
CS258 S99 1

NOW Handout Page 1

Shared Memory Multiprocessors

CS 252, Spring 2002
David E. Culler

Computer Science Division
U.C. Berkeley

4/11/02 CS252 S02.21 2

P

Ti
m e

(s
)

100

75

50

25

Uniprocessor View
• Performance depends heavily on memory

hierarchy
• Managed by hardware
• Time spent by a program

– Timeprog(1) = Busy(1) + Data Access(1)
– Divide by cycles to get CPI equation

• Data access time can be reduced by:
– Optimizing machine

» bigger caches, lower latency...
– Optimizing program

» temporal and spatial locality

Busy-useful

Data-local

CS258 S99 2

NOW Handout Page 2

4/11/02 CS252 S02.21 3

Same Processor-Centric Perspective

P 0 P 1 P 2 P 3

Busy-overhead Busy-useful

Data-local

Synchronization

Data-remote

T
i
m
e
(
s
)

T
i
m
e
(
s
)

100

75

50

25

100

75

50

25

(a) Sequential essors(b) Parallel with four proc

4/11/02 CS252 S02.21 4

What is a Multiprocessor?

• A collection of communicating processors
– Goals: balance load, reduce inherent communication and

extra work

• A multi-cache, multi-memory system
– Role of these components essential regardless of

programming model
– Prog. model and comm. abstr. affect specific performance

tradeoffs

P P P

P P P

...

...

CS258 S99 3

NOW Handout Page 3

4/11/02 CS252 S02.21 5

Relationship between Perspectives

Synch wait

Data-r emote

Data-localOr chestration

Busy-overheadExtra work

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/
orchestration

Decomposition/
assignment

Decomposition/
assignment

Or chestration/
mapping

Load imbalance and
synchr onization

Inher ent
communication
volume

Artifactual
communication
and data locality

Communication
structur e

Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

Speedup <

4/11/02 CS252 S02.21 6

Back to Basics
• Parallel Architecture = Computer Architecture +

Communication Architecture
• Small-scale shared memory

– extend the memory system to support multiple processors
– good for multiprogramming throughput and parallel computing
– allows fine-grain sharing of resources

• Naming & synchronization
– communication is implicit in store/load of shared address
– synchronization is performed by operations on shared addresses

• Latency & Bandwidth
– utilize the normal migration within the storage to avoid long latency

operations and to reduce bandwidth
– economical medium with fundamental BW limit
=> focus on eliminating unnecessary traffic

CS258 S99 4

NOW Handout Page 4

4/11/02 CS252 S02.21 7

Natural Extensions of Memory System
P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

First-level $

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem MemShared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale

4/11/02 CS252 S02.21 8

Bus-Based Symmetric Shared Memory

• Dominate the server market
– Building blocks for larger systems; arriving to desktop

• Attractive as throughput servers and for parallel programs
– Fine-grain resource sharing
– Uniform access via loads/stores
– Automatic data movement and coherent replication in caches
– Cheap and powerful extension

• Normal uniprocessor mechanisms to access data
– Key is extension of memory hierarchy to support multiple processors

I/O devicesMem

P1

$ $

Pn

Bus

CS258 S99 5

NOW Handout Page 5

4/11/02 CS252 S02.21 9

Caches are Critical for Performance

• Reduce average latency
– automatic replication closer to

processor

• Reduce average bandwidth
• Data is logically transferred

from producer to consumer
to memory

– store reg --> mem
– load reg <-- mem P P P

• What happens when store & load are executed
on different processors?

• Many processors can
shared data efficiently

4/11/02 CS252 S02.21 10

Example Cache Coherence Problem

– Processors see different values for u after event 3
– With write back caches, value written back to memory depends on

happenstance of which cache flushes or writes back value when
» Processes accessing main memory may see very stale value

– Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

CS258 S99 6

NOW Handout Page 6

4/11/02 CS252 S02.21 11

Caches and Cache Coherence

• Caches play key role in all cases
– Reduce average data access time
– Reduce bandwidth demands placed on shared interconnect

• private processor caches create a problem
– Copies of a variable can be present in multiple caches
– A write by one processor may not become visible to others

» They’ll keep accessing stale value in their caches
=> Cache coherence problem

• What do we do about it?
– Organize the mem hierarchy to make it go away
– Detect and take actions to eliminate the problem

4/11/02 CS252 S02.21 12

Shared Cache: Examples
• Alliant FX-8

– early 80’s
– eight 68020s with x-bar to 512 KB interleaved cache

• Encore & Sequent
– first 32-bit micros (N32032)
– two to a board with a shared cache

• coming soon to microprocessors near you...

