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Shared Memory Multiprocessors
step 1: SMP’s

❏ Symmetric multiprocessor characteristics
•  global physical address space

•  ~ symmetric access to all memory from any processor

•  each processor has it’s own cache (1 or more levels)
•  start with single level to simplify the initial discussion

•  physically shared main memory
•  hence easy to export shared memory programming model

•  message passing model requires a thin software layer
•  often faster than real message passing machines since OS isn’t involved

❏ Dominant parallel architecture today
•  server class throughput engines
•  PE count is modest = 2 to 128 processors

•  2 and 4-way SMP boards are relatively cheap
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Bus Based Shared Memory
center of commercial multiprocessor focus

❏ Low cost interconnect
•  small-way: usually 2 to 4 processors
•  market for these high end servers is increasing dramatically
•  heavy influence/limitation imposed by the bus design
•  note simple broadcast capability
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Private vs. Shared Data
SMP must support both

❏ Private
•  normal cache policies and benefits

❏ Shared
•  simplifies communication between the multiple processors

•  simple reads and writes to memory
•  obvious synchronization requirement however

•  introduces consistency & coherence problems
•  shared data may be replicated in the multiple caches
•  in order to preserve uniprocessor (sequential consistency) semantics all

copies must be identical
•  writes are clearly the source of potential confusion

•  consider the drawbacks of conventional cache wisdom
•  write-back, large block/line sizes, tag bit semantics - problems?
•  write-buffers - problems?
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Consistency and Coherence
❏ Informal coherence model

•  any read of a data item should return the value that was
most recently written

•  appealing but way too simple in the SMP world

❏ Simple model contains 2 behavioral aspects
•  coherence

•  defines what value is returned by a read

•  consistency
•  defines when a written value will be returned by a read
•  this is a problem since a write at processor 1 may have happened

but still not have left the processor by the time a read at processor 2
happens

•  note that this when problem gets more difficult as the physical extent
of the multiprocessor system increases

•  both critical to writing correct shared memory programs
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Coherence
A memory system is coherent if:

•  given no other writes, a processor P will get its last written
value to X on a read of X

•  simply preserves program order and is the normal expectation

•  given no other writes, a read by P1 of X gets the value written
by P2 if the read and write are sufficiently separated

• we’ll defer the issue of what sufficient means and how it is controlled for now

•  writes to the same location are serialized
•  fundamental need to avoid the concurrent writer problem

❏ Implication
•  reordering reads is OK

•  similar to uniprocessor world

•  writes must finish in program order (write serialization)
•  definitely not the same as in the uniprocessor world
•  this restriction will be relaxed later
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Enforcing Coherence
2 common styles

❏ Directory Based
•  keep sharing and block status in a directory

•  directory may be centralized or distributed

•  appropriate for DSM

❏ Snooping
•  appropriate for SMP’s (our focus for today)
•  take advantage of the common connection to the bus
•  caches monitor transactions on the bus

•  see writes to shared data
•  modify contents of their copy if they have one
•  what options are there for modifications??

•  what are the costs of this approach?
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Protocols
2 common choices

❏ Write-invalidate
•  writer needs to get exclusive copy
•  write forces other copies to be invalidated
•  subsequent reads get new copy from the writer

•  what state change is required for the writer’s copy

•  if 2 writers - then one wins the race
•  removing races requires some form of synchronization
•  in single bus case we get it by default - e.g. via bus arbitration

❏ Write-update
•  broadcast writes on bus - snoopers update blocks if they

have a copy
•  knowing which lines are shared helps minimize bus contention

•  how do we deal with the multiple writer race?
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Performance Issues
3 characteristic differences

❏ Multiple writes to the same word
•  less bus traffic in invalidate

•  first write causes a transaction with invalidate
•  every write causes a transaction with update

❏ Multiple word cache blocks
•  same issue but applied at block granularity

•  invalidate = 1 bus transaction per line per new writer
•  update = 1 bus transaction for every write

