Co-design
Methodology
and
Synthesis

2002

PRI N D
s Pk n ;
Ara by

w L T
Commanecaion and
Boftwa e Modeks kit Hardwarm Madus
L
SO LS
Fednemani
L T
SEltasrs ol i s
TUTa ahnn ComTun i
Modeds Mokt
¥ ¥
complaton and | E‘”‘.__h:“""_m‘
Lcbadubag i
T ¥ ¥ ¥
= Butasioel Co-Varficabion
¥
SynthESIS HD RTL Eynihecls
L
ETL Go-vo iication
T
Procgpiag

E.M. Aboulhamid

SystemC

2002

E.M. Aboulhamid




Introduction to SystemC

2002 E.M. Aboulhamid

C++

» C++ class library and a methodology b
— create a cycle-accurate model of software algorithms,
— hardware architecture, and
— interfaces of an SoC (System On a Chip)
— system-level designs.

» Use SystemC and other C++ development tools
— to create a system-level model,
— quickly simulate to validate and optimize the design,
— explore various algorithms,
— and provide the hardware and software development team with

an executable specification of the system.
* An executable specification is

— a C++ program with the same behavior as the system when
executed.

2002 E.M. Aboulhamid




Modeling Constructs

» Constructs to model system architecture
— Hardware timing
— Concurrency
— Reactive behavior
» Alternatives:
— Proprietary extensions to the language
* Not an acceptable solution for the industry

— Use C++ object-oriented
» Provides the ability to extend the language through classes
» No need for adding new syntactic constructs
» SystemC is a C++ Class Library

2002 E.M. Aboulhamid

Executable Specifications Benefits

» Avoid inconsistency and errors

» Ensure completeness

» Ensure unambiguous interpretation of the specification.
» Validate system functionality before implementation

» Create early performance models of the system and
validate system performance.

» Testbench used to test the executable specification
— Can be refined or used as is to test the implementation
— Drastically reduce the time for implementation verification

2002 E.M. Aboulhamid




SystemC Highlights

e Supports

— Hardware-software co-design

— Description of hardware, software, and interfaces in a C++ environment.
e Modules

— Hierarchical entity, can have other modules or processes contained in it.
e Processes

— Describe functionality

— Contained inside modules

— Three different process abstractions
e Ports

— Modules have ports through which they connect to other modules.

— Single-direction and bidirectional ports.
» Signals

— Resolved signals have more than one driver (a bus)

— Unresolved signals can have only one driver.

2002 E.M. Aboulhamid 7

Highlights (cont’d)

* Rich set of data types
— fixed precision data types allow for fast simulation,

— arbitrary precision types can be used for computations with large
numbers,

— fixed-point data types can be used for DSP applications

— two-valued and four-valued data types.
» Clocks

— notion of clocks (as special signals)

— Multiple clocks, with arbitrary phase relationship, supported.
» Ultra light-weight cycle-based simulation kernel b high-speed.
» Multiple abstraction levels

— high-level functional models

— detailed clock cycle accurate RTL models

+ lterative refinement of high level models into lower levels of
abstraction

2002 E.M. Aboulhamid 8




Where to Find SystemC ?

. On the web, the official SystemC site:
http://ww. systent.org

. Installed on the system at UdeM:
/u/ | abl asso/ syst ent- <version>
(where “version” is a number (“2.0” for example))
—  The documentation is in the / doc subfolder
— Examples are in the / exanpl es subfolder
— Sources are in the / src subfolder

—  The internal structure of SystemC can be found on the lab
LASSO web page, inside the “documentation” section:

http://ww. iro.unontreal.cal/~l abl asso

2002 E.M. Aboulhamid

Linking SystemC Library

2002 E.M. Aboulhamid

10




Simple Example

(file main.cpp)

#i ncl ude<syst ent. h>

int sc_main(int argc, char **argv)
{
cout << "starting simulation" << endl;
sc_start (1000);
cout << "end of sinulation" << endl;

return(0);

