FUNCTIONAL SPECIFICATION

FOR
SYSTEMC 2.0

General terminology

Method A C++ method, i.e., a member function of a class.

Module A structural entity, which can contain processes, ports, channels, and other modules.
Modules allow expressing structural hierarchy.

Interface provides a set of method declarations. Provides no method implem. and no data fields.

Channel A channel implements 1+ interfaces. Container for communication functionality.

Port Object through which a module can access a channel’s interface. But modules can also
access a channel’s interface directly.

Primitive Chnl | Atomic: it doesn’t contain processes or modules. Cannot directly access other channels

Hierarch. Chnl

It is a module: can contain processes and modules, can directly access other channels.

Event

A process can suspend/sensitive to, 1+ events. Allow resuming/activating processes.

Sensitivity

Defines when this process will be resumed or activated. A process can be sensitive to a
set of events. Whenever one of the corresponding events is triggered, the process is
resumed or activated.

Static Sensitivity

The sensitivity is declared statically; i.e., it is declared during elaboration and cannot be
changed once simulation has started. A so-called sensitivity list is used to define the
static set of events.

Dynamic Sensit.

Can be altered during simulation.

IMC

Interface Method Call

RPC

Remote Procedure Call

Process terminology

Thread A SystemC thread has its own thread of execution, but is not preemptive.
Automatically Certain module methods (processes) are activated automatically when events
activated occur that the processes are sensitive to.

Explicitly activated

Certain module methods must be called explicitly by other code in order to be
activated.

wait()

A method that suspends execution of a thread. The arguments passed to
wait() determine when execution of the thread is resumed.

Ok to call wait()

NO: SC_METHOD:s - because they don’t have their own thread of execution.
YES: SC_THREAD:s and the code that they call can call wait().

SC_THREAD A module method which has its own thread of execution. Can call code that
calls wait(). Automatically activated. aka thread process.

SC_METHOD A module method which does not have its own thread of execution, and
which cannot call code that calls wait(). SC_METHODs are automatically
activated. aka method process.

SC_CTHREAD A module method which has its own thread of execution. Sensitive to a +/-ive

clock edge. Can call wait() with a restricted argument list. Automatically
activated. aka clocked thread processes.

Process intialization

SC_MODULE({ my_module)

I
1

J// portis)

Prevent the scheduler from

sc_in_clk clk;

executing a thread process or

// process(es) method process during the
void proc_a(); initialization phase of the
vold proc bi); simulation
J// conatructor
SC_CTOR{ my_meodule)
I
L
SC_THRERD(proc_a);
sensitive << clk.pos();
dont _initialize(}; // don't initialize proc_a

SC METHOD(proc b)
sensitive =z« clk.neg();
dont initialize(}; // don’'t initialize proc b

MODEL OF TIME

Underlying data type for time is a 64 bit unsigned integer

The default time resolution is 1 picosecond

change the time resolution : sc_set_time_resolution(10, SC_PS).
The time resolution must be a power of ten.

time resolution to be specified before the start of simulation.

The time resolution can only be specified once.

The time resolution can only be specified before any non-zero sc_time
declaration.

sc_set_time_resolution(10, SC_PS); SC FS - femtoseconds

SC_PS - picoseconds

rounds the time to wait to 3460 ps. 28—82 B ngnoseconc:js
sc_get_default_time_unit() —=O mllc.rosecon S
sc_clock clkl(“clk1”, 15, SC_NS); SC_MS - milliseconds
sc_start(1000, SC_NS); SC_SEC - seconds

wait(3.456, SC_NS);

Static sensitivity

SC_MODULE (my_module)

// ports
gc¢ in<ints> input;
gc in clk clock:

// processes
vold proc al) ;
vold proo b () ;

/7 constructor

SC CTCOR [my module)

{
SC THRELD({ proc a) ;
sensitive pos <= clock;

SC THREAD{ proc b) ;
sensitive << input;
gsensitive neg << clock;

Dynamic sensitivity with the wait() method

// walt until event el hag besn notified
wait({ el);

// walt until event el or event e2 has been notified
wait{ el | e2);

Dynamic sensitivity

wait() can be called anywhere in the thread of execution
of a thread process.

When called,

specified events temporarily overrule the sensitivity list

the calling thread process suspends

When one (or all) of the specified events is notified, the waiting
thread process is resumed

The calling process is again sensitive to the sensitivity list.
When the wait() method is called without arguments
— the calling thread process will suspend.
— When one of the events in the sensitivity list is notified, the
waiting thread process isresumed.
The static sensitivity of the calling thread process doesn’t
change.

