
University of Utah
School of Computing

CS68101

Shared Memory Multiprocessors
step 1: SMP’s

❏ Symmetric multiprocessor characteristics
• global physical address space

• ~ symmetric access to all memory from any processor

• each processor has it’s own cache (1 or more levels)
• start with single level to simplify the initial discussion

• physically shared main memory
• hence easy to export shared memory programming model

• message passing model requires a thin software layer
• often faster than real message passing machines since OS isn’t involved

❏ Dominant parallel architecture today
• server class throughput engines
• PE count is modest = 2 to 128 processors

• 2 and 4-way SMP boards are relatively cheap

University of Utah
School of Computing

CS68102

Bus Based Shared Memory
center of commercial multiprocessor focus

❏ Low cost interconnect
• small-way: usually 2 to 4 processors
• market for these high end servers is increasing dramatically
• heavy influence/limitation imposed by the bus design
• note simple broadcast capability

memory
bus

CPU

Cache

CPU

Cache

CPU

Cache

I/O System Memory

consistency

University of Utah
School of Computing

CS68103

Private vs. Shared Data
SMP must support both

❏ Private
• normal cache policies and benefits

❏ Shared
• simplifies communication between the multiple processors

• simple reads and writes to memory
• obvious synchronization requirement however

• introduces consistency & coherence problems
• shared data may be replicated in the multiple caches
• in order to preserve uniprocessor (sequential consistency) semantics all

copies must be identical
• writes are clearly the source of potential confusion

• consider the drawbacks of conventional cache wisdom
• write-back, large block/line sizes, tag bit semantics - problems?
• write-buffers - problems?

University of Utah
School of Computing

CS68104

Consistency and Coherence
❏ Informal coherence model

• any read of a data item should return the value that was
most recently written

• appealing but way too simple in the SMP world

❏ Simple model contains 2 behavioral aspects
• coherence

• defines what value is returned by a read

• consistency
• defines when a written value will be returned by a read
• this is a problem since a write at processor 1 may have happened

but still not have left the processor by the time a read at processor 2
happens

• note that this when problem gets more difficult as the physical extent
of the multiprocessor system increases

• both critical to writing correct shared memory programs

University of Utah
School of Computing

CS68105

Coherence
A memory system is coherent if:

• given no other writes, a processor P will get its last written
value to X on a read of X

• simply preserves program order and is the normal expectation

• given no other writes, a read by P1 of X gets the value written
by P2 if the read and write are sufficiently separated

• we’ll defer the issue of what sufficient means and how it is controlled for now

• writes to the same location are serialized
• fundamental need to avoid the concurrent writer problem

❏ Implication
• reordering reads is OK

• similar to uniprocessor world

• writes must finish in program order (write serialization)
• definitely not the same as in the uniprocessor world
• this restriction will be relaxed later

University of Utah
School of Computing

CS68106

Enforcing Coherence
2 common styles

❏ Directory Based
• keep sharing and block status in a directory

• directory may be centralized or distributed

• appropriate for DSM

❏ Snooping
• appropriate for SMP’s (our focus for today)
• take advantage of the common connection to the bus
• caches monitor transactions on the bus

• see writes to shared data
• modify contents of their copy if they have one
• what options are there for modifications??

• what are the costs of this approach?

University of Utah
School of Computing

CS68107

Protocols
2 common choices

❏ Write-invalidate
• writer needs to get exclusive copy
• write forces other copies to be invalidated
• subsequent reads get new copy from the writer

• what state change is required for the writer’s copy

• if 2 writers - then one wins the race
• removing races requires some form of synchronization
• in single bus case we get it by default - e.g. via bus arbitration

❏ Write-update
• broadcast writes on bus - snoopers update blocks if they

have a copy
• knowing which lines are shared helps minimize bus contention

• how do we deal with the multiple writer race?

University of Utah
School of Computing

CS68108

Performance Issues
3 characteristic differences

❏ Multiple writes to the same word
• less bus traffic in invalidate

• first write causes a transaction with invalidate
• every write causes a transaction with update

❏ Multiple word cache blocks
• same issue but applied at block granularity

• invalidate = 1 bus transaction per line per new writer
• update = 1 bus transaction for every write

❏ Reading a remotely written value
• update wins here since it has a local copy

Result
• bus bandwidth issues are critical - hence most common winner is invalidate
• OK for small way SMP - (still true when CPU’s get faster?)
• does every line need to use the same protocol?

