
1

2002 E.M. Aboulhamid 1

Co-design
Methodology

and
Synthesis

Synthesis

2002 E.M. Aboulhamid 2

SystemC

2

2002 E.M. Aboulhamid 3

Introduction to SystemC

2002 E.M. Aboulhamid 4

C++
• C++ class library and a methodology ⇒

– create a cycle-accurate model of software algorithms,
– hardware architecture, and
– interfaces of an SoC (System On a Chip)
– system-level designs.

• Use SystemC and other C++ development tools
– to create a system-level model,
– quickly simulate to validate and optimize the design,
– explore various algorithms,
– and provide the hardware and software development team with

an executable specification of the system.
• An executable specification is

– a C++ program with the same behavior as the system when
executed.

3

2002 E.M. Aboulhamid 5

Modeling Constructs

• Constructs to model system architecture
– Hardware timing
– Concurrency
– Reactive behavior

• Alternatives:
– Proprietary extensions to the language

• Not an acceptable solution for the industry

– Use C++ object-oriented
• Provides the ability to extend the language through classes
• No need for adding new syntactic constructs
• SystemC is a C++ Class Library

2002 E.M. Aboulhamid 6

Executable Specifications Benefits

• Avoid inconsistency and errors
• Ensure completeness
• Ensure unambiguous interpretation of the specification.
• Validate system functionality before implementation
• Create early performance models of the system and

validate system performance.
• Testbench used to test the executable specification

– Can be refined or used as is to test the implementation
– Drastically reduce the time for implementation verification

4

2002 E.M. Aboulhamid 7

SystemC Highlights
• Supports

– Hardware-software co-design
– Description of hardware, software, and interfaces in a C++ environment.

• Modules
– Hierarchical entity, can have other modules or processes contained in it.

• Processes
– Describe functionality
– Contained inside modules
– Three different process abstractions

• Ports
– Modules have ports through which they connect to other modules.
– Single-direction and bidirectional ports.

• Signals
– Resolved signals have more than one driver (a bus)
– Unresolved signals can have only one driver.

2002 E.M. Aboulhamid 8

Highlights (cont’d)

• Rich set of data types
– fixed precision data types allow for fast simulation,
– arbitrary precision types can be used for computations with large

numbers,
– fixed-point data types can be used for DSP applications
– two-valued and four-valued data types.

• Clocks
– notion of clocks (as special signals)
– Multiple clocks, with arbitrary phase relationship, supported.

• Ultra light-weight cycle-based simulation kernel ⇒ high-speed.
• Multiple abstraction levels

– high-level functional models
– detailed clock cycle accurate RTL models

• Iterative refinement of high level models into lower levels of
abstraction

5

2002 E.M. Aboulhamid 9

Where to Find SystemC ?
• On the web, the official SystemC site:

http://www.systemc.org
• Installed on the system at UdeM:

/u/lablasso/systemc-<version>

(where “version” is a number (“2.0” for example))
– The documentation is in the /doc subfolder
– Examples are in the /examples subfolder
– Sources are in the /src subfolder
– The internal structure of SystemC can be found on the lab

LASSO web page, inside the “documentation” section:
http://www.iro.umontreal.ca/~lablasso

2002 E.M. Aboulhamid 10

Linking SystemC Library

6

2002 E.M. Aboulhamid 11

Simple Example
(file main.cpp)

#include<systemc.h>

int sc_main(int argc, char **argv)

{

cout << "starting simulation" << endl;

sc_start(1000);

cout << "end of simulation" << endl;

return(0);

}

2002 E.M. Aboulhamid 12

Simple Example of a Makefile
SYSTEMCDIR = /u/lablasso/systemc-2.0 ##SystemC installation path

TARGET_ARCH = linux ## architecture

CXX = g++

MODULE = systemc_test ## name of the executable

INCDIR = -I. -I.. -I$(SYSTEMCDIR)/include -I$(SYSTEMCDIR)/src

LIBDIR = -L. -L.. -L$(SYSTEMCDIR)/lib-$(TARGET_ARCH)