Forms of wait()
// walt on events in sensitivity list (SystemC 1.0).
wailit () ;

S/ walt on event 1.
wait{ =1) ;

/S walt on events a1, &2, or 3.
wait{ el | ez | 3);

// walt on events =21, 2, and 3.
walt{ =1 & =2 & &3) ;

JS wait for 200 ns.
wait (200, &8C_N&) ;

/S walt on event <1, timeout after 200 nsa.
wait (200, &C N&, el) ;

// walit on events =21, 22, or 3, timecut after 200 ns.
wait{ 200, 8¢ NS, «1 | «2 | =3);

S/ walt on events =21, 2, and 2, timecut after 200 ns.
wait(200, S8C NS, el & 2 & a3);

sc_time t{ 200, SC NS J;

Forms of wait()
/) wait for 200 ns.
walt(t);

J/ walt on event el, timeout after 200 ns.
walt(t, =1 });

J/ walt on events el, e2, or 3, timeout after 200 ns.
wait(&, el | e2 | e3);

// walt on events el, e2, and e3, timeout after 200 ns.
walt(£, el & 22 & a3);

// wait for 200 clock covoles, SC _CTHREAD only (SyestemC 1.0).
wait({ 200);

// walt one delta cycle.
walt(0, 8C N8),

// walt one delta cycle.
wait(SC ZERO TIME);

NEXT_TRIGGER() METHOD

The wait() method only used with
SC_THREADs.

next_trigger() method = for SC_METHOD

same arguments as wait()

. #

— next_trigger() returns immediately, without passing
control to another process

— Multiple next_trigger() calls allowed in one activation
of an SC_METHOD process

— The last next_trigger() call determines the (dynamic)
sensitivity for the next activation

» Constructor — An event object can be created by calling the constructor without
any arguments. For example,

8C_event My event;

s Notify — An event can be notified by calling the (non-const) notify () method
of the event object. For example,

my_event.notifv(); // notify immediately
my_event.notify(SC ZERO TIME); // notify next delta cycle
my_event.notify(10, SC NS); // notify in 10 ns

sc_time £ 10, SC NS);

my_event.notify(t); // same

In addition, functions are provided allowing a functional notation for notifying
events. For example,

notify{ my event); // notify immediately
notify({ SC ZERO TIME, my event); // notify next delta cycle
notify(10, 8C NS, my event }; // notify in 10 ns

gc time £ 10, SC NS);
notify(t, my event), /] same

A system in SystemC

System
‘I EEEEEEN
llllllll’ :
channels chanmls
hl Channel(s) wanh
g qeunnnnns :
RN ERRER] =
Module Module

Communication and
Synchronization (cont’d

Interfaces

Events

Ports to Interfaces

A Communication

Modeling Example: FIFO

Write Interface
l Read Interface I

FIFO Example:
Declaration of Interfaces

class write_if : public sc interface
{ 2FIFO
public:
virtual void write(char) = 0;

virtual void reset() = 0;

}i

class read if : public sc interface
{
public:
virtual void read(char&) = 0;
virtual int num_available() = 0;

Declaration of FIFO
channel

class fifo: public sc
public write if,
public read if

nel, void write(char c) {
if (fifo full())

{ data| <you calculate>] = c;
private: ++num_elements;
enum e {max elements=10}; writ =vent.noti
char data[max_elements];
int num elements, first;
sC write event, .
read event: v01§ rea#(char &c) |
) - if (fifo empty())
boel fifo_empty(} {..}; ot (e b e |
bool fifo full() {..}: Y
- c = data[first];
blic: --num_elements;
pu lcf first = ..}
fifo() : num_elements(0), mmd mtre
first(0);

Declaration of
FIFO channel (cont’d) III

vold reset() {
num elements = first = 0;

}

int num available() {
return num elements;

}

}; // end of class declarations

FIFO Example (cont’d)

= Any channel must
= be derived from sc_channel class

= be derived from one (or more) classes
derived from sc_interface

= provide implementations for all pure
virtual functions defined in its parent
interfaces

FIFO Example (cont’d)

= Note the following wait() call
* wait(sc_event) => dynamic sensitivity
= wait(time)
= wait(time_out, sc_event)

* Events

= are the fundamental synchronization primitive
= have no type, no value
= always cause sensitive processes to be resumed

= can be specified to occur:
= immediately/ one delta-step later/ some specific time later

10

Completing the Comm
Modeling Example III

SC_MODULE (producer) {
public:

SC_CTOR (producer) {
SC_THREAD[main}:
}

vold main() {
char c;
while (true) {
out.write(c);
if (..)
out.reset();

out;

SC_MODULE (consumer) {
public:
e 1 £ in;

SC_CTOR (consumer) {
SC_THREAD(main):
}

vold main() {
char c;
while (true) {
in.read(c);
cout<<

in.num available(); }

}

Completing the Comm.
Modeling Example (cont’d)

SC_MODULE (top) {
public:
fifo afifo;
producer *pproducer;
consumer *pconsumer;

SC_CTOR (top) {

pproducer-:>

pconsumer->in

pproducer=new producer (“Producer”);

pconsumer=new consumer (“Consumer”);

;

.