2002 E.M. Aboulhamid 1

Simple Example of a Makefile

SYSTEMCDI R = /u/ | abl asso/ systent-2. 0 ##SystemC installation path

TARGET_ARCH = | i nux ## architecture

CXX = g++

MODULE = systent_test ## name of the executable
INCDIR = -1. -1.. -1$(SYSTEMCDIR)/include -1 $(SYSTEMCDIR)/src
LIBDIR = -L. -L.. -L$(SYSTEMCDIR)/ i b-$( TARGET_ARCH)

LI BS

-l systent -1 m $( EXTRA_LI BS)
all : $(MODULE) ## dependencies list
$(MODULE) : mmin.o

$(CXX) -0 $(MODULE) $(LIBDIR) $(LIBS) main.o
main.o : rmain.cpp
$(CXX) $(INCDIR) -c main.cpp

2002 E.M. Aboulhamid 12




Compilation and Execution

% make

g++ -1. -1.. -1/u/lablasso/systentc-2.0/include -
I/u/l abl asso/ systent-2.0/src -c main.cpp

g++ -0 systenc_test -L. -L.. -L/u/labl asso/systent-
2.0/lib-linux -lsystent -Im main.o

% ./ systent_test
SystenC 2.0 --- Apr 9 2002 16: 05: 08
Copyright (c) 1996-2001 by all Contributors
ALL RI GATS RESERVED

starting sinmulation
end of sinulation
%

2002 E.M. Aboulhamid

13

Modules and Hierarchy

2002 E.M. Aboulhamid

14




Introduction

basic building block to partition a design
— break complex systems into smaller more manageable pieces
— split complex designs among a number of different designers
hide internal data representation and algorithms from other modules.
— This forces designers to use public interfaces to other modules
— the entire system becomes easier to change and maintain
Example

— One can decide to completely change the internal data representation
and implementation of a particular module.

— if external interface and internal function remain the same, the users of
the module do not know that the internals were changed. b allows
designers to optimize the design locally

Syntax
SC_MODULE(transmit) { /Imacro
(is equivalent to...)
class transmit : sc_module { /[class declaration
2002 E.M. Aboulhamid 15

Module Ports

*Mode

« in, out, inout

esyser defined-tvpe
user-aerined typi

Pass data to and from the processes of amodule

Logd g

Read g

Chit g

Fifo

| Full

g Emply

2002

E.M. Aboulhamid

SC_MODULE(fifo) {
sc_i n<bool > | oad;

sc_i n<bool > read;

*Datatype sc_i nout <i nt >
dat a;
*C++ datatype ata,
-SystemC data type sc_out <bool > full;

sc_out <bool >
enpty;

//rest of nodule
not shown

16




Signals

*Can be local to amodule

*Used to connect ports of lower level
modules

«Carry data

*Aren’t declared with mode: in, out,
or inout.

Hample

Y

LB —

ol ©

¢L_ower level modules instantiated:
Sample, coeff, and mult

/I filter.h
#include "systemc.h”
#include "mult.h"
#include "coeff.h"
#include "sample.h"
SC_MODULE(filter) {
sample *s1;
coeff *c1;
mult *m1;
sc_signal<sc_uint<32>>q, s, C;
SC_CTOR(filter) {
sl = new sample ("s1");
(*s1)(a.s);
cl = new coeff ("c1");
(*c1)(c);
m1 = new mult ("m1");
(*m1)(s,c,q);

*Module ports connected by local signals: }
Q, s, andc. }
2002 E.M. Aboulhamid 17

#include "systemc.h"
#include "mult.h"
#include "coeff.h"
#include "sample.h"
SC_MODULE(filter) {
sample *s1;
coeff *c1;
mult *m1;
sc_signal<sc_uint<32>>q, s, ¢;
SC_CTOR(filter) {
sl = new sample ("s1");
s1->din(q);
s1->dout(s);
¢l = new coeff ("c1");
cl->out(c);
m1l = new mult ("m1");
m1l->a(s);
m1l->b(c);
m1->q(q);

Named Connection

Hample
Hin  gaud

2002 E.M. Aboulhamid

Y

18




Internal Data Storage

/I count.h

#include "systemc.h"

SC_MODULE(count) {
sc_in<bool> load;
sc_in<int> din; // input port

/I count.cc
#include "count.h"
void count::count_up() {

sc_in<bool> clock; // input port if (load) {t | = din-
sc_out<int> dout; // output port count_val=dn;
}else {

/l internal data storage
count_val++

int count_val;

void count_up(); } _ .

