Why Parallel

the greed for speed is a permanent malady **2 basic options:**

□ Build a faster uniprocessor

- advantages
 - programs don't need to change
 - · compilers may need to change to take advantage of intra-CPU parallelism
- disadvantages
 - improved CPU performance is very costly we already see diminishing returns
 - very large memories are slow

Parallel Processors

- · today implemented as an ensemble of microprocessors
- SAN style interconnect
- large variation in how memory is treated

Ų	University of Utah School of Computing	1	CS6810	University of Utah School of Computing	2	-
Ð	School of Computing					

Types of Parallelism

Note: many overlaps

- lookahead & pipelining
- vectorization
- concurrency & simultaneity
- data and control parallelism
- partitioning & specialization
- interleaving & overlapping of physical subsystems
- multiplicity & replication
- time & space sharing
- multitasking & multiprogramming
- multi-threading
- distributed computing for speed or availability

3

DOE's ASCI program for example Advantages

• leverage off the sweet spot technology

□ The high end requires this approach

• huge partially unexplored set of options

□ Disadvantages

• software - optimized balance and change are required

Parallel Processors

 $\ \bullet \ overheads$ - a whole new set of organizational disasters are now possible

University of Utah

School of Computing

Historical Perspective

Generation	Technology and Architecture	Software and Applications	Representative Systems
First (1945 - 1954)	Vacuum tubes and relay memories - simple PC and ACC	Machine language Single user Programmed I/O	ENIAC Princeton IAS IBM 701
Second (1955 - 1964)	Discrete transistor Core Memory Floating point arith. I/O Processors	Fortran & Cobol Subroutine libraries Batch processing OS	IBM 7090 CDC 1604 Univac LARC Burroughs B5500
Third (1965 - 1974)	SSI and MSI IC's microprogramming pipelining, cache, and loo- kahead	More HLL's Multiprogramming and Timesharing OS Protection and file system capability	IBM 360/370 CDC 6600 TI ASC PDP-88
Fourth (1975 - 1990)	LSI/VLSI processors, semi- conductor memory, vector supercomputers, multicomputers	Multiprocessor OS, parallel languages, multiuser applications	VAX 9000 Cray X-MP FPS T2000 IBM 3090
Fifth (1991 - present)	ULSI/VHSIC processors, memory, switches. High density packages and scalable architectures	MPP, grand challenge applications, distributed and heterogeneous process- ing, I?O becomes real	IBM SP SGI Origin Intel ASCI Red

4

What changes when you get more than 1? **Inter-PE Communication** everything is the easy answer! software perspective □ Implicit via memory 2 areas deserve special attention □ Communication distinction of local vs. remote implies some shared memory • 2 aspects always are of concern · sharing model and access model must be consistent · latency & bandwidth before - I/O meant disk/etc. = slow latency & OK bandwidth □ Explicitly via send and receive now - interprocessor communication = fast latency and high need to know destination and what to send bandwidth - becomes as important as the CPU blocking vs. non-blocking option □ **Resource** Allocation usually seen as message passing • smart Programmer - programmed • smart Compiler - static • smart OS - dynamic hybrid - some of all of the above is the likely balance point University of Utah University of Utah 5 CS6810 6 CS6810 School of Computing School of Computing **Inter-PE Communication Communication Performance** hardware perspective critical for MP performance □ Senders and Receivers □ 3 key factors memory to memory bandwidth CPU to CPU

- CPU activated/notified but transaction is memory to memory

7

• which memory - registers, caches, main memory

□ Efficiency requires

- consistent SW & HW models
- policies should not conflict

- · does the interconnect fabric support the needs of the whole collection
- · scalability issues
- latency
 - = sender overhead + time of flight + transmission time + receiver overhead
 - transmission time = interconnect overhead
- latency hiding capability of the processor nodes
 - · lots of idle processors is not a good idea

detailed study of interconnects last chapter topic since we need to understand I/O first

8

The Easy and Cheap Obvious Option

- □ Microprocessors are cheap
- □ Memory chips are cheap
- □ Hook them up somehow to get n PE's
- □ Multiply each PE's performance by n and get an impressive number
 - What's wrong with this picture?
 - most uP's have been architected to be the only one in the system
 - most memories only have one port
 - interconnect is not just somehow
 - anybody who computes system performance with a single multiply is a moron

11

CS6810

- □ Heterogeneous vs. Homogeneous PE's
 - oddball: some shared some non-shared memory partitions

