
University of Utah
School of Computing

CS68101

Why Parallel
the greed for speed is a permanent malady

2 basic options:

❏ Build a faster uniprocessor
• advantages

• programs don’t need to change
• compilers may need to change to take advantage of intra-CPU parallelism

• disadvantages
• improved CPU performance is very costly - we already see diminishing

returns
• very large memories are slow

❏ Parallel Processors
• today implemented as an ensemble of microprocessors

• SAN style interconnect
• large variation in how memory is treated

University of Utah
School of Computing

CS68102

Parallel Processors
❏ The high end requires this approach

• DOE’s ASCI program for example

❏ Advantages
• leverage off the sweet spot technology
• huge partially unexplored set of options

❏ Disadvantages
• software - optimized balance and change are required
• overheads - a whole new set of organizational disasters are

now possible

University of Utah
School of Computing

CS68103

Types of Parallelism
Note: many overlaps

• lookahead & pipelining
• vectorization
• concurrency & simultaneity
• data and control parallelism
• partitioning & specialization
• interleaving & overlapping of physical subsystems
• multiplicity & replication
• time & space sharing
• multitasking & multiprogramming
• multi-threading
• distributed computing - for speed or availability

University of Utah
School of Computing

CS68104

Historical Perspective
Table 1:

Generation Technology and
Architecture

Software and
Applications

Representative
Systems

First
(1945 - 1954)

Vacuum tubes and relay
memories - simple PC and
ACC

Machine language
Single user
Programmed I/O

ENIAC
Princeton IAS
IBM 701

Second
(1955 - 1964)

Discrete transistor
Core Memory
Floating point arith.
I/O Processors

Fortran & Cobol
Subroutine libraries
Batch processing OS

IBM 7090
CDC 1604
Univac LARC
Burroughs B5500

Third
(1965 - 1974)

SSI and MSI IC’s
microprogramming
pipelining, cache, and loo-
kahead

More HLL’s
Multiprogramming
and Timesharing OS
Protection and file
system capability

IBM 360/370
CDC 6600
TI ASC
PDP-88

Fourth
(1975 - 1990)

LSI/VLSI processors, semi-
conductor memory, vector
supercomputers,
multicomputers

Multiprocessor OS, parallel
languages, multiuser
applications

VAX 9000
Cray X-MP
FPS T2000
IBM 3090

Fifth
(1991 - present)

ULSI/VHSIC processors,
memory, switches. High
density packages and
scalable architectures

MPP, grand challenge
applications, distributed
and heterogeneous process-
ing, I?O becomes real

IBM SP
SGI Origin
Intel ASCI Red

University of Utah
School of Computing

CS68105

What changes when you get more than 1?
everything is the easy answer!

2 areas deserve special attention

❏ Communication
• 2 aspects always are of concern

• latency & bandwidth

• before - I/O meant disk/etc. = slow latency & OK bandwidth
• now - interprocessor communication = fast latency and high

bandwidth - becomes as important as the CPU

❏ Resource Allocation
• smart Programmer - programmed
• smart Compiler - static
• smart OS - dynamic
• hybrid - some of all of the above is the likely balance point

University of Utah
School of Computing

CS68106

Inter-PE Communication
software perspective

❏ Implicit via memory
• distinction of local vs. remote
• implies some shared memory
• sharing model and access model must be consistent

❏ Explicitly via send and receive
• need to know destination and what to send
• blocking vs. non-blocking option
• usually seen as message passing

University of Utah
School of Computing

CS68107

Inter-PE Communication
hardware perspective

❏ Senders and Receivers
• memory to memory
• CPU to CPU
• CPU activated/notified but transaction is memory to memory
• which memory - registers, caches, main memory

❏ Efficiency requires
• consistent SW & HW models
• policies should not conflict

University of Utah
School of Computing

CS68108

Communication Performance
critical for MP performance

❏ 3 key factors
• bandwidth

• does the interconnect fabric support the needs of the whole collection
• scalability issues