Year

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000 2005

i80286

i80486

Pentium

i80386

i8086

i4004

R10000

R4400

R3010

SU MIPS
i80x86

M68K

MIPS

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

CS258 S99 7

NOW Handout Page 7

4/11/02 CS252 S02.21 13

Advantages

• Cache placement identical to single cache
– only one copy of any cached block

• fine-grain sharing
– communication latency determined level in the storage

hierarchy where the access paths meet
» 2-10 cycles
» Cray Xmp has shared registers!

• Potential for positive interference
– one proc prefetches data for another

• Smaller total storage
– only one copy of code/data used by both proc.

• Can share data within a line without “ping-pong”
– long lines without false sharing

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

4/11/02 CS252 S02.21 14

Disadvantages

• Fundamental BW limitation
• Increases latency of all accesses

– X-bar
– Larger cache
– L1 hit time determines proc. cycle time !!!

• Potential for negative interference
– one proc flushes data needed by another

• Many L2 caches are shared today

P1 Pn

Switch

(Interleaved)
Cache

(Interleaved)
Main Memory

CS258 S99 8

NOW Handout Page 8

4/11/02 CS252 S02.21 15

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Reading an address should return the last value
written to that address

• Easy in uniprocessors
– except for I/O

• Cache coherence problem in MPs is more
pervasive and more performance critical

4/11/02 CS252 S02.21 16

Snoopy Cache-Coherence Protocols

• Bus is a broadcast medium & Caches know what
they have

• Cache Controller “snoops” all transactions on
the shared bus

– relevant transaction if for a block it contains
– take action to ensure coherence

» invalidate, update, or supply value
– depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

CS258 S99 9

NOW Handout Page 9

4/11/02 CS252 S02.21 17

Example: Write-thru Invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

4/11/02 CS252 S02.21 18

Architectural Building Blocks

• Bus Transactions
– fundamental system design abstraction
– single set of wires connect several devices
– bus protocol: arbitration, command/addr, data
=> Every device observes every transaction

• Cache block state transition diagram
– FSM specifying how disposition of block changes

» invalid, valid, dirty

CS258 S99 10

NOW Handout Page 10

4/11/02 CS252 S02.21 19

Design Choices

• Controller updates state
of blocks in response to
processor and snoop
events and generates
bus transactions

• Snoopy protocol
– set of states
– state-transition diagram
– actions

• Basic Choices
– Write-through vs Write-back
– Invalidate vs. Update

Snoop

State Tag Data

° ° °

Cache Controller

Processor
Ld/St

4/11/02 CS252 S02.21 20

Write-through Invalidate Protocol

• Two states per block in each
cache
– as in uniprocessor
– state of a block is a p-vector of states
– Hardware state bits associated with

blocks that are in the cache
– other blocks can be seen as being in

invalid (not-present) state in that
cache

• Writes invalidate all other
caches
– can have multiple simultaneous

readers of block,but write invalidates
them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devicesMem

P1

$ $

Pn

Bus

State Tag Data

CS258 S99 11

NOW Handout Page 11

4/11/02 CS252 S02.21 21

Write-through vs. Write-back

• Write-through protocol is simple
– every write is observable

• Every write goes on the bus
=> Only one write can take place at a time in any processor

• Uses a lot of bandwidth!

Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes

=> 30 M stores per second per processor

=> 240 MB/s per processor

1GB/s bus can support only about 4
processors without saturating

4/11/02 CS252 S02.21 22

Invalidate vs. Update

• Basic question of program behavior:
– Is a block written by one processor later read by others

before it is overwritten?

• Invalidate.
– yes: readers will take a miss
– no: multiple writes without addition traffic

» also clears out copies that will never be used again

• Update.
– yes: avoids misses on later references
– no: multiple useless updates

» even to pack rats

=> Need to look at program reference patterns and
hardware complexity

but first - correctness

CS258 S99 12

NOW Handout Page 12

4/11/02 CS252 S02.21 23

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model???

• Reading an address should return the last value
written to that address

• What does that mean in a multiprocessor?

4/11/02 CS252 S02.21 24

Coherence?

• Caches are supposed to be transparent
• What would happen if there were no caches
• Every memory operation would go “to the

memory location”
– may have multiple memory banks
– all operations on a particular location would be serialized

» all would see THE order

• Interleaving among accesses from different
processors

– within individual processor => program order
– across processors => only constrained by explicit

synchronization

• Processor only observes state of memory
system by issuing memory operations!