LIBS = -lsystemc -lm $(EXTRA_LIBS)

all : $(MODULE) ## dependencies list

$(MODULE) : main.o

$(CXX) -o $(MODULE) $(LIBDIR) $(LIBS) main.o

main.o : main.cpp

$(CXX) $(INCDIR) -c main.cpp

7

2002 E.M. Aboulhamid 13

Compilation and Execution
% make

g++ -I. -I.. -I/u/lablasso/systemc-2.0/include -
I/u/lablasso/systemc-2.0/src -c main.cpp

g++ -o systemc_test -L. -L.. -L/u/lablasso/systemc-
2.0/lib-linux -lsystemc -lm main.o

% ./systemc_test

SystemC 2.0 --- Apr 9 2002 16:05:08

Copyright (c) 1996-2001 by all Contributors

ALL RIGHTS RESERVED

starting simulation

end of simulation

%

2002 E.M. Aboulhamid 14

Modules and Hierarchy

8

2002 E.M. Aboulhamid 15

Introduction

• basic building block to partition a design
– break complex systems into smaller more manageable pieces
– split complex designs among a number of different designers

• hide internal data representation and algorithms from other modules.
– This forces designers to use public interfaces to other modules
– the entire system becomes easier to change and maintain

• Example
– One can decide to completely change the internal data representation

and implementation of a particular module.
– if external interface and internal function remain the same, the users of

the module do not know that the internals were changed. ⇒ allows
designers to optimize the design locally

• Syntax
SC_MODULE(transmit) { //macro
(is equivalent to…)
class transmit : sc_module { //class declaration

2002 E.M. Aboulhamid 16

Module Ports
•Pass data to and from the processes of a module

•Mode

• in, out, inout

•Data type

•C++ data type

•SystemC data type

•user defined type

SC_MODULE(fifo) {

sc_in<bool> load;

sc_in<bool> read;

sc_inout<int>
data;

sc_out<bool> full;

sc_out<bool>
empty;

//rest of module
not shown

}

9

2002 E.M. Aboulhamid 17

Signals
// filter.h
#include "systemc.h"
#include "mult.h"
#include "coeff.h"
#include "sample.h"
SC_MODULE(filter) {

sample *s1;
coeff *c1;
mult *m1;
sc_signal<sc_uint<32> > q, s, c;
SC_CTOR(filter) {

s1 = new sample ("s1");
(*s1)(q,s);
c1 = new coeff ("c1");
(*c1)(c);
m1 = new mult ("m1");
(*m1)(s,c,q);

}
}

•Can be local to a module
•Used to connect ports of lower level
modules
•Carry data
•Aren’t declared with mode: in, out,
or inout.

•Lower level modules instantiated:
Sample, coeff, and mult

•Module ports connected by local signals:
Q, s, and c.

2002 E.M. Aboulhamid 18

Named Connection
#include "systemc.h"
#include "mult.h"
#include "coeff.h"
#include "sample.h"
SC_MODULE(filter) {

sample *s1;
coeff *c1;
mult *m1;
sc_signal<sc_uint<32> > q, s, c;
SC_CTOR(filter) {

s1 = new sample ("s1");
s1->din(q);
s1->dout(s);
c1 = new coeff ("c1");
c1->out(c);
m1 = new mult ("m1");
m1->a(s);
m1->b(c);
m1->q(q);

}
}

10

2002 E.M. Aboulhamid 19

Internal Data Storage
// count.h
#include "systemc.h"
SC_MODULE(count) {

sc_in<bool> load;
sc_in<int> din; // input port
sc_in<bool> clock; // input port
sc_out<int> dout; // output port
// internal data storage
int count_val;
void count_up();
SC_CTOR(count) {

SC_METHOD(count_up); //
Method process

sensitive_pos << clock;
}

};

// count.cc
#include "count.h"
void count::count_up() {

if (load) {
count_val = din;