11

Completing the Comm.
Modeling Example (cont’d)

* Note:

* Producer module
= sc_port<write_if> out;

* Producer can only call member functions of write if
interface

* Consumer module
= sc_port<read_if> in;

= Consumer can only call member functions of read_if
interface

* Producer and consumer are
= unaware of how the channel works
= just aware of their respective interfaces

= Channel implementation is hidden from
communicating modules

Completing the Comm.
Modeling Example (cont’d)

= Advantages of separating communication
from functionality
* Trying different communication modules
* Refine the FIFO into a software implementation
* Using queuing mechanisms of the underlying RTOS
* Refine the FIFO into a hardware implementation

* Channels can contain other channels and modules
= Instantiate the hw FIFO module within FIFO channel

= Implement read and write interface methods to properly
work with the hw FIFO

= Refine read and write interface methods by inlining them
into producer and consumer codes

12

SystemC refinement

my_master
my_channel
my_proc)
my_master
my_other_channel
my_proc)

SystemC Channel Replacement

% ®
W_IIIIW @ “w_m_m“'

13

SystemC Adapter Insertion

my_master
: my_adapter my_refined_channel
my_proc)

SystemC Adapter Merge

my_master
my_adapter y_refined_channel
my_proc)

my_ refined_master
: my_refined_channel
my_proc)

14

SystemC scheduler

= Like most modeling languages
SystemC has a simulation kernel, too

= Event Based Simulation for modeling
concurrency

= Processes executed & their outputs
updated based on events

= Processes are scheduled based on
their sensitivity to events

= Similarity with key VHDL simulation
kernel aspects is evident

SystemC & VHDL Similarities

SC_THREAD(proc_1);
sensitive << Trig.pos();
SC_THREAD(proc_2);
sensitive << Trig.pos();

= Which process should go first?
= Does it actually matter?

* On sc_signals follows VHDL paradigm

* Process execution and signal update done in 2
phases, order of processes does not matter

= Concept of delta cycles
= Simulation is deterministic
= But SystemC can model concurrency, time &
communication in other ways as well

15

SystemC & non Determinism

= Delta Cycle = Evaluation Phase +
Update Phase

= Presence of 2 phases guarantees
determinism
= But for modeling S/W we need non-
determinism
= Employ the notify() method of an

sc_event (see previous
producer/consumer example)

SystemC Scheduler & Events

= notify() with no arguments
= Called Immediate Notification

* Processes sensitive to this event will run
in current evaluation phase

= notify(0)
= Processes sensitive to this event will run
in evaluation phase of next delta cycle
= notify(t) with t>0

= Processes sensitive to this event will run
during the evaluation phase of some
future simulator time

16

SystemC Simulator Kernel

Init: execute all processes in unspecified order

Evaluate: Select a ready to run process & resume its
execution. May result in more processes ready for
execution due to Immediate Notification

Repeat 2 until no more processes to run
Update Phase

If 2 or 4 resulted in delta event notifications, go back to
2

No more events, simulation is finished for current time

Advance to next simulation time that has pending
events. If none, exit

Go back to step 2

Metropolis vs. SystemC

Metro more general model of
computation

Different operational & denotational
semantics

Metro Formal Semantics & tools
Metro Quantity Managers

= For performance analysis
= For modeling of Operating Systems

17

INTERFACE EXAMPLES

F T R
e An example read interface: gso read 1f

v this interface provides a ‘read’ method
T

class sc_read if
: virtual public sc_interface

pulkblic:

S/ dnterface methods
virtual const T& read () = 0

£

v an example write interface: sco_write_ i1f
s this interface provides a ‘write’ method
£

template <class T=
class sc_write if
: wvirtual public sc _interface

pulblic:
S/ dnterface methods

virtual wvoid write{ oomsit Ta) = O

he

Read/write interface

/) BAn example read/write interface: sc _read write if

/DT

template <class T=

class sc read write if
public sc read if<T»>,
public sc write 1f<T=

{}:

18

INTERFACE BASE CLASS

All interfaces are (directly or indirectly) derived from base class sc_interface.

class sc_interface

{

public:

/] register a port with this interface (does nothing by default)
virtual void register port(sc port base&, const char*) [}

/] get the default event
virtual const sc_eventg default event(} const;

/] destructor (does nothing)
virtual ~sc_interface() {}

SIMPLE PORTS

object through which a module, and hence its processes,
can access a channel’s interface.

Modules can also access a channel’s interface directly
In SystemC 1.0, we have three basic port types:

— sC_in<T>, sc_out<T>, and sc_inout<T>
— They are all derived from the base class sc_port
— Each of these port types provides
+ a set of interface methods, such as read() and write().