• latency
• = sender overhead + time of flight + transmission time + receiver overhead
• transmission time = interconnect overhead

• latency hiding capability of the processor nodes
• lots of idle processors is not a good idea

detailed study of interconnects
last chapter topic

since we need to understand I/O first

University of Utah
School of Computing

CS68109

Flynn’s Taxonomy - 1972
too simple but it’s the only one that moderately works

4 Categories = (Single, Multiple) X (Data Stream, Instruction
Stream)

❏ SISD - conventional uniprocessor system
• still lots of intra-CPU parallelism options

❏ SIMD - vector and array style computers
• started with ILLIAC
• first accepted multiple PE style systems
• now has fallen behind MIMD option

❏ MISD - ~ systolic or stream machines
• example: iWarp and MPEG encoder

❏ MIMD - intrinsic parallel computers
• lots of options - today’s winner - our focus

University of Utah
School of Computing

CS681010

MIMD options
❏ Heterogeneous vs. Homogeneous PE’s
❏ Communication Model

• explicit: message passing
• implicit: shared-memory
• oddball: some shared some non-shared memory partitions

❏ Interconnection Topology
• which PE gets to talk directly to which PE
• blocking vs. non-blocking
• packet vs. circuit switched
• wormhole vs. store and forward
• combining vs. not
• synchronous vs. asynchronous

University of Utah
School of Computing

CS681011

The Easy and Cheap Obvious Option
❏ Microprocessors are cheap
❏ Memory chips are cheap
❏ Hook them up somehow to get n PE’s
❏ Multiply each PE’s performance by n and get

an impressive number

What’s wrong with this picture?

• most uP’s have been architected to be the only one in the
system

• most memories only have one port
• interconnect is not just somehow
• anybody who computes system performance with a single

multiply is a moron
University of Utah

School of Computing
CS681012

Ideal Performance - the Holy Grail
❏ Requires perfect match between HW & SW
❏ Tough given static HW and dynamic SW

• hard means cast in concrete
• soft means the programmer can write anything

❏ Hence performance depends on:
• The hardware: ISA, memory, cycle time, etc.
• The software: OS, task-switch, compiler, application code

❏ Simple performance model (aka uniprocessor)

❏ But CPI can vary by more than 10x

CPU-time (T) Instruction-count (Ic) CPI× Cycle-time× τ()=

University of Utah
School of Computing

CS681013

CPI Stretch Factors
❏ Conventional Uniprocessor factors

• TLB miss penalty, page fault penalty, cache miss penalty
• pipeline stall penalty, OS fraction penalty

❏ Additional Multiprocessor Factors
• shared memory

• non-local access penalty
• consistency maintenance penalty

• message passing
• Send penalty even for non-blocking
• Receive or notification penalty - task switch penalty (probably 2x)
• Body copy penalty
• Protection check penalty
• Etc. - the OS fraction goes up typically

University of Utah
School of Computing

CS681014

The Idle Factor Paradox
❏ After the stretch factor - the performance

equation becomes

❏ For an ideally scalable n PE system T/n will be
the CPU time required

❏ But idle time will create it’s own penalty
❏ Hence

❏ What if %idle goes up faster than n?

T Ic CPI× stretch× τ×=

T

Ic CPI× stretch× τ×
1 %idle–()

i 1=

n

∑
n

--=

University of Utah
School of Computing

CS681015

Shared Memory UMA
Uniform Memory Access

❏ Sequent Symmetry S-81
• symmetric ==> all PE’s have same access to I/O, memory,

executive (OS) capability etc.
• asymmetric ==> capability at PE’s differs

P0 P1 Pn

I/O0 I/Oj SM0 SM1 SMk

Interconnect (Bus, Crossbar, Multistage, ...)