} else {
count_val++

}
dout = count_val;

}

2002 E.M. Aboulhamid 20

Processes
• Provide the module functionality
• Look very much like normal C++ methods
• Functions that are registered with the SystemC kernel
• Called whenever “sensitive to” signals change value
• Contained statements are executed sequentially until end

occurs, or suspension by a wait call

• Different types of processes including
– Method processes
– Thread processes
– Clocked thread processes

11

2002 E.M. Aboulhamid 21

Process Example
// dff.h
#include "systemc.h"
SC_MODULE(dff) {

sc_in<bool> din;
sc_in<bool> clock;
sc_out<bool> dout;
void doit();
SC_CTOR(dff) {

SC_METHOD(doit);
sensitive_pos << clock;

}
};

// dff.cc
#include "dff.h"
void dff::doit() {

dout = din;
}

• Module dff contains an SC_METHOD
process named doit.

• An sc_method process
– Triggered by events and
– Executes all of the statements in the

method before returning control to the
kernel

• Sensitive to positive edge changes on input
port clock

• The process runs once when the first event
(positive edge on clock) is received. It

• Executes the assignment of din to dout, then
returns control to the System kernel

• Another event causes the process to be
invoked again, and the assignment statement
is executed again

2002 E.M. Aboulhamid 22

Module Constructor

• Creates and initializes an instance of a module
• Creates the internal data structures
• Initializes them to known values
• Instance name of the module is passed to the

constructor at instantiation
⇒ helps identify the module when errors occur or

when reporting information from the module

12

2002 E.M. Aboulhamid 23

Constructor Example// ram.h
#include "systemc.h"
SC_MODULE(ram) {

sc_in<int> addr;
sc_in<int> datain;
sc_in<bool> rwb;
sc_out<int> dout;
int memdata[64]; // local memory storage
int i;
void ramread();
void ramwrite();
SC_CTOR(ram){

SC_METHOD(ramread);
sensitive << addr << rwb;
SC_METHOD(ramwrite)
sensitive << addr << datain << rwb;
for (i=0; i++; i<64) {

memdata[i] = 0;
}

}
}; …

When a RAM module is
instantiated:

– the constructor called
–data allocated for the

module
– the two processes

registered with the
kernel.

– the for loop executed ⇒
initialize all the memory
locations of the newly
created ram module

2002 E.M. Aboulhamid 24

TestBenches

• Provide stimulus to a design under test (DUT) and check design results
• Can be implemented in a number of ways
• Stimulus generated by one process and results checked by another
• Stimulus embedded in the main program and results checked in another

process
• Checking can be embedded in the main program, etc.

13

2002 E.M. Aboulhamid 25

// count_stim.h
#include "systemc.h"
SC_MODULE(count_stim) {

sc_out<bool> load;
sc_out<int> din; // input port
sc_in<bool> clock; // input port
sc_in<int> dout;
void stimgen();
SC_CTOR(count_stim) {

SC_THREAD(stimgen);
sensitive_pos (clock);

}
};

// count_stim.cc
#include "count_stim.h"
void count_stim::stimgen() {

while (true) {
load = true; // load 0
din = 0;
wait(); // count up, value = 1
load = false;
wait(); // count up, value = 2
wait(); // count up, value = 3
wait(); // count up, value = 4
wait(); // count up, value = 5
wait(); // count up, value = 6
wait(); // count up, value = 7

}
}

2002 E.M. Aboulhamid 26

Processes

14

2002 E.M. Aboulhamid 27

Process Basics
• Some behave like functions, started when called, and return

execution when complete
• Others: called only once at the beginning of simulation and either

actively executing or suspended waiting for a condition
• Condition: clock edge, a signal expression, combination of both
• No hierarchy ⇒ no process will call another process directly (?)
• Can call methods and functions that are not processes
• Have sensitivity lists: a list of signals that cause the process to be

invoked, whenever the value of a signal in this list changes
• May cause other processes to execute by assigning new values to

signals in the sensitivity list of the other process
• An event on a signal is a change in the value of the signal
• If a signal has a current value of 1 and a new assignment updates

the value to 0
– An event will occur on the signal
– All processes sensitive to that signal will be activated