SC_CTOR(count) { dout = count_val;
SC_METHOD(count_up): // }

Method process
sensitive_pos << clock;

}

2002 E.M. Aboulhamid

19

Processes

* Provide the module functionality

* Look very much like normal C++ methods

» Functions that are registered with the SystemC kernel
» Cadled whenever “sensitive to” signals change value

» Contained statements are executed sequentially until end
occurs, or suspension by await call

» Different types of processesincluding
— Method processes
— Thread processes
— Clocked thread processes

2002 E.M. Aboulhamid

20

10



Process Example

/1 dff.h
#include "systemc.h" * Module dff contains an SC_ METHOD
SC_MODULE(dff) { process named doit.
sc_in<bool> din; * An sc_.method process
sc_in<bool> clock; — Triggered by events and
sc_out<bool> dout: — Executes all of the statementsin the
void doit(); method before returning control to the
SC_CTOR(dff) { kenel _
SC_METHOD(doit); * Sensitive to positive edge changes on input
sensitive_pos << clock; port clock _
}  The process runs once when the first event
% (positive edge on clock) is received. It
 Executes the assignment of din to dout, then
/I dff.cc returns control to the System kernel
#include "dff.h" » Another event causes the process to be
void dff::doit() { invoked again, and the assignment statement
dout = din; is executed again
}
2002 E.M. Aboulhamid 2

Module Constructor

» Creates and initializes an instance of a module
» Createstheinternal data structures
 |nitializes them to known values

* Instance name of the module is passed to the
constructor at instantiation

P helpsidentify the module when errors occur or
when reporting information from the module

2002 E.M. Aboulhamid 22

11



/f ram.h Constructor Example

#include "systemc.h"
SC_MODULE(ram) {
sc_in<int> addr;
sc_in<int> datain;
sc_in<bool> rwb;
sc_out<int> dout;
int memdata[64]; // local memory storage
int i;
void ramread();
void ramwrite();
SC_CTOR(ram){
SC_METHOD(ramread);
sensitive << addr << rwb;
SC_METHOD(ramwrite)
sensitive << addr << datain << rwb;
for (i=0; i++; i<64) {
memdata[i] = 0;

}

When aRAM moduleis
instantiated:
—the constructor called

—data dlocated for the
module

—the two processes
registered with the
kernel.

—the for loop executed b
initialize al the memory
locations of the newly
created ram module

}; 2002 E.M. Aboulhamid 23

TestBenches

* Provide stimulusto adesign under test (DUT) and check design results

e Can beimplemented in a number of ways

» Stimulus generated by one process and results checked by another
» Stimulus embedded in the main program and results checked in another

process

e Checking can be embedded in the main program, etc.

Main Module

Devin
Unider

Srimnlng + Test + Chasclig

Besultz

2002 E.M. Aboulhamid 24

12



/I count_stim.cc
/I count_stim.h #include "count_stim.h"
#include "systemc.h" void count_stim::stimgen() {
SC_MODULE(count_stim) { while (true) {
sc_out<bool> load; load = true; // load 0
sc_out<int> din; // input port din = 0;
sc_in<bool> clock; // input port wait(); // count up, value = 1
sc_in<int> dout; load = false;
void stimgen(); wait(); // count up, value = 2
SC_CTOR(count_stim) { wait(); // count up, value = 3
SC_THREAD(stimgen); wait(); / count up, value = 4
sensitive_pos (clock); wait(); // count up, value = 5
} wait(); // count up, value = 6
h wait(); // count up, value = 7
}
}
2002 E.M. Aboulhamid 5
Processes
26

2002 E.M. Aboulhamid




Process Basics

* Some behave like functions, started when called, and return
execution when complete

» Others: called only once at the beginning of simulation and either
actively executing or suspended waiting for a condition