$ $ $

University of Utah
School of Computing

CS681016

Modern NUMA View
❏ All uP’s set up for SMP

• SMP ::= symmetric multiprocessor
• communication is usually the front side bus

• example
• Pentium III and 4 Xeon’s set up to support 2 way SMP
• just tie the FSB wires

• as clock speeds have gone up for n-way SMP’s
• FSB capacitance has reduced the value of n

❏ Chip based SMP’s
• IBM’s Power 4

• 2 Power 3 cores on the same die
• set up to support 4 cores

University of Utah
School of Computing

CS681017

NUMA Shared Memory opus 1 level
Non-Uniform Memory Access

❏ BBN Butterfly + others

P0LM0

P1

Pn

LM1

LMn

I
n
t
e
r
c
o
n
n
e
c
t

NOTES:
transfer initiated
by: LMx or Px

Answer to:
LMx or Px

All options have
been seen in
practice

the easy and cheap option - just add
interconnect

University of Utah
School of Computing

CS681018

NUMA Shared Memory opus 2 level
❏ e.g. Univ. of Ill. Cedar + CMU CM* & C.mmp

GSM

Global Interconnect

GSM GSM

P

P

P

CIN

CSM

CSM

CSM

P

P

P

CIN

CSM

CSM

CSM

Today - nodes
can be SMP’s or
CMP’s
e.g. SUN, Com-
paq, IBM

University of Utah
School of Computing

CS681019

COMA Shared Memory
Cache Only Memory Access

❏ e.g. KSR-1

Interconnect

D

C

P

D

C

P

D

C

P

Directory

Cache

Processor

University of Utah
School of Computing

CS681020

Lots of other DSM variants
❏ Cache consistency

• DEC Firefly - up to 16 snooping caches in a workstation

❏ Directory based consistency
• like the COMA model but deeper memory hierarchy
• e.g. Stanford DASH machine, MIT Alewife, Alliant FX-8

❏ Delayed consistency
• many models for the delayed updates
• a software protocol more than a hardware model

• e.g. MUNIN - John Carter (good old U of U)

• other models - Alan Karp and the IBM crew

University of Utah
School of Computing

CS681021

NORMA
No remote memory access = message passing

❏ Many players:
• Schlumberger FAIM-1
• HPL Mayfly
• CalTech Cosmic Cube and Mosaic
• NCUBE
• Intel iPSC
• Parsys SuperNode1000
• Intel Paragon

❏ Remember the simple and cheap option?
• with the exception of the interconnect
• this is the simple and cheap option

University of Utah
School of Computing

CS681022

Message Passing MIMD Machines

Message
Passing

Interconnect
(binary n-cubes, meshes, torii,

and you name it)

M

P

M P P M

M P

M

P

M

P

M

P

M

P

M

P

P M

University of Utah
School of Computing

CS681023

Message Passing vs. Shared Memory
• shared memory advantages

• programming model is simple and familiar
• quick port of existing code - then try to parallelize but at least something is

running that you can profile
• low communication overhead for small items
• OS isn’t in the way of a memory reference
• cacheing helps alleviate communication needs

• message passing advantages
• simple hardware ==> faster
• communication is explicit - good and bad news for the programmer
• natural synchronization - associated with messages

• duality
• either model can be built on the other
• easier to map message passing onto shared memory than vice versa
• funny: message passing on the Origin 2K was faster than on the IBM SP2

(note this hopefully has changed)

University of Utah
School of Computing

CS681024

Parallel Performance Challenge
❏ Amdahl’s law in action

• enhanced = parallel in this case
• example1 - code centric

• 80% of your code is parallel
• ==> best you can do is get a speed up of 5 no matter how many processors

you throw at the problem

• example 2 - speedup centric
• want 80x speedup on 100 processors
• ==> fractionparallel = .9975
• this will be hard

❏ Linear speed up is hard
❏ Superlinear speed up is easier

• lots more memory may remove the need to page

University of Utah
School of Computing

CS681025

Modern Remote Memory Access Times
critical limit for shared memory performance

Table 1:

Multiprocessor Year
Shipped Type max PE

count Interconnect

Remote
Memory
Access

(ns)