University of Utah
School of Computing

CS68109

Cache Implementation
❏ Single cache

• each line has a state: invalid, valid, dirty, etc. (status tags)
• processor generates read and write transactions
• controller

• reacts to processor transactions
• matches address tags to determine hit or miss
• on a hit: modifies the state of the line as needed (finite state machine model)
• generates bus transactions to main memory: read or write

❏ Snooping coherent cache
• similar game but with multiple distributed controllers
• plus a new source of transactions

• controllers must watch the bus as well as the processor
• any potential problems w/ this dual master situation?

University of Utah
School of Computing

CS681010

Simple Example
write-through no-allocate write-invalidate coherence

❏ Basics
• Processor read and write ::= PrRd & PrWr transactions
• Bus read and write: BusRd & BusWr
• Line state I or V

• write-through implies all writes are seen by the memory & other processors
• hence no dirty state is necessary

V

I

PrRd/--
PrWr/BusWr

PrWr/BusWr

BusWr/--PrRd/BusRd

Simple but lame

all write traffic shows up
on bus

hence scalability problem

processor side transactions
bus side transactions

directly update main memory

University of Utah
School of Computing

CS681011

Consistency
❏ Sequential consistency

• Lamport’s 1979 definition
• SC if the result of any execution is the same as if the operations were

executed in some sequential order ...
• really is saying that the multiple total orders of all threads/programs can

be arbitrarily interleaved
• one interleaved order must be the one observed

❏ Sufficient conditions
• every process issues memory requests in program order
• after a write the issuing process waits until the write is

complete before proceeding
• after a read, the issuing process waits for the read to complete

• implies that previous write to this location must also complete to all
processors

• this write atomicity can be quite demanding in modern processors where
out of order and speculative everything is the norm

University of Utah
School of Computing

CS681012

Snooping Protocol Design Space
❏ The Beauty

• single bus owner and snooping broadcast used to enforce write
atomicity

• only a small amout of additional effort is required to permit
multiprocessor cache coherent operation

❏ and The Beast
• bus design is now critical

• must support some additional transactions

• cache controller has dual masters
• contention possibility may require I’m not ready signals
• e.g. bus and CPU try for the same line - tag and line contention

• new cache states will be necessary - for example
• exclusive: owner (OK to write) but currently clean
• dirty: owner (OK to write) but must respond to reads by other processors
• many actual options

University of Utah
School of Computing

CS681013

MSI Protocol
write-invalidate write-back

❏ Line states: Invalid, Shared, Modified
❏ Processor transactions: PrRd, PrWr
❏ Bus transactions

• BusRd - asks for a copy of the line with no intent to modify
• generated as a result of a PrRd miss
• line may be supplied by another cache or by the main memory

• BusRdX - asks for an exclusive copy of the line
• generated as a result of a PrWr miss
• or from a PrWr hit on a line that is not in the M state
• note new bus transaction that is imposed by the need for cache coherence

• BusWB - writeback or flush
• imposed by the write-back cache policy
• a minor extension to the BusWr idea but for lines rather than smaller data

chunk size

University of Utah
School of Computing

CS681014

MSI State Diagram

M

S

I

BusRdX/BusWB

PrWr/--PrRd/--

BusRd/
BusWB

BusRdX
--/

PrRd/--
BusRd/--

PrWr
/BusRdX

PrRd
/BusRd

PrWr
/BusRdX

Note:

1: Bus WB supplies data to
cache as well as to memory
2. writing to shared block is a
problem
BusRdX can be used in 2
situations
Normal
BusUpgr - bus upgrade is one
common optimization - in this
case no bus occupancy and
bandwidth is lost since a
data return is not needed for
this transaction

University of Utah
School of Computing

CS681015

MSI Analysis
❏ SC

• write completion is detected when BusRdX is seen on the bus
• and the data return is interned in the cache and the pending write is issued

• bus ownership guarantees atomicity
• but note the possible delayed data return to an immediate next BusRdX

❏ Options
• BusRd from M goes to S

• could also have gone to I (choice for the Synapse machine) = migratory

• tradeoff
• if new processor is likely to write soon then going to I is better
• if old processor is likely to read again soon then going to M is better

• hybrid is possible based on a protocol bit
• Sequent Symmetry Model B & MIT Alewife made this choice

• protocol flexibility adds both performance and cost
• the real question is how much of each??