CS6810

Ideal Performance - the Holy Grail

- □ Requires perfect match between HW & SW
- □ Tough given static HW and dynamic SW
 - hard means cast in concrete

University of Utah

School of Computing

- soft means the programmer can write anything
- □ Hence performance depends on:
 - The hardware: ISA, memory, cycle time, etc.
 - The software: OS, task-switch, compiler, application code
- □ Simple performance model (aka uniprocessor)

12

CPU-time (T) = Instruction-count (Ic) \times CPI \times Cycle-time(τ)

□ But CPI can vary by more than 10x

CPI Stretch Factors The Idle Factor Paradox □ Conventional Uniprocessor factors □ After the stretch factor - the performance equation becomes • TLB miss penalty, page fault penalty, cache miss penalty • pipeline stall penalty, OS fraction penalty $T = Ic \times CPI \times stretch \times \tau$ □ Additional Multiprocessor Factors shared memory □ For an ideally scalable n PE system T/n will be · non-local access penalty the CPU time required consistency maintenance penalty □ But idle time will create it's own penalty message passing · Send penalty even for non-blocking □ Hence • Receive or notification penalty - task switch penalty (probably 2x) $T = \frac{\sum_{i=1}^{n} \frac{Ic \times CPI \times stretch \times \tau}{(1 - \%idle)}}{T}$ Body copy penalty · Protection check penalty • Etc. - the OS fraction goes up typically □ What if %idle goes up faster than n? University of Utah University of Utah 13 CS6810 14 CS6810 School of Computing School of Computing **Shared Memory UMA** Modern NUMA View **Uniform Memory Access** □ All uP's set up for SMP □ Sequent Symmetry S-81 • SMP ::= symmetric multiprocessor · communication is usually the front side bus • symmetric ==> all PE's have same access to I/O, memory, • example executive (OS) capability etc. · Pentium III and 4 Xeon's set up to support 2 way SMP • asymmetric ==> capability at PE's differs · just tie the FSB wires P0 Pn as clock speeds have gone up for n-way SMP's · FSB capacitance has reduced the value of n \$ \$ \$ □ Chip based SMP's Interconnect (Bus, Crossbar, Multistage, ...) • IBM's Power 4 2 Power 3 cores on the same die set up to support 4 cores SM1 I/O0 SM0 I/Oi SMk ...

University of Utah

School of Computing

15

NORMA

No remote memory access = message passing

□ Many players:

- Schlumberger FAIM-1
- HPL Mayfly
- CalTech Cosmic Cube and Mosaic
- NCUBE
- Intel iPSC
- Parsys SuperNode1000
- Intel Paragon

□ Remember the simple and cheap option?

- with the exception of the interconnect
- this is the simple and cheap option

Ų	School of Computing	21	CS6810	School of Com	nputing 22	

Message Passing vs. Shared Memory

- shared memory advantages
- programming model is simple and familiar
- quick port of existing code then try to parallelize but at least something is running that you can profile
- low communication overhead for small items
- OS isn't in the way of a memory reference
- cacheing helps alleviate communication needs
- message passing advantages
- simple hardware ==> faster
- communication is explicit good and bad news for the programmer
- natural synchronization associated with messages
- duality
 - either model can be built on the other
- easier to map message passing onto shared memory than vice versa

23

• funny: message passing on the Origin 2K was faster than on the IBM SP2 (note this hopefully has changed)

Parallel Performance Challenge

□ Amdahl's law in action

- enhanced = parallel in this case
- example1 code centric
- 80% of your code is parallel
- ==> best you can do is get a speed up of 5 no matter how many processors you throw at the problem
- example 2 speedup centric
 - want 80x speedup on 100 processors
 - ==> $fraction_{parallel} = .9975$
- this will be hard
- □ Linear speed up is hard
- □ Superlinear speed up is easier
 - lots more memory may remove the need to page

24

CS6810

Message Passing MIMD Machines

Message

Passing

Interconnect

(binary n-cubes, meshes, torii,

and you name it)

М

Р

P M

P M

Ρ

Ρ

Ρ

Modern Remote Memory Access Times

critical limit for shared memory performance

Multiprocessor	Year Shipped	Туре	max PE count	Interconnect	Remote Memory Access (ns)
Sun Starfire Servers	1996	SMP	64	multiple buses	500
SGI Origin 3000	1999	NUMA	512	fat hypercube	500
Cray T3E	1996	NUMA	2048	2-way 3D torus	300
HP V series	1998	SMP	32	8x8 crossbar	1000
Compaq AlphaServer GS	1999	SMP	32	switched busses	400