CS258 S99 13

NOW Handout Page 13

4/11/02 CS252 S02.21 25

Definitions

• Memory operation
– load, store, read-modify-write

• Issues
– leaves processor’s internal environment and is presented to

the memory subsystem (caches, buffers, busses,dram, etc)

• Performed with respect to a processor
– write: subsequent reads return the value
– read: subsequent writes cannot affect the value

• Coherent Memory System
– there exists a serial order of mem operations on each location

s. t.
» operations issued by a process appear in order issued
» value returned by each read is that written by previous

write in the serial order
=> write propagation + write serialization

4/11/02 CS252 S02.21 26

Is 2-state Protocol Coherent?
• Assume bus transactions and memory operations are

atomic, one-level cache
– all phases of one bus transaction complete before next one starts
– processor waits for memory operation to complete before issuing

next
– with one-level cache, assume invalidations applied during bus

xaction

• All writes go to bus + atomicity
– Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

• How to insert reads in this order?
– Important since processors see writes through reads, so determines

whether write serialization is satisfied
– But read hits may happen independently and do not appear on bus or

enter directly in bus order

CS258 S99 14

NOW Handout Page 14

4/11/02 CS252 S02.21 27

Ordering

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will

order read misses too
– any order among reads between writes is fine, as long as in program

order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

4/11/02 CS252 S02.21 28

Write-Through vs Write-Back

• Write-thru requires high bandwidth

• Write-back caches absorb most writes as cache
hits

=> Write hits don’t go on bus
– But now how do we ensure write propagation and

serialization?
– Need more sophisticated protocols: large design space

• But first, let’s understand other ordering issues

CS258 S99 15

NOW Handout Page 15

4/11/02 CS252 S02.21 29

Setup for Mem. Consistency

• Cohrence => Writes to a location become visible
to all in the same order

• But when does a write become visible?

• How do we establish orders between a write and
a read by different procs?

– use event synchronization
– typically use more than one location!

4/11/02 CS252 S02.21 30

Example

• Intuition not guaranteed by coherence
• expect memory to respect order between accesses

to different locations issued by a given process
– to preserve orders among accesses to same location by

different processes

• Coherence is not enough!
– pertains only to single location

P1 P2

/*Assume initial value of A and ag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P1
Pn

Conceptual
Picture

CS258 S99 16

NOW Handout Page 16

4/11/02 CS252 S02.21 31

Memory Consistency Model

• Specifies constraints on the order in which
memory operations (from any process) can
appear to execute with respect to one another

– What orders are preserved?
– Given a load, constrains the possible values returned by it

• Without it, can’t tell much about an SAS
program’s execution

• Implications for both programmer and system
designer

– Programmer uses to reason about correctness and possible
results

– System designer can use to constrain how much accesses
can be reordered by compiler or hardware

• Contract between programmer and system

4/11/02 CS252 S02.21 32

Sequential Consistency

• Total order achieved by interleaving accesses from
different processes

– Maintains program order, and memory operations, from all
processes, appear to [issue, execute, complete] atomically w.r.t.
others

– as if there were no caches, and a single memory

• “A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order
specified by its program.” [Lamport, 1979]

Processors
issuing memory
references as
per program or der

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

CS258 S99 17

NOW Handout Page 17

4/11/02 CS252 S02.21 33

SC Example

• What matters is order in which operations appear to
execute, not the chronilogical order of events

• Possible outcomes for (A,B): (0,0), (1,0), (1,2)
• What about (0,2) ?

– program order => 1a->1b and 2a->2b
– A = 0 implies 2b->1a, which implies 2a->1b
– B = 2 implies 1b->2a, which leads to a contradiction

P1 P2

/*Assume initial values of A and B are 0*/
(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;
A=0

B=2

4/11/02 CS252 S02.21 34

Implementing SC

• Two kinds of requirements
– Program order

» memory operations issued by a process must appear to
execute (become visible to others and itself) in program
order

– Atomicity
» in the overall hypothetical total order, one memory

operation should appear to complete with respect to all
processes before the next one is issued

» guarantees that total order is consistent across
processes

– tricky part is making writes atomic

CS258 S99 18

NOW Handout Page 18

4/11/02 CS252 S02.21 35

An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses

4/11/02 CS252 S02.21 36

Write-Back State Machine - CPU

• State machine
for CPU requests
for each
cache block

• Non-resident
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

CS258 S99 19

NOW Handout Page 19

4/11/02 CS252 S02.21 37

Write-Back State Machine- Bus req
• State machine

for bus requests
for each
cache block Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