❏ Reading a remotely written value
•  update wins here since it has a local copy

Result
•  bus bandwidth issues are critical - hence most common winner is invalidate
•  OK for small way SMP - (still true when CPU’s get faster?)
•  does every line need to use the same protocol?
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Cache Implementation
❏ Single cache

•  each line has a state: invalid, valid, dirty, etc. (status tags)
•  processor generates read and write transactions
•  controller

•  reacts to processor transactions
•  matches address tags to determine hit or miss
•  on a hit: modifies the state of the line as needed (finite state machine model)
•  generates bus transactions to main memory: read or write

❏ Snooping coherent cache
•  similar game but with multiple distributed controllers
•  plus a new source of transactions

•  controllers must watch the bus as well as the processor
•  any potential problems w/ this dual master situation?
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Simple Example
write-through no-allocate write-invalidate coherence

❏ Basics
•  Processor read and write ::= PrRd & PrWr transactions
•  Bus read and write: BusRd & BusWr
•  Line state I or V

•  write-through implies all writes are seen by the memory & other processors
•  hence no dirty state is necessary

V

I

PrRd/--
PrWr/BusWr

PrWr/BusWr

BusWr/--PrRd/BusRd

Simple but lame

all write traffic shows up
on bus

hence scalability problem

processor side transactions
bus side transactions

directly update main memory
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Consistency
❏ Sequential consistency

•  Lamport’s 1979 definition
•  SC if the result of any execution is the same as if the operations were

executed in some sequential order ...
•  really is saying that the multiple total orders of all threads/programs can

be arbitrarily interleaved
•  one interleaved order must be the one observed

❏ Sufficient conditions
•  every process issues memory requests in program order
•  after a write the issuing process waits until the write is

complete before proceeding
•  after a read, the issuing process waits for the read to complete

•  implies that previous write to this location must also complete to all
processors

•  this write atomicity can be quite demanding in modern processors where
out of order and speculative everything is the norm
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Snooping Protocol Design Space
❏ The Beauty

• single bus owner and snooping broadcast used to enforce write
atomicity

•  only a small amout of additional effort is required to permit
multiprocessor cache coherent operation

❏ and The Beast
•  bus design is now critical

•  must support some additional transactions

•  cache controller has dual masters
•  contention possibility may require I’m not ready signals
•  e.g. bus and CPU try for the same line - tag and line contention

•  new cache states will be necessary - for example
•  exclusive: owner (OK to write) but currently clean
•  dirty: owner (OK to write) but must respond to reads by other processors
•  many actual options
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MSI Protocol
write-invalidate write-back

❏ Line states: Invalid, Shared, Modified
❏ Processor transactions: PrRd, PrWr
❏ Bus transactions

•  BusRd - asks for a copy of the line with no intent to modify
•  generated as a result of a PrRd miss
•  line may be supplied by another cache or by the main memory

•  BusRdX - asks for an exclusive copy of the line
•  generated as a result of a PrWr miss
•  or from a PrWr hit on a line that is not in the M state
•  note new bus transaction that is imposed by the need for cache coherence

•  BusWB - writeback or flush
•  imposed by the write-back cache policy
•  a minor extension to the BusWr idea but for lines rather than smaller data

chunk size
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MSI State Diagram

M

S

I

BusRdX/BusWB

PrWr/--PrRd/--

BusRd/
BusWB

BusRdX
--/

PrRd/--
BusRd/--

PrWr
/BusRdX

PrRd
/BusRd

PrWr
/BusRdX

Note:

1: Bus WB supplies data to
cache as well as to memory
2. writing to shared block is a
problem
BusRdX can be used in 2
situations
Normal
BusUpgr - bus upgrade is one
common optimization - in this
case no bus occupancy and
bandwidth is lost since a
data return is not needed for
this transaction

University of Utah
School of Computing

CS681015

MSI Analysis
❏ SC

•  write completion is detected when BusRdX is seen on the bus
•  and the data return is interned in the cache and the pending write is issued

•  bus ownership guarantees atomicity
•  but note the possible delayed data return to an immediate next BusRdX

❏ Options
•  BusRd from M goes to S

•  could also have gone to I (choice for the Synapse machine) = migratory

•  tradeoff
•  if new processor is likely to write soon then going to I is better
•  if old processor is likely to read again soon then going to M is better