Sun Starfire Servers 1996 SMP 64 multiple buses 500

SGI Origin 3000 1999 NUMA 512 fat hypercube 500

Cray T3E 1996 NUMA 2048 2-way 3D torus 300

HP V series 1998 SMP 32 8x8 crossbar 1000

Compaq AlphaServer GS 1999 SMP 32 switched busses 400

University of Utah
School of Computing

CS681026

Parallel Workloads
❏ Even more disparate

• application characterists
• performance varies with

• uniprocessor and communication utilization
• wide variance with architecture type

❏ 3 workloads studied
• commercial

• OLTP based on TPC-B
• DSS based on TPC-D
• Web index search based on AltaVista and a 200GB database

• multiprogrammed & OS
• 2 independent copies of compiling the Andrew file system
• phases: compile (compute bound), install object files, remove files (I/O bound)

• Scientific/Technical
• FFT, LU, Ocean, and Barnes

University of Utah
School of Computing

CS681027

Workload Effort Characteristics
Commercial Workload (4 processor AlphaServer 4100)

Multiprogrammed & OS (8 processors - simulated)

Table 1:

Benchmark % time in
user mode

% time in
kernal mode

% time
CPU idle

OLTP 71 18 11

DSS range for all 6 Queries 82-94 3-5 4-13

DSS average 87 3.7 9.3

AltaVista >98 <1 <1

Table 2:

User Kernel Synch
Wait

CPU idle
(I/O wait)

% instructions xeq’d 27 3 1 69

% xeq time 27 7 2 64

University of Utah
School of Computing

CS681028

Scientific/Technical
❏ FFT

• 1D version for a complex number FFT
• 3 data structures - in and out arrays plus a precomputed read-only roots

matrix

• steps
• transpose the data matrix
• 1D FFT on each row of data
• multiply roots matrix by the data matrix
• transpose data matrix
• 1D FFT on each row of data matrix
• transpose data matrix

• communication
• all to all communication in the three transpose phases
• each processor transposes one block locally and sends one block to each other

processor

University of Utah
School of Computing

CS681029

The Other Kernel
❏ LU

• typical dense matrix factorization
• used in a variety of solvers and eigenvalue computations

• turn a matrix into a upper diagonal
• blocking helps code to be cache friendly

• block size
• small enough to keep cache miss rate low
• large enough to maximize the parallel phase

University of Utah
School of Computing

CS681030

Ocean
❏ Goal

• global weather modeling
• note that 75% of the earth’s surface is ocean

• ocean currents and atmosphere have a major weather impact
• near vertical walls there is a significant eddy effect

❏ Physical problem
• continuous in both 1D time and 3D space

❏ Discrete model for simulation
• model the ocean as a discrete set of points equally spaced

• point variables for pressure, current direction and speed, temperature, etc.

• simplify here to a set of 2D point planes
• admittedly less accurate and changes convergence aspects
• eases the use of this application and still points out key issues

University of Utah
School of Computing

CS681031

Ocean’s Ocean Model

Rectangular basin = 3D
simplify = 2d plane set
separate 2d array for each variable

equal spaced points
continuous ==> discrete

University of Utah
School of Computing

CS681032

Ocean
the benchmark

❏ Data
• 2D arrays for each variable
• all arrays model each cross section plane

❏ Time
• solving system of motion equations
• sweep through all of the points for some point in time
• continue to next time step

❏ Granularity
• big influence on computation time

• 2Mm x 2Mm = atlantic ocean
• 5 years of 1 minute time steps & 1 Km spacing = 2.628Msteps for 4 x 106 pts

is intractable
• must go to larger grain for now - however solution style is the key here

University of Utah
School of Computing

CS681033

Ocean
equation kernel solver

❏ Solves a differential equation
• via a finite difference method
• operates on a (n+2) x (n+2) matrix

• +2 ==> border rows and columns which do not change while interior is
being computed.

