
– can have multiple simultaneous 

readers of block,but write invalidates 
them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State  Tag   Data

I/O devicesMem

P1

$ $

Pn

Bus

State  Tag   Data
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Write-through vs. Write-back

• Write-through protocol is simple
– every write is observable

• Every write goes on the bus
=> Only one write can take place at a time in any processor

• Uses a lot of bandwidth!

Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes

=> 30 M stores per second per processor

=> 240 MB/s per processor

1GB/s bus can support only about 4 
processors without saturating
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Invalidate vs. Update

• Basic question of program behavior:
– Is a block written by one processor later read by others 

before it is overwritten?

• Invalidate.  
– yes: readers will take a miss
– no: multiple writes without addition traffic

» also clears out copies that will never be used again

• Update.  
– yes: avoids misses on later references
– no: multiple useless updates

» even to pack rats

=> Need to look at program reference patterns and 
hardware complexity

but first - correctness



CS258 S99 12

NOW Handout Page 12

4/11/02 CS252 S02.21 23

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model???

• Reading an address should return the last value 
written to that address

• What does that mean in a multiprocessor?
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Coherence?

• Caches are supposed to be transparent
• What would happen if there were no caches
• Every memory operation would go “to the 

memory location”
– may have multiple memory banks
– all operations on a particular location would be serialized

» all would see THE order

• Interleaving among accesses from different 
processors

– within individual processor => program order
– across processors => only constrained by explicit 

synchronization

• Processor only observes state of memory 
system by issuing memory operations!
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Definitions

• Memory operation
– load, store, read-modify-write

• Issues
– leaves processor’s internal environment and is presented to 

the memory subsystem (caches, buffers, busses,dram, etc)

• Performed with respect to a processor
– write: subsequent reads return the value
– read: subsequent writes cannot affect the value

• Coherent Memory System
– there exists a serial order of mem operations on each location 

s. t.
» operations issued by a process appear in order issued
» value returned by each read is that written by previous 

write in the serial order
=> write propagation + write serialization
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Is 2-state Protocol Coherent?
• Assume bus transactions and memory operations are 

atomic, one-level cache
– all phases of one bus transaction complete before next one starts
– processor waits for memory operation to complete before issuing 

next
– with one-level cache, assume invalidations applied during bus 

xaction

• All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

• How to insert reads in this order?
– Important since processors see writes through reads, so determines 

whether write serialization is satisfied
– But read hits may happen independently and do not appear on bus or 

enter directly in bus order



CS258 S99 14

NOW Handout Page 14

4/11/02 CS252 S02.21 27

Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will 

order read misses too
– any order among reads between writes is fine, as long as in program 

order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:
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Write-Through vs Write-Back

• Write-thru requires high bandwidth

• Write-back caches absorb most writes as cache 
hits

=> Write hits don’t go on bus
– But now how do we ensure write propagation and 

serialization?
– Need more sophisticated protocols: large design space

• But first, let’s understand other ordering issues
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Setup for Mem. Consistency

• Cohrence => Writes to  a location become visible 
to all in the same order

• But when does a write become visible?

• How do we establish orders between a write and 
a read by different procs?

– use event synchronization
– typically  use more than one location!
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Example

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses 

to different locations issued by a given process
– to preserve orders among accesses to same location by 

different processes

• Coherence is not enough!
– pertains only to single location

P1 P2

/*Assume initial value of A and ag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P1
Pn

Conceptual 
Picture
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Memory Consistency Model

• Specifies constraints on the order in which 
memory operations (from any process) can 
appear to execute with respect to one another

– What orders are preserved?
– Given a load, constrains the possible values returned by it

• Without it, can’t tell much about an SAS 
program’s execution

• Implications for both programmer and system 
designer

– Programmer uses to reason about correctness and possible 
results

– System designer can use to constrain how much accesses 
can be reordered by compiler or hardware

• Contract between programmer and system
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Sequential Consistency

• Total order achieved by interleaving accesses from 
different processes

– Maintains program order, and memory operations, from all 
processes, appear to [issue, execute, complete] atomically w.r.t. 
others

– as if there were no caches, and a single memory

• “A multiprocessor is sequentially consistent if the result of any 
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of 
each individual processor appear in this sequence in the order 
specified by its program.” [Lamport, 1979]

Processors 
issuing memory 
references as 
per program or der

P1 P2 Pn

Memory

The “switch” is randomly 
set after each memory
reference
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SC Example

• What matters is order in which operations appear to 
execute, not the chronilogical order of events

• Possible outcomes for (A,B): (0,0), (1,0), (1,2)
• What about (0,2) ?