University of Utah
School of Computing

CS681016

MESI Protocol
❏ Deals with PrRd followed by PrWr problem

• which generates 2 bus transactions in the MSI protocol
• even when no sharers exist

• adds E (exclusive state)
• intermediate binding between the S and M states
• means exclusive clean - e.g. memory is consistent
• M - now means exclusive dirty - e.g. memory is inconsistent
• S now means 2 or more sharers and memory is consistent
• I is the same

❏ S semantics has an additional implication
• a shared signal must be added to the bus

• single wire is sufficient, implemented via a wired OR
• BusRd(S) - indicates the shared signal is asserted on a Bus read
• Bus Rd(S’) - indicates the shared signal is not asserted on a Bus read
• Bus Rd - means we don’t care about the shared signal

University of Utah
School of Computing

CS681017

MESI State Diagram

M

E

S

I

PrRd/--
PrWr/--

BusRdX/BusWB

BusRdX
/BusWB

BusRdX
/BusWB

BusRd
/BusWB

BusRd
/BusWB

PrRd/--

PrWr/--

PrRd/--

BusRd/Flush (multiple suppliers
so need to nominate one - ideas?)

PrRd/

BusRd(S)

BusRd(S’)

PrRd/

PrWr/BusRdX

PrWr/
BusRdX

University of Utah
School of Computing

CS681018

MESI Analysis
❏ Flush issues

• clearly don’t want to deal with redundant suppliers when
a new sharer comes on line

• one simple model
• all Exclusive requests are seen by all
• hence snooping arrangement means the last exclusive owner knows

who they are
• hence might as well use that

❏ cache to cache transfer or mem to cache
• cache can supply requested line faster

• hence used in machines such as DASH
• but at the risk of cache interference on the supplier side

big problem at today’s speeds - may complicate bus design

• memory is slower
• but no interference and the flush issue disappears since memory is

consistent

University of Utah
School of Computing

CS681019

Dragon Protocol
write-back write-update

• History
• first done in the Xerox PARC Dragon
• then subsequently modified somewhat for Sun’s SparcServer

machines

• States
• E - exclusive clean - only one cache has this copy - memory OK
• SC - shared clean - two or more processors have a copy - this one is clean but

one of the others may not be hence memory OK isn’t known
• SM - shared modified - 2 or more copies this one must be used

to update main memory
• M - modified - exclusive dirty
• no I state: although it is implicitly there via an initialization hack and not

necessary subsequently since the update protocol doesn’t invalidate

• New bus transactions
• BusUpd - update bus with the same shared S and S’ distinction

University of Utah
School of Computing

CS681020

Dragon Protocol

E SC

MSM

PrRd/--
BusUpd/Update

PrRd/--

PrRdMiss/
BusRd(S’)

PrWrMiss/
BusRd(S);
BusUpd

PrWrMiss/BusRd(S’)

PrRd/--
PrWr/--PrWr/BusUpd(S’)

BusRd/BusWB

PrWr/
BusUpd(S’)

PrWr/

BusUpd(S)

BusUpd/Update

PrWr/--

BusRd/--
PrRdMiss/
BusRd(S)

PrRd/--
PrWr/BusUpd(S)
BusRd/BusWB

University of Utah
School of Computing

CS681021

Dragon Analysis
❏ Cache Replacement

• also ignored in the other protocols
• what needs to be changed

• should others be notified via a bus transaction or not?
• think about what’s in the critical path
• since we care about overall performance not just a particular transaction

❏ General discussion
• what happens as we go to multilevel caches?
• what happens as we go to split transaction bus designs?

• today’s norm and imposed by 800MHz + bus clock speeds

• what happens as the compiler reorders instructions?
• what happens as the machine reorders and speculatively

executes instructions?

University of Utah
School of Computing

CS681022

2 Ported Cache Controller
look at CPU and the bus = problems

❏ Problem source = tag interference
• either transaction requires checking the same tags
• consider the meaning w.r.t. cache organization options

• fully associative, direct mapped, and the hybrid set-associative ??

❏ 2 options - both can create stalls
• duplicating tags or ports (which organization applies to each?)