2002 E.M. Aboulhamid 28

Method Process

• module rcv has input xin, output id, a single method extract_id, sensitive to xin
• When invoked, extract_id executes and assigns value to id
• When terminates, control returned back to scheduler
• When a method process is invoked, it executes until it returns.
• recommended not write infinite loops within a method process otherwise

– control will never be returned back to the simulator

// rcv.h
#include "systemc.h"
#include "frame.h
SC_MODULE(rcv) {

sc_in<frame_type> xin;
sc_out<int> id;
void extract_id();
SC_CTOR(rcv) {

SC_METHOD(extract_id);
sensitive(xin);

}
};

// rcv.cc
#include "rcv.h"
#include "frame.h"
void rcv::extract_id() {

frame_type frame;
frame = xin;
if(frame.type == 1) {

id = frame.ida;
} else {

id = frame.idb;
}

}

15

2002 E.M. Aboulhamid 29

Thread Processes

• Can be suspended and reactivated
• Can contain wait() functions that suspend process

execution until an event occurs on one of the signals the
process is sensitive to

• An event reactivates a thread process from the
statement the process was last suspended

• The process will continue to execute until the next wait()
• The input signals that cause the process to reactivate

are specified by the sensitivity list.
• The sensitivity list specified in the module constructor

– Same syntax used in Method Processes

2002 E.M. Aboulhamid 30

// traff.h
#include "systemc.h"
SC_MODULE(traff) {

// input ports
sc_in<bool> roadsensor;
sc_in<bool> clock;
// output ports
sc_out<bool> NSred;
sc_out<bool> NSyellow;
sc_out<bool> NSgreen;
sc_out<bool> EWred;
sc_out<bool> EWyellow;
sc_out<bool> EWgreen;
void control_lights();
int i;
// Constructor
SC_CTOR(traff) {

SC_THREAD(control_lights); // Thread Process
sensitive << roadsensor;
sensitive_pos << clock;

}
};

16

2002 E.M. Aboulhamid 31

// traff.cc
#include "traff.h"
void traff::control_lights() {

NSgreen = true; //…
while (true) {

while (roadsensor == false) wait();
NSyellow = true; // road sensor triggered, set NS to yellow …
for (i=0; i<5; i++) wait();
EWgreen = true; // yellow interval over set EW to green …
for (i= 0; i<50; i++) wait();
EWyellow = true; // times up for EW green, set EW to yellow…
for (i=0; i<5; i++) wait();
NSyellow = false; // times up for EW yellow set NS to green
for (i=0; i<50; i++) wait(); // wait one more long
// interval before allowing
// a sensor again

}
} Thread processes implemented as co-routines

Slower than SC_METHOD processes

2002 E.M. Aboulhamid 32

Clocked Thread Process
• Special case of a thread process
• Help designers describe their design for better synthesis results
• Only triggered on one edge of one clock, which matches the way hardware

is typically implemented with synthesis tools
• Can be used to create implicit state machines within design descriptions

instead (the states are described by sets of statements with wait() function
calls between them)

• This design creation style is simple and easy to understand
• An explicit state machine would define the state machine states in a

declaration and use a case statement to move from state to state.
• To illustrate the clock thread process, a bus controller example will be

presented.
• The example is a bus controller for a microcontroller application. It is a very

simple design so that the design can be described easily.
• Let’s assume that we have a microcontroller with a 32-bit internal data path
• Only one 8-bit external data path to get data to and from the controller.
• Every address and data transaction will have to be multiplexed out over the

8-bit bus, 8 bits at a time.
• This is a perfect application for an implicit state machine and an

SC_CTHREAD process.