•  hybrid is possible based on a protocol bit
•  Sequent Symmetry Model B & MIT Alewife made this choice

•  protocol flexibility adds both performance and cost
•  the real question is how much of each??
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MESI Protocol
❏ Deals with PrRd followed by PrWr problem

•  which generates 2 bus transactions in the MSI protocol
•  even when no sharers exist

•  adds E (exclusive state)
•  intermediate binding between the S and M states
•  means exclusive clean - e.g. memory is consistent
•  M - now means exclusive dirty - e.g. memory is inconsistent
•  S now means 2 or more sharers and memory is consistent
•  I is the same

❏ S semantics has an additional implication
•  a shared signal must be added to the bus

•  single wire is sufficient, implemented via a wired OR
•  BusRd(S) - indicates the shared signal is asserted on a Bus read
•  Bus Rd(S’) - indicates the shared signal is not asserted on a Bus read
•  Bus Rd - means we don’t care about the shared signal
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MESI State Diagram

M

E

S

I

PrRd/--
PrWr/--

BusRdX/BusWB

BusRdX
/BusWB

BusRdX
/BusWB

BusRd
/BusWB

BusRd
/BusWB

PrRd/--

PrWr/--

PrRd/--

BusRd/Flush (multiple suppliers
so need to nominate one - ideas?)

PrRd/

BusRd(S)

BusRd(S’)

PrRd/

PrWr/BusRdX

PrWr/
BusRdX
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MESI Analysis
❏ Flush issues

•  clearly don’t want to deal with redundant suppliers when
a new sharer comes on line

•  one simple model
•  all Exclusive requests are seen by all
•  hence snooping arrangement means the last exclusive owner knows

who they are
•  hence might as well use that

❏ cache to cache transfer or mem to cache
•  cache can supply requested line faster

•  hence used in machines such as DASH
•  but at the risk of cache interference on the supplier side

big problem at today’s speeds - may complicate bus design

•  memory is slower
•  but no interference and the flush issue disappears since memory is

consistent
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Dragon Protocol
write-back write-update

•  History
•  first done in the Xerox PARC Dragon
•  then subsequently modified somewhat for Sun’s SparcServer

machines

•  States
•  E - exclusive clean - only one cache has this copy - memory OK
• SC - shared clean - two or more processors have a copy - this one is clean but

one of the others may not be hence memory OK isn’t known
•  SM - shared modified - 2 or more copies this one must be used

to update main memory
•  M - modified - exclusive dirty
•  no I state: although it is implicitly there via an initialization hack and not

necessary subsequently since the update protocol doesn’t invalidate

•  New bus transactions
•  BusUpd - update bus with the same shared S and S’ distinction
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Dragon Protocol

E SC

MSM

PrRd/--
BusUpd/Update

PrRd/--

PrRdMiss/
BusRd(S’)

PrWrMiss/
BusRd(S);
BusUpd

PrWrMiss/BusRd(S’)

PrRd/--
PrWr/--PrWr/BusUpd(S’)

BusRd/BusWB

PrWr/
BusUpd(S’)

PrWr/

BusUpd(S)

BusUpd/Update

PrWr/--

BusRd/--
PrRdMiss/
BusRd(S)

PrRd/--
PrWr/BusUpd(S)
BusRd/BusWB
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Dragon Analysis
❏ Cache Replacement

•  also ignored in the other protocols
•  what needs to be changed

•  should others be notified via a bus transaction or not?
•  think about what’s in the critical path
•  since we care about overall performance not just a particular transaction

❏ General discussion
•  what happens as we go to multilevel caches?
•  what happens as we go to split transaction bus designs?

•  today’s norm and imposed by 800MHz + bus clock speeds

•  what happens as the compiler reorders instructions?
•  what happens as the machine reorders and speculatively

executes instructions?
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2 Ported Cache Controller
look at CPU and the bus = problems

❏ Problem source = tag interference
•  either transaction requires checking the same tags
•  consider the meaning w.r.t. cache organization options

•  fully associative, direct mapped, and the hybrid set-associative ??