University of Utah School of Computing

CS6810

Workload Effort Characteristics

25

Commercial Workload (4 processor AlphaServer 4100)

Benchmark	% time in user mode	% time in kernal mode	% time CPU idle
OLTP	71	18	11
DSS range for all 6 Queries	82-94	3-5	4-13
DSS average	87	3.7	9.3
AltaVista	>98	<1	<1

Multiprogrammed & OS (8 processors - simulated)

	User	Kernel	Synch Wait	CPU idle (I/O wait)
% instructions xeq'd	27	3	1	69
% xeq time	27	7	2	64

27

Parallel Workloads

□ Even more disparate

- application characterists
- performance varies with
 - uniprocessor and communication utilization
 - wide variance with architecture type

□ 3 workloads studied

- commercial
 - OLTP based on TPC-B
 - DSS based on TPC-D
- Web index search based on AltaVista and a 200GB database
- multiprogrammed & OS
 - 2 independent copies of compiling the Andrew file system
 - phases: compile (compute bound), install object files, remove files (I/O bound)

26

- Scientific/Technical
 - FFT, LU, Ocean, and Barnes

University of Utah School of Computing

CS6810

Scientific/Technical

□ FFT

- 1D version for a complex number FFT
 - 3 data structures in and out arrays plus a precomputed read-only roots matrix
- steps
 - transpose the data matrix
 - 1D FFT on each row of data
 - multiply roots matrix by the data matrix
 - transpose data matrix
 - 1D FFT on each row of data matrix
 - transpose data matrix
- communication
 - all to all communication in the three transpose phases
 - each processor transposes one block locally and sends one block to each other processor

The Other Kernel

Ocean

Ocean

equation kernel solver

□ Solves a differential equation

- via a finite difference method
- operates on a (n+2) x (n+2) matrix
 - +2 ==> border rows and columns which do not change while interior is being computed.
 - then borders are changed and communicated and then we go to the next step
- uses Gauss-Seidel update
 - computes a weighted average for each point based on 4 neighbors
 - · order may vary but let's start with row-major order
 - implies new values from above and left but old values from below and right neighbors
- step termination
 - if the sum of the difference for all points is less than some tolerance then done, otherwise make another sweep over the array

Y	University of Utah School of Computing	33	CS6810

Ocean Communication

side effect of blocked grid based solver perimeter vs. area

Decomposition □ Model the weighted nearest neighbor average • $A[i,j] = 0.2 \times (A[i,j] + A[i,j-1] + A[i-1,j] + A[i,j+1] + A[i+1,j]$ Evolve the sequential algorithm bogus once again - little parallelism Note the anti-diagonal option (orthogonal to resultant dependence vector) Control and Load Imbalance Issues?? **Red Black Decomposition Dependencies?** Parallelism? **Convergence properties?** University of Utah 34 CS6810 School of Computing **Blocking in Ocean** influences cache locality 0000000000 cKernel 2D inside 2D = 4D arrays mindless 2D version consider cache effects spatial and temporal locality • other effects · blocks can also be influenced by processor partition

- particularly useful if address space is shared as in a DSM machine
- boundary problems?