17

2002 E.M. Aboulhamid 33

// bus.h
#include "systemc.h"
SC_MODULE(bus) {

sc_in_clk clock;
sc_in<bool> newaddr;
sc_in<sc_uint<32> > addr;
sc_in<bool> ready;
sc_out<sc_uint<32> > data;
sc_out<bool> start;
sc_out<bool> datardy;
sc_inout<sc_uint<8> > data8;
sc_uint<32> tdata;
sc_uint<32> taddr;
void xfer();
SC_CTOR(bus) {

SC_CTHREAD(xfer, clock.pos());
// ready to accept new address
datardy.initialize(true);

}
};

2002 E.M. Aboulhamid 34

// bus.cc
#include "bus.h"
void bus::xfer() {

while (true) {
// wait for a new address to appear
wait_until(newaddr.delayed() ==
true);
// got a new address so process it
taddr = addr.read();
// cannot accept new address now
datardy = false;
// new addr for memory controller
start = true;
data8 = taddr.range(7,0); wait();
// wait 1 clock between data transfers
start = false;
data8 = taddr.range(15,8); wait();
data8 = taddr.range(23,16); wait();
data8 = taddr.range(31,24); wait();

// now wait for ready signal from memory
// controller
wait_until(ready.delayed() == true);
// now transfer memory data to databus
tdata.range(7,0) = data8.read(); wait();
tdata.range(15,8) = data8.read(); wait();
tdata.range(23,16) = data8.read();
wait();
tdata.range(31,24) = data8.read();
data = tdata;
// data is ready, new addresses ok
datardy = true;

}
}

18

2002 E.M. Aboulhamid 35

SC_CTHREAD particularities

• Sc_cthread ≠ sc_thread
– Described in a module constructor not only by the name but also the

clock edge that triggers the process
– Does not have a separate sensitivity list
– Sensitivity list is the specified clock edge only
– Activated whenever the specified clock edge occurs
– Ex: process xfer will execute on every +ive edge of clock
– Port datardy to initialize it to true. In case a port is not yet bound, this is

the only
– signals assigned new values by an SC_CTHREAD process will be not

be available until after the next clock edge occurs
– Ex: a clock is passed to the bus module through port clock. Port clock is

an sc_in_clk port.
– pos() or neg() method of this port is passed to the SC_CTHREAD

constructor to specify the clock edge that triggers the process

2002 E.M. Aboulhamid 36

Wait Until

• In an SC_CTHREAD process wait_until() methods can be used to control
the execution of the process.

• The wait_until() method will halt the execution of the process until a specific
event has occurred.

• This specific event is specified by the expression to the wait_until() method.
• Ex: wait_until(roadsensor.delayed() == true);
• halt execution of the process until the new value of roadsensor is true.
• The delayed() method is required to get the correct value of the object
• compilation error if delayed() method is not present.
• Only a Boolean expression is allowed as argument of the wait_until()

function and
• only Boolean signal objects can be used in the Boolean expressions.
• Boolean signal objects include clock type sc_clock, signal type

sc_signal<bool>, and port types sc_in<bool>, sc_out<bool>, and
sc_inout<bool>.

• Ex: wait_until(clock.delayed() == true && reset.delayed() == false);

19

2002 E.M. Aboulhamid 37

Watching

• SC_CTHREAD processes, just like SC_THREAD processes,
typically have infinite loops that will continuously execute

• A designer typically wants some way to initialize the behavior of the
loop or jump out of the loop when a condition occurs

• This is accomplished through the use of the watching construct
• The watching construct will monitor a specified condition
• When this condition occurs control is transferred from the current

execution point to the beginning of the process, where the
occurrence of the watched condition can be handled

• Only available for SC_CTHREAD processes
• The delayed() function allows the compiler to identify signals that are

used in watching expressions
• A lazy evaluation algorithm is used for these signals which

dramatically increases simulation performance

2002 E.M. Aboulhamid 38

Watching Example

// datagen.h
#include "systemc.h"
SC_MODULE(data_gen) {

sc_in_clk clk;
sc_inout<int> data;
sc_in<bool> reset;
void gen_data();
SC_CTOR(data_gen){