❏ 2 options - both can create stalls
•  duplicating tags or ports (which organization applies to each?)

•  when can the snoop completion be delayed

•  multilevel cache with inclusion
•  higher levels are subsets of lower levels
•  lower levels filter interference from L1
•  still when L1 copy exists the same snoop delay can occur = stall CPU
•  of course L2 cache tags could also be duplicated to further reduce contention

but this starts to get expensive
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Note: 2 key issues
❏ Local cache state

• is now extended to include MESI, MSI, etc. + V, D, I status tags
•  hence policy for shared vs. non-shared data may vary
•  e.g. write to a shared line effectively writes through
•  write to a private line may follow a write-back policy
•  unit of accounting is the cache line

❏ New miss source = coherence miss
•  2 critical subtypes since hit/miss is to a line

•  true shared miss ==> miss caused by read and writes to same target
•  false sharing ==> sharing of line but not the actual datum
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Classifying Misses
in a particular reference stream

❏ Idea
•  define the lifetime for a block in the cache
•  do per word accounting

•  this line invalidated due to word FOO reference in another processor

•  then distinguish between the various miss types
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Miss Classification
miss classification

miss reason
1st reference

1st access
system wide?

yes

no

written before

modified words
accessed during
lifetime

yes

no

no yes

false-share
cold

true-share
cold

cold

cold

other

why last copy
eliminated?

replacement

invalidation

old invalid
copy there

no yes

mod’d words
accessed during
lifetime?

no yes

false-share
capacity

true-share
capacity

mod’d words
accessed during
lifetime?

no yes

false-share
conflict

true-share
conflict

modified since
replacement

no yes

mod’d word
accessed during
lifetime?

no

yes

pure
capacity

true-share
capacity

no

yes

mod’d wrds
accessed in
life?

false-share
capacity

true-share
capacity
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Commercial Workload Execution Time Profile

note: legend is
inverted for this
and subsequent
figures
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Commercial: Varying External L3 Size
modeled as 2 way set-associative
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Commercial: Memory Cycle Components
vs. L3 size

Instruction and capacity/conflict
references dominate for small L3
and become insignificant with
larger L3

major cause is that instruction
footprint has poor spatial locality
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Commercial: Sharing Cost
tends to go up with processor count
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Commercial: L3 Block Size
false sharing increases & instruction misses decrease
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Multiprogrammed Workload Performance
❏ Model

•  2 independent makes on 8 processors

❏ 2 components
•  kernel vs. user code
•  interference increases cold, capacity, and conflict miss rates
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Kernel & User Code Miss Rate vs. Size

8 CPU’s

user = 3x

kernel = 1.3x
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Miss Rates vs. Block Size
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Larger Block Size vs. Memory Traffic/Referenc
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Scientific Workload
problem sizes

❏ Barnes-Hut
•  16K bodies for 6 time steps

❏ FFT
•  1M complex points

❏ LU
•  512 x 512 matrix
•  block size = 16 x 16

❏ Ocean
•  130 x 130 grid
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Miss Rate vs. PE’s
For 64 KB cache 2 way SA
and 32 byte blocks

individual coherence
patterns

small cache ==> capacity
misses dominate for the
problem sizes here
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Miss Rate vs. Cache Size

note scale difference

capacity miss rate
improvement is consistent with
what you’d expect but steady
coherence miss rate (except
Barnes) remains a performance
anchor
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Miss Rate and Block Size

note false sharing effect on
Barnes
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Bus Traffic vs. Block Size

University of Utah
School of Computing

CS681040

Snooping Caches
❏ Relatively simple step for the hardware

•  global atomicity point
•  sadly shared bus is a scalability problem at high clock rates

❏ Performance
•  similar to what you’d expect from uniprocessor cache

experience
•  a few new wrinkles

•  coherence: true and false sharing

•  with lots of processors the shared bus ==> conflict point
•  PE idle time goes up

•  the shared memory costs are minimized here
•  primarily due to simplicity and symmetry
•  they will go up as we move to a distributed model