» Condition: clock edge, a signal expression, combination of both
» No hierarchy b no process will call another process directly (?)
» Can call methods and functions that are not processes

» Have sensitivity lists: a list of signals that cause the process to be
invoked, whenever the value of a signal in this list changes

» May cause other processes to execute by assigning new values to
signals in the sensitivity list of the other process

e An event on a signal is a change in the value of the signal

« If a signal has a current value of 1 and a new assignment updates
the value to O
— An event will occur on the signal
— All processes sensitive to that signal will be activated

2002 E.M. Aboulhamid 27

Method Process

/I rev.h Il rev.cc
#include "systemc.h" #include "rcv.h"

#include "frame.h
SC_MODULE(rev) {
sc_in<frame_type> xin;
sc_out<int> id;
void extract_id();
SC_CTOR(rev) {
SC_METHOD(extract_id);
sensitive(xin);

1-

#include "frame.h"
void rev::extract_id() {
frame_type frame;
frame = xin;
if(frame.type == 1) {
id = frame.ida;
}else {
id = frame.idb;

}

1
J

g

module rcv has input xin, output id, a single method extract_id, sensitive to xin
When invoked, extract_id executes and assigns value to id
When terminates, control returned back to scheduler
When a method process is invoked, it executes until it returns.
recommended not write infinite loops within a method process otherwise
— control will never be returned back to the simulator

2002 E.M. Aboulhamid 28

14



Thread Processes

Can be suspended and reactivated

Can contain wait() functions that suspend process
execution until an event occurs on one of the signals the
process is sensitive to

An event reactivates a thread process from the
statement the process was last suspended

The process will continue to execute until the next wait()

The input signals that cause the process to reactivate
are specified by the sensitivity list.

The sensitivity list specified in the module constructor
— Same syntax used in Method Processes

2002 E.M. Aboulhamid 29

/] traff.h

#include "systemc.h"
SC_MODULE(traff) {
I/l input ports
sc_in<bool> roadsensor;
sc_in<bool> clock;
/I output ports
sc_out<bool> NSred;
sc_out<bool> NSyellow;
sc_out<bool> NSgreen;
sc_out<bool> EWred;
sc_out<bool> EWyellow;
sc_out<bool> EWgreen,;
void control_lights();
inti;
/I Constructor
SC_CTOR(traff) {
SC_THREAD(control_lights); // Thread Process
sensitive << roadsensor;
sensitive_pos << clock;

2002 b E.M. Aboulhamid 30

15



/] traff.cc

#include "traff.h"
void traff::control_lights() {
NSgreen = true; //...
while (true) {
while (roadsensor == false) wait();
NSyellow = true; // road sensor triggered, set NS to yellow ...
for (i=0; i<5; i++) wait();
EWgreen = true; // yellow interval over set EW to green ...
for (i= 0; i<50; i++) wait();
EWyellow = true; // times up for EW green, set EW to yellow...
for (i=0; i<5; i++) wait();
NSyellow = false; // times up for EW yellow set NS to green
for (i=0; i<50; i++) wait(); / wait one more long
Il interval before allowing
/I a sensor again

Thread processes implemented as co-routines
Slower than SC_METHOD processes

2002 E.M. Aboulhamid 31

Clocked Thread Process

Special case of a thread process
Help designers describe their design for better synthesis results

Only triggered on one edge of one clock, which matches the way hardware
is typically implemented with synthesis tools

Can be used to create implicit state machines within design descriptions
instead (the states are described by sets of statements with wait() function
calls between them)

This design creation style is simple and easy to understand

An explicit state machine would define the state machine states in a
declaration and use a case statement to move from state to state.

To illustrate the clock thread process, a bus controller example will be
presented.

The example is a bus controller for a microcontroller application. It is a very
simple design so that the design can be described easily.

Let's assume that we have a microcontroller with a 32-bit internal data path
Only one 8-bit external data path to get data to and from the controller.
Every address and data transaction will have to be multiplexed out over the
8-bit bus, 8 bits at a time.