SC_CTHREAD(gen_data, clk.pos());
watching(reset.delayed() == true);

}
};

// datagen.cc
#include "datagen.h"
void gen_data() {

if (reset == true) {
data = 0;

}
while (true) {

data = data + 1;
wait();
data = data + 2;
wait();
data = data + 4;
wait();

}
}

20

2002 E.M. Aboulhamid 39

Global Watching

• Watching expressions are tested at every active edge of the
execution of the process
⇒ Signals tested at the wait() or wait_until() calls in the infinite loop

• Unexpected consequence of starting again the the process:
– All variables defined locally within the process lose their value.
⇒ Variable value needed to be kept between invocations of the process,

declare it in the module, outside of the process

• Multiple watches can be added to a process
• The data type of the watched object must be of type bool
• This type of watching is called global watching and cannot be

disabled
• To watch different signals at different times, use local watching

2002 E.M. Aboulhamid 40

Local Watching
• Local watching allows you to specify exactly which section of the process is

watching which signals, and where the event handlers are located
• Functionality specified with 4 macros:

W_BEGIN
// put the watching declarations here
watching(...);
watching(...);

W_DO
// This is where the process functionality goes
...

W_ESCAPE
// This is where the handlers for the watched events go
if (..) {
...
}

W_END

21

2002 E.M. Aboulhamid 41

About local watching

• All events in the declaration block have the same
priority
⇒ If different priority needed then local watching blocks

need to be nested

• Works in SC_CTHREAD processes
• Signals in the watching expressions are sampled only

on the active edges of the process
• Globally watched events have higher priority than

locally watched events

2002 E.M. Aboulhamid 42

Interrupt Memory to Databus Transfer
// watchbus.cc
#include "bus.h"
void bus::xfer() {

while (true) {
// wait for a new address to appear
wait_until(newaddr.delayed() ==
true);
// got a new address so process it
taddr = addr;
// cannot accept new address now
datardy = false;
// new addr for memory controller
start = true;
data8 = taddr.range(7,0); wait();
// wait 1 clock between data transfers
start = false;
data8 = taddr.range(15,8); wait();
data8 = taddr.range(23,16); wait();
data8 = taddr.range(31,24); wait();

// wait for ready from memory
wait_until(ready.delayed() == true);
W_BEGIN

watching(reset.delayed());
// reset will trigger watching

W_DO
// the rest of this block is as before
// transfer memory data to databus
tdata.range(7,0) = data8.read(); wait();
tdata.range(15,8) = data8.read(); wait();
tdata.range(23,16) = data8.read();wait();
tdata.range(31,24) = data8.read();
data = tdata;
// data is ready, new addresses ok
datardy = true;

W_ESCAPE
if (reset) {

datardy = false;
}

W_END
}

}

22

2002 E.M. Aboulhamid 43

Ports and Signals
• Ports of a module

– External interface that pass information to and from a
module

– Trigger actions within the module

• Signals create connections between module ports
allowing modules to communicate

• A port can have three different modes of operation
– An input port transfers data into a module.
– An output port transfers data out from a module,
– An inout port transfers data both into and out of a

module depending on module operation

2002 E.M. Aboulhamid 44

Port binding
• A signal connects the port of one module to the port of another
• When a port is read the value of the signal connected to the port is

returned
• When a port is written the new value will be written to the signal

when the process performing the write operation has finished
execution, or has been suspended ⇒
– all operations within the process will work with the same value of the

signal
– prevents some processes seeing the old value while other processes

see the new value during execution.
– All processes executing during a time step will see the old value of the

signal
• signal semantics same as VHDL signal operation and Verilog

deferred assignment behavior

23

2002 E.M. Aboulhamid 45

Scalar ports and signals
• C++ built in types

– long

– int
– char
– short
– float
– double

• SystemC types
– sc_int<n>
– sc_uint<n>
– sc_bigint<n>
– sc_biguint<n>
– sc_bit
– sc_logic
– sc_bv<n>
– sc_lv<n>
– sc_fixed
– sc_ufixed
– sc_fix
– sc_ufix
– User defined structs