• when can the snoop completion be delayed

• multilevel cache with inclusion
• higher levels are subsets of lower levels
• lower levels filter interference from L1
• still when L1 copy exists the same snoop delay can occur = stall CPU
• of course L2 cache tags could also be duplicated to further reduce contention

but this starts to get expensive

University of Utah
School of Computing

CS681023

Note: 2 key issues
❏ Local cache state

• is now extended to include MESI, MSI, etc. + V, D, I status tags
• hence policy for shared vs. non-shared data may vary
• e.g. write to a shared line effectively writes through
• write to a private line may follow a write-back policy
• unit of accounting is the cache line

❏ New miss source = coherence miss
• 2 critical subtypes since hit/miss is to a line

• true shared miss ==> miss caused by read and writes to same target
• false sharing ==> sharing of line but not the actual datum

University of Utah
School of Computing

CS681024

Classifying Misses
in a particular reference stream

❏ Idea
• define the lifetime for a block in the cache
• do per word accounting

• this line invalidated due to word FOO reference in another processor

• then distinguish between the various miss types

University of Utah
School of Computing

CS681025

Miss Classification
miss classification

miss reason
1st reference

1st access
system wide?

yes

no

written before

modified words
accessed during
lifetime

yes

no

no yes

false-share
cold

true-share
cold

cold

cold

other

why last copy
eliminated?

replacement

invalidation

old invalid
copy there

no yes

mod’d words
accessed during
lifetime?

no yes

false-share
capacity

true-share
capacity

mod’d words
accessed during
lifetime?

no yes

false-share
conflict

true-share
conflict

modified since
replacement

no yes

mod’d word
accessed during
lifetime?

no

yes

pure
capacity

true-share
capacity

no

yes

mod’d wrds
accessed in
life?

false-share
capacity

true-share
capacity

University of Utah
School of Computing

CS681026

Commercial Workload Execution Time Profile

note: legend is
inverted for this
and subsequent
figures

University of Utah
School of Computing

CS681027

Commercial: Varying External L3 Size
modeled as 2 way set-associative

University of Utah
School of Computing

CS681028

Commercial: Memory Cycle Components
vs. L3 size

Instruction and capacity/conflict
references dominate for small L3
and become insignificant with
larger L3

major cause is that instruction
footprint has poor spatial locality

University of Utah
School of Computing

CS681029

Commercial: Sharing Cost
tends to go up with processor count

University of Utah
School of Computing

CS681030

Commercial: L3 Block Size
false sharing increases & instruction misses decrease

University of Utah
School of Computing

CS681031

Multiprogrammed Workload Performance
❏ Model

• 2 independent makes on 8 processors

❏ 2 components
• kernel vs. user code
• interference increases cold, capacity, and conflict miss rates

University of Utah
School of Computing

CS681032

Kernel & User Code Miss Rate vs. Size

8 CPU’s

user = 3x

kernel = 1.3x

University of Utah
School of Computing

CS681033

Miss Rates vs. Block Size

University of Utah
School of Computing

CS681034

Larger Block Size vs. Memory Traffic/Referenc

University of Utah
School of Computing

CS681035

Scientific Workload
problem sizes

❏ Barnes-Hut
• 16K bodies for 6 time steps

❏ FFT
• 1M complex points

❏ LU
• 512 x 512 matrix
• block size = 16 x 16

❏ Ocean
• 130 x 130 grid

University of Utah
School of Computing

CS681036

Miss Rate vs. PE’s
For 64 KB cache 2 way SA
and 32 byte blocks

individual coherence
patterns

small cache ==> capacity
misses dominate for the
problem sizes here

University of Utah
School of Computing

CS681037

Miss Rate vs. Cache Size

note scale difference

capacity miss rate
improvement is consistent with
what you’d expect but steady
coherence miss rate (except
Barnes) remains a performance
anchor

University of Utah
School of Computing

CS681038

Miss Rate and Block Size

note false sharing effect on
Barnes

University of Utah
School of Computing

CS681039

Bus Traffic vs. Block Size

University of Utah
School of Computing

CS681040

Snooping Caches
❏ Relatively simple step for the hardware

• global atomicity point
• sadly shared bus is a scalability problem at high clock rates

❏ Performance
• similar to what you’d expect from uniprocessor cache

experience
• a few new wrinkles

• coherence: true and false sharing

• with lots of processors the shared bus ==> conflict point
• PE idle time goes up

• the shared memory costs are minimized here
• primarily due to simplicity and symmetry
• they will go up as we move to a distributed model