– program order => 1a->1b and 2a->2b
– A = 0 implies 2b->1a, which implies 2a->1b
– B = 2 implies 1b->2a, which leads to a contradiction

P1 P2

/*Assume initial values of A and B are 0*/
(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;
A=0

B=2
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Implementing SC

• Two kinds of requirements
– Program order

» memory operations issued by a process must appear to 
execute (become visible to others and itself) in program 
order

– Atomicity
» in the overall hypothetical total order, one memory 

operation should appear to complete with respect to all 
processes before the next one is issued

» guarantees that total order is consistent across 
processes 

– tricky part is making writes atomic
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An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses
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Write-Back State Machine - CPU

• State machine
for CPU requests
for each 
cache block

• Non-resident 
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State
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Write-Back State Machine- Bus req
• State machine

for bus requests
for each 
cache block Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)
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Block-replacement

• State machine
for CPU requests
for each 
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State
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Place read miss
on bus

Write-back State Machine-III 
• State machine

for CPU requests
for each 
cache block and
for bus requests
for each 
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 !=  A2
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Snooping Cache Variations

Berkeley 
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic 
Protocol

Exclusive
Shared
Invalid

Illinois 
Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

MESI 
Protocol

Modfied (private,!=Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid
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Implementation Complications
• Write Races:

– Cannot update cache until bus is obtained
» Otherwise, another processor may get bus first, 

and then write the same cache block!
– Two step process:

» Arbitrate for bus 
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: 

can have multiple outstanding transactions for a block
» Multiple misses can interleave, 

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations
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Implementing Snooping Caches

• Multiple processors must be on bus, access to both 
addresses and data

• Add a few new commands to perform coherency, 
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags, 
could interfere with CPU just to check: 

– solution 1: duplicate set of tags for L1 caches just to allow checks in 
parallel with CPU

– solution 2: L2 cache already duplicate, 
provided L2 obeys inclusion with L1 cache

» block size, associativity of L2 affects L1
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Implementing Snooping Caches

• Bus serializes writes, getting bus ensures no one else 
can perform memory operation

• On a miss in a write back cache, may have the desired 
copy and its dirty, so must reply

• Add extra state bit to cache to determine shared or not
• Add 4th state (MESI)
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Artifactual Communication
• Accesses not satisfied in local portion of 

memory hierachy cause “communication”
– Inherent communication,  implicit or explicit, causes transfers

» determined by program
– Artifactual communication

» determined by program implementation and arch. 
interactions

» poor allocation of data across distributed memories
» unnecessary data in a transfer
» unnecessary transfers due to system granularities
» redundant communication of data
» finite replication capacity (in cache or main memory)

– Inherent communication is what occurs with unlimited 
capacity, small transfers, and perfect knowledge of what is 
needed.  
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Fundamental Issues

• 3 Issues to characterize parallel machines
1) Naming
2) Synchronization
3) Performance: Latency and Bandwidth 

(covered earlier)
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Fundamental Issue #1: Naming

• Naming:
– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by a 
compiler; via load where just remember 
address or keep track of processor number 
and local virtual address for msg. passing

• Choice of naming affects replication of data; 
via load in cache memory hierarchy or via SW 
replication and consistency
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Fundamental Issue #1: Naming

• Global physical address space: 
any processor can generate, address and 
access it in a single operation

– memory can be anywhere: 
virtual addr. translation handles it

• Global virtual address space: if the address 
space of each process can  be configured to 
contain all shared data of the parallel program

• Segmented shared address space: 
locations are named 
<process number, address> 
uniformly for all processes of the parallel 
program
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Fundamental Issue #2: 
Synchronization
• To cooperate, processes must coordinate
• Message passing is implicit coordination with 

transmission or arrival of data
• Shared address 

=> additional operations to explicitly coordinate: 
e.g., write a flag, awaken a thread, interrupt a 
processor
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Summary: Parallel Framework

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data 

sets simultaneously and then exchange information 
globally and simultaneously (shared or message 
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling) 

=> many hardware designs 1:1 programming model

Programming Model
Communication Abstraction
Interconnection SW/OS 
Interconnection HW