Ports described using the following syntax
sc_in<porttype> // input port of type porttype
sc_out<porttype> // output port of type porttype
sc_inout<porttype> // inout port of type porttype

2002 E.M. Aboulhamid 46

R/W Ports and Signals

• For R/W
– The read() and write() methods
– The assignment operator

• Using assignment operator: more concise and
more like HDL code

• Use the read() and write() methods explicitly
– To clarify the exact intent
– If an implicit type conversion needed
– The type that you are reading or writing is different

from the port type

24

2002 E.M. Aboulhamid 47

Array Ports and Signals

• Same syntax as C++
// create ports a[0] to a[31] of type sc_logic

sc_in<sc_logic> a[32];

// create signals i[0] to i[15] of type sc_logic
sc_signal<sc_logic> i[16];

2002 E.M. Aboulhamid 48

Resolved Logic Vectors

• Bus resolution becomes an issue when more
than one driver is driving a signal

25

2002 E.M. Aboulhamid 49

Port Binding
• Ports are always bound to at most one signal
• That signal may be a complex signal such as a structure
• Signal binding occurs during module instantiation
• When building a hierarchical design structure, modules are

instantiated within other modules to form the hierarchy of the design
• No signal needed when a top level module port is directly bound to a

lower level module port during instantiation

2002 E.M. Aboulhamid 50

Syntax

//input resolved logic vector n bit wide
sc_in_rv<n> x;

// output resolved logic vector n bit wide
sc_out_rv<n> y;

// inout resolved logic vector n bit wide
sc_inout_rv<n> z;

// resolved logic vector signal n bit wide
sc_signal_rv<n> sig3;

26

2002 E.M. Aboulhamid 51

Signal Binding
// statemach.h
#include "systemc.h"
SC_MODULE(state_machine) {

sc_in<sc_logic> clock;
sc_in<sc_logic> en;
sc_out<sc_logic> dir;
sc_out<sc_logic> status;
// ... other module statements

}; //--
// controller.h
#include "statemach.h"
SC_MODULE(controller) {

sc_in<sc_logic> clk;
sc_out<sc_logic> count;
sc_in<sc_logic> status;
sc_out<sc_logic> load;
sc_out<sc_logic> clear
sc_signal<sc_logic> lstat;
sc_signal<sc_logic> down;
state_machine *s1;

SC_CTOR(controller) {
// other module statements
s1 = new state_machine ("s1");
// special case port to port binding
s1->clock(clk);
// port en bound to signal lstat
s1->en(lstat);
// port dir bound to signal down
s1->dir(down);
// special case port to port binding
s1->st(status);
}

};

2002 E.M. Aboulhamid 52

Clocks
• Special objects in systemc.
• Syntax

sc_clock clock1("clock1", 20, 0.5, 2, true);
– Create a clock object named clock1
– Period = 20 time units
– Duty cycle = 50%,
– First edge at 2 time units
– First value true.

• Default values
period = 1, the duty cycle =0.5, the first edge = 0, first value = true

• Typically created at the top level of the design in the testbench
• Passed down through the module hierarchy to the rest of the design
⇒ areas of the design or the entire design to be synchronized by the

same clock

27

2002 E.M. Aboulhamid 53

Clock in the main
int sc_main(int argc, char*argv[]) {

sc_signal<int> val;
sc_signal<sc_logic> load;
sc_signal<sc_logic> reset;
sc_signal<int> result;
sc_clock ck1("ck1", 20, 0.5, 0, true);
filter f1("filter");
f1.clk(ck1.signal());
f1.val(val);
f1.load(load);
f1.reset(reset);
f1.out(result);
// rest of sc_main not shown

}