* what these methods basically do is to call the corresponding
interface method of the attached channel.

With other channel types, this simple scheme has to be
extended

— the interfaces assumed by sc_in<T>, sc_out<T>, and
sc_inout<T>, are not sufficient for all channel types.

19

General Ports

altogether different interface methods.

interfaces can be created by

— refining predefined interface types
— or by inheriting directly from sc_interface

Separate function and communication

— to increase the reusability of components

A good design style
— is to always select the “minimal” port type that offers

the required interface methods

Some channel types may require additional or

ATTACHING MULTIPLE INTERFACES

» SystemC 2.0 allows for connecting a port to multiple channels
implementing the same interface. = the multi-port capability.

class simple bus 1f
: virtual public sc interface

{

public:

¥

// methods return falge if address out of range
virtual bool read data{ unsigned address, int& data
virtual bool write data(unsigned address, int data

{

class simple mem if
: public simple bus 1f

public:

)
)

// methods to dstermine address rangs
virtual unsigned start address() const

virtual unsigned end address() const = 0;

20

class simple_bus
public sc_moduls,
public simple bus if

public:

// a port to connect memoriss to (maximum 10 in this case)

8c_port< TEEmmmemmmiEGEE | mem port;
// interface methods

virtual bool read data(unsigned address, int& data)
{
// inefficient, but illustrates the usze model
for(int 1 = 0; 1 <« n i i ++)
if{ (address »= mem_port[i]-»start address()) &&
(address <= mem port[i]-=end address()))

return mem port[i] -=read data(address, data);

return falss;

}

virtual bool write data(unsigned address, int data };

sc_mutex_if

class sc_mutex_if
- virtual public sc_interface
{
public:
virtual int lock() = 0,
virtual int trylock() = 0;
virtual int unlock() = 0;

protected:
sc_mutex_if();

private:
Disabled
sc_mutex if(const sc mutex if&);
sc_ mutex 1f& operator=(const sc_mutex 1f&);

21

sc_mutex channel

class sc_mutex
: public sc_mutex_if, public sc_prim_channel
{
public:
sc_mutex();
explicit sc_mutex(const char™),

virtual int lock();
virtual int trylock();
virtual int unlock();

virtual const char® kind() const;

private:
Disabled
sc_mutex({ const sc_mutex&),
sc_mutex& operator= { const sc_mutex&),

sc_mutex channel: lock()

+ virtual int lock();
— If the mutex is unlocked
* member function lock shall lock the mutex and return
— If the mutex is locked
» suspend until the mutex is unlocked (by another process)
« attempt to lock the mutex.
— Member function lock shall unconditionally return the value 0.
 If multiple processes attempt to lock the mutex in the
same delta cycle
— which process instance is given the lock in that delta cycle
* non-deterministic
— relies on the order in which processes are resumed within the
evaluation phase.

22

sc_mutex channel: trylock(), kind()

« virtual int trylock();
— If the mutex is unlocked
member function trylock shall lock the mutex
» shall return the value 0
— If the mutex is locked
member function trylock shall immediately return the value -1.
* The mutex shall remain locked

 virtual const char* kind() const;
— Member function kind shall return the string "sc_mutex".

sc_mutex channel: unlock();

* virtual int unlock();
— mutex unlocked,
* member function unlock shall return the value -1
* The mutex shall remain unlocked
— mutex locked by # process
» member functionunlock shall return the value -1
* The mutex shall remain locked
— mutex locked by the calling process
* member function unlock shall unlock the mutex
* shall return the value 0
« If processes suspended and waiting for the mutex
— lock shall be given (nondeterministic) to exactly one of these processes
— remaining processes shall suspend again

— This shall be accomplished within a single evaluation phase
= use immediate notification to signal the act of unlocking a mutex

23

Port-less access for intra-module
level communication

// peeudo code

SC_MODULE { modl)
I
1

// porti=z)
ac¢_in<ints in;
aC_out<ints out;

; used to protect common resource ‘in’

int £{ int };
int g(int);

Port-less access (cont'd)

vold threadl ()

while(true) {
wait(10, SC N8)
e // direct accezs to channel
walt (in.value changed event () };

ol = g e) ;

// direct accessg to channel

24

Port-less access (cont’d)

volid thread’ ()

while(true)} |
wait(10, 8C N8);
o e // direct access to channel
walt{ in.value changed event());

J/ direct access to channel

Port-less access (cont'd)

vold threadZ ()

while(true) |
wait(10, SC N8)
bbb // direct access to channel
walt{ in.valus changed event() J;

o // direct access to channel

25

Port-less access (cont’d)

8C MODULE { medl)

{

// constructor

8C _CTCR{ modl)
8C THRERD(threadl);
SC THREZD(thread2);

26