Doundary Issues	Ucean			
Inherent problem	 Sequential algorithm outer loop over a very large number of time steps time-step = 33 computations 			
assume row major order				
column lines will have poor spatial locality				
	each one using a small number of grid variables			
0000000	typical computation			
	 sum of scalar multiples from close by grid points nearest neighbor averaging sweep add multigrid technique 			
0000000				
	 levels of coarseness: +1 ==> ignore every other grid start of forest level and leak at the diff 			
0000000	 start at finest level and look at the diff if small but above tolerance then bump up +1 coarser 			
	• if large then -1 coarseness (in between then stay at this level)			
	accelerates convergence			
School of Computing	School of Computing 38 CS68			
Barnes-Hut	Octtree Hierarchy			
Barnes-Hut □ Simulates evolution of galaxies	Octtree Hierarchy 3D galaxy represented as a octree 			
Barnes-Hut Simulates evolution of galaxies • classic N-body problem	Octtree Hierarchy 3D galaxy represented as a octree • divide galaxy recursively into 8 equally sized children			
Barnes-Hut Simulates evolution of galaxies classic N-body problem Characteristics	Octtree Hierarchy 3D galaxy represented as a octree • divide galaxy recursively into 8 equally sized children • based on equal space volumes independent of membership			
Barnes-Hut Simulates evolution of galaxies classic N-body problem Characteristics no spatial regularity so computation becomes particle based	Octtree Hierarchy 3D galaxy represented as a octree • divide galaxy recursively into 8 equally sized children • based on equal space volumes independent of membership • if a subspace has more than x bodies then subdivide again • x typically will be something like 8			
Barnes-Hut Simulates evolution of galaxies classic N-body problem Characteristics no spatial regularity so computation becomes particle based every particle exerts influence on every other particle	Octtree Hierarchy 3D galaxy represented as a octree • divide galaxy recursively into 8 equally sized children • based on equal space volumes independent of membership • if a subspace has more than x bodies then subdivide again • x typically will be something like 8 • tree is traversed once per body			
Barnes-Hut Simulates evolution of galaxies • classic N-body problem Characteristics • no spatial regularity so computation becomes particle based • every particle exerts influence on every other particle • ugh - hence O(n ²)	Octtree Hierarchy Image: Straight of the stra			
 Barnes-Hut Simulates evolution of galaxies classic N-body problem Characteristics no spatial regularity so computation becomes particle based every particle exerts influence on every other particle ugh - hence O(n²) but clustering of distant star groups can be based on center of mass since 	Octtree Hierarchy Image: Strategy strategy in the strategy into a strategy inteqy into a strategy into a strategy into a stra			
Barnes-Hut Simulates evolution of galaxies • classic N-body problem Characteristics • no spatial regularity so computation becomes particle based • every particle exerts influence on every other particle • ugh - hence $O(n^2)$ • but clustering of distant star groups can be based on center of mass since $Gravitational Force = G \frac{M_1 M_2}{2}$	Octtree Hierarchy Image: Strategy strategy in the strategy into a strategy in the strategy in the strategy into a strategy in the strategy in			
Barnes-Hut Simulates evolution of galaxies • classic N-body problem • classic N-body problem • characteristics • no spatial regularity so computation becomes particle based • every particle exerts influence on every other particle • ugh - hence $O(n^2)$ • but clustering of distant star groups can be based on center of mass since $Gravitational Force = G \frac{M_1 M_2}{r^2}$	Octtree Hierarchy Image: Straight of			
Barnes-HutSimulates evolution of galaxies• classic N-body problem• classic N-body problem• Characteristics• no spatial regularity so computation becomes particle based• every particle exerts influence on every other particle• ugh - hence $O(n^2)$ • but clustering of distant star groups can be based on center of mass since $Gravitational Force = G \frac{M_1 M_2}{r^2}$ • result is $O(n \log n)$ • close stars must be represented individually	Octtree Hierarchy Image: Strategy strategy into a strategy in			
Barnes-HutSimulates evolution of galaxies• classic N-body problem• classic N-body problem• Characteristics• no spatial regularity so computation becomes particle based• every particle exerts influence on every other particle• ugh - hence $O(n^2)$ • but clustering of distant star groups can be based on center of mass since $Gravitational Force = G \frac{M_1 M_2}{r^2}$ • result is $O(n \log n)$ • close stars must be represented individually	Octtree Hierarchy Image: Straight of the stra			
Barnes-HutSimulates evolution of galaxies• classic N-body problem• classic N-body problem• Characteristics• no spatial regularity so computation becomes particle based• every particle exerts influence on every other particle• ugh - hence $O(n^2)$ • but clustering of distant star groups can be based on center of mass since $Gravitational Force = G \frac{M_1 M_2}{r^2}$ • result is $O(n \log n)$ • close stars must be represented individually	Octtree Hierarchy Image: Straight of the stra			

S/T Workload Scaling

Application	Computation Scaling per processor	Communication Scaling	Compute/ Communicate Scaling
FFT	(n log n)/p	n/p	log n
LU	n/p	$\frac{\sqrt{n}}{\sqrt{p}}$	$\frac{\sqrt{n}}{\sqrt{p}}$
Barnes	(n log n)/p	approximately $\frac{\sqrt{n}\log n}{\sqrt{p}}$	approximately $\frac{\sqrt{n}}{\sqrt{p}}$
Ocean	n/p	$\frac{\sqrt{n}}{\sqrt{p}}$	$\frac{\sqrt{n}}{\sqrt{p}}$
University of	f Utah	43	CS681

School of Computing