4/11/02 CS252 S02.21 38

Block-replacement

• State machine
for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

CS258 S99 20

NOW Handout Page 20

4/11/02 CS252 S02.21 39

Place read miss
on bus

Write-back State Machine-III
• State machine

for CPU requests
for each
cache block and
for bus requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

4/11/02 CS252 S02.21 40

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

CS258 S99 21

NOW Handout Page 21

4/11/02 CS252 S02.21 41

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

4/11/02 CS252 S02.21 42

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CS258 S99 22

NOW Handout Page 22

4/11/02 CS252 S02.21 43

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

4/11/02 CS252 S02.21 44

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

CS258 S99 23

NOW Handout Page 23

4/11/02 CS252 S02.21 45

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 != A2

4/11/02 CS252 S02.21 46

Snooping Cache Variations

Berkeley
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic
Protocol

Exclusive
Shared
Invalid

Illinois
Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

MESI
Protocol

Modfied (private,!=Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid

CS258 S99 24

NOW Handout Page 24

4/11/02 CS252 S02.21 47

Implementation Complications
• Write Races:

– Cannot update cache until bus is obtained
» Otherwise, another processor may get bus first,

and then write the same cache block!
– Two step process:

» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic:

can have multiple outstanding transactions for a block
» Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

4/11/02 CS252 S02.21 48

Implementing Snooping Caches

• Multiple processors must be on bus, access to both
addresses and data

• Add a few new commands to perform coherency,
in addition to read and write

• Processors continuously snoop on address bus
– If address matches tag, either invalidate or update

• Since every bus transaction checks cache tags,
could interfere with CPU just to check:

– solution 1: duplicate set of tags for L1 caches just to allow checks in
parallel with CPU

– solution 2: L2 cache already duplicate,
provided L2 obeys inclusion with L1 cache

» block size, associativity of L2 affects L1

CS258 S99 25

NOW Handout Page 25

4/11/02 CS252 S02.21 49

Implementing Snooping Caches

• Bus serializes writes, getting bus ensures no one else
can perform memory operation

• On a miss in a write back cache, may have the desired
copy and its dirty, so must reply

• Add extra state bit to cache to determine shared or not
• Add 4th state (MESI)

4/11/02 CS252 S02.21 50

Artifactual Communication
• Accesses not satisfied in local portion of

memory hierachy cause “communication”
– Inherent communication, implicit or explicit, causes transfers

» determined by program
– Artifactual communication

» determined by program implementation and arch.
interactions

» poor allocation of data across distributed memories
» unnecessary data in a transfer
» unnecessary transfers due to system granularities
» redundant communication of data
» finite replication capacity (in cache or main memory)

– Inherent communication is what occurs with unlimited
capacity, small transfers, and perfect knowledge of what is
needed.

CS258 S99 26

NOW Handout Page 26

4/11/02 CS252 S02.21 51

Fundamental Issues

• 3 Issues to characterize parallel machines
1) Naming
2) Synchronization
3) Performance: Latency and Bandwidth

(covered earlier)

4/11/02 CS252 S02.21 52

Fundamental Issue #1: Naming

• Naming:
– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by a
compiler; via load where just remember
address or keep track of processor number
and local virtual address for msg. passing

• Choice of naming affects replication of data;
via load in cache memory hierarchy or via SW
replication and consistency

CS258 S99 27

NOW Handout Page 27

4/11/02 CS252 S02.21 53

Fundamental Issue #1: Naming

• Global physical address space:
any processor can generate, address and
access it in a single operation

– memory can be anywhere:
virtual addr. translation handles it

• Global virtual address space: if the address
space of each process can be configured to
contain all shared data of the parallel program

• Segmented shared address space:
locations are named
<process number, address>
uniformly for all processes of the parallel
program

4/11/02 CS252 S02.21 54

Fundamental Issue #2:
Synchronization
• To cooperate, processes must coordinate
• Message passing is implicit coordination with

transmission or arrival of data
• Shared address

=> additional operations to explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt a
processor

CS258 S99 28

NOW Handout Page 28

4/11/02 CS252 S02.21 55

Summary: Parallel Framework

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data

sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

Programming Model
Communication Abstraction
Interconnection SW/OS
Interconnection HW