• then borders are changed and communicated and then we go to the next
step

• uses Gauss-Seidel update
• computes a weighted average for each point based on 4 neighbors
• order may vary but let’s start with row-major order
• implies new values from above and left but old values from below and right

neighbors

• step termination
• if the sum of the difference for all points is less than some tolerance then

done, otherwise make another sweep over the array

University of Utah
School of Computing

CS681034

Decomposition
❏ Model the weighted nearest neighbor average

• A[i,j] = 0.2 x (A[i,j] + A[i,j-1] + A[i-1,j] + A[i,j+1] + A[i+1,j]
Evolve the sequential algorithm

 bogus once again - little parallelism
Note the anti-diagonal option (orthogonal to
resultant dependence vector)

Control and Load Imbalance Issues??

Red Black Decomposition

Dependencies?
Parallelism?
Convergence properties?

University of Utah
School of Computing

CS681035

Ocean Communication
side effect of blocked grid based solver

perimeter vs. area

P0 P1 P2 P3

P4

P11

P12

P8

P7

P15

Local Work αn
2

p

Remote Communication α 4n

p

n/p

University of Utah
School of Computing

CS681036

Blocking in Ocean
influences cache locality

• consider cache effects
• spatial and temporal locality

• other effects
• blocks can also be influenced by processor partition
• particularly useful if address space is shared as in a DSM machine

• boundary problems?

Kernel 2D inside 2D = 4D arraysmindless 2D version

University of Utah
School of Computing

CS681037

Boundary Issues
❏ Inherent problem

• assume row major order
• column lines will have poor spatial locality

University of Utah
School of Computing

CS681038

Ocean
❏ Sequential algorithm

• outer loop over a very large number of time steps
• time-step = 33 computations

• each one using a small number of grid variables

• typical computation
• sum of scalar multiples from close by grid points
• nearest neighbor averaging sweep

• add multigrid technique
• levels of coarseness: +1 ==> ignore every other grid
• start at finest level and look at the diff
• if small but above tolerance then bump up +1 coarser
• if large then -1 coarseness (in between then stay at this level)
• accelerates convergence

University of Utah
School of Computing

CS681039

Barnes-Hut
❏ Simulates evolution of galaxies

• classic N-body problem

❏ Characteristics
• no spatial regularity so computation becomes particle based
• every particle exerts influence on every other particle

• ugh - hence O(n2)
• but clustering of distant star groups can be based on center of mass since

• result is O(n log n)
• close stars must be represented individually

Gravitational Force G
M1M2

r
2

------------------=

University of Utah
School of Computing

CS681040

Octtree Hierarchy
❏ 3D galaxy represented as a octree

• divide galaxy recursively into 8 equally sized children
• based on equal space volumes independent of membership
• if a subspace has more than x bodies then subdivide again
• x typically will be something like 8

• tree is traversed once per body
• determines force on that body

• bodies move so tree is rebuilt every time step

❏ Group optimization
• if the cell is far enough away

• l/d < x, l=length of a side of the cell, d distance of body from cell center of
mass, and x is the accuracy parameter (typically between .5 and 1.2)

• then treat the cell as a single body
• otherwise you have to open the cell and proceed

University of Utah
School of Computing

CS681041

Tree Example
2D = quadtree

2D Spatial Decomposition

QuadTree Equivalent

Each non-leaf has center of mass for
 the group

Each leaf has mass, velocity, etc.

University of Utah
School of Computing

CS681042

Barnes-Hut
❏ Sequential Algorithm

• 100’s of time steps
• each step computes the net force on every body

• updates body position and other attributes (velocity, acceleration, direction)

• flow

build tree

compute cell
moments

traverse tree
comp. forces

compute forces

update
properties

time steps

dominant
phase

University of Utah
School of Computing

CS681043

S/T Workload Scaling
Table 1:

Application
Computation

Scaling
per processor

Communication
Scaling

Compute/
Communicate

Scaling

FFT (n log n)/p n/p log n

LU n/p

Barnes (n log n)/p approximately approximately

Ocean n/p

n

p

n

p

n nlog

p

n

p

n

p

n

p