This is a perfect application for an implicit state machine and an
SC_CTHREAD process.

2002 E.M. Aboulhamid 32

16



/] bus.h

#include "systemc.h"
SC_MODULE(bus) {
sc_in_clk clock;
sc_in<bool> newaddr;
SC_in<sc_uint<32> > addr;
sc_in<bool> ready;

sc_out<sc_uint<32> > data; e z | a

sc_out<bool> start; newadd B ™
sc_out<bool> datardy; “—-- Canirolles - Moasory
sc_inout<sc_uint<8> > data8; - X I E——
SC_uint<32> tdata; datandy P

sc_uint<32> taddr; - I

void xfer();
SC_CTOR(bus) {

SC_CTHREAD(xfer, clock.pos());

I/l ready to accept new address

datardy.initialize(true);

}

'2002 E.M. Aboulhamid 33

#include "bus.h"
void bus::xfer() {
while (true) {

// wait for a new address to appear
wait_until( newaddr.delayed() ==
true);
I/l got a new address so process it
taddr = addr.read();
/I cannot accept new address now
datardy = false;
/I new addr for memory controller
start = true;
data8 = taddr.range(7,0); wait();
/I wait 1 clock between data transfers
start = false;
data8 = taddr.range(15,8); wait();
data8 = taddr.range(23,16); wait();

/] bus.cc

/I now wait for ready signal from memory
/I controller

wait_until(ready.delayed() == true);

/I now transfer memory data to databus
tdata.range(7,0) = data8.read(); wait();
tdata.range(15,8) = data8.read(); wait();
tdata.range(23,16) = data8.read();
wait();

tdata.range(31,24) = data8.read();

data = tdata;

/l data is ready, new addresses ok
datardy = true;

Qe

data8 = taddr.range(31.24): wait():
RGeSy AV

2002 E.M. Aboulhamid 34

17



SC_CTHREAD particularities

Sc_cthread ! sc_thread

— Described in a module constructor not only by the name but also the
clock edge that triggers the process

— Does not have a separate sensitivity list

— Sensitivity list is the specified clock edge only

— Activated whenever the specified clock edge occurs

— Ex: process xfer will execute on every +ive edge of clock

— Port datardy to initialize it to true. In case a port is not yet bound, this is
the only

— signals assigned new values by an SC_CTHREAD process will be not
be available until after the next clock edge occurs

— Ex: aclock is passed to the bus module through port clock. Port clock is
an sc_in_clk port.

— pos() or neg() method of this port is passed to the SC_CTHREAD
constructor to specify the clock edge that triggers the process

2002 E.M. Aboulhamid 35

Walit Until

In an SC_CTHREAD process wait_until() methods can be used to control
the execution of the process.

The wait_until() method will halt the execution of the process until a specific
event has occurred.

This specific event is specified by the expression to the wait_until() method.
Ex: wait_until(roadsensor.delayed() == true);

halt execution of the process until the new value of roadsensor is true.

The delayed() method is required to get the correct value of the object
compilation error if delayed() method is not present.

Only a Boolean expression is allowed as argument of the wait_until()
function and

only Boolean signal objects can be used in the Boolean expressions.

Boolean si%nal objects include clock type sc_clock, signal type
sc_signal<bool>, and port types sc_in<bool>, sc_out<bool>, and
sc_inout<bool>.

Ex: wait_until(clock.delayed() == true && reset.delayed() == false);

2002 E.M. Aboulhamid 36

18



Watching

SC_CTHREAD processes, just like SC_THREAD processes,
typically have infinite loops that will continuously execute

A designer typically wants some way to initialize the behavior of the
loop or jump out of the loop when a condition occurs

This is accomplished through the use of the watching construct
The watching construct will monitor a specified condition

When this condition occurs control is transferred from the current
execution point to the beginning of the process, where the
occurrence of the watched condition can be handled

Only available for SC_CTHREAD processes

The delayed() function allows the compiler to identify signals that are
used in watching expressions

A lazy evaluation algorithm is used for these signals which
dramatically increases simulation performance

2002 E.M. Aboulhamid 37

Watching Example

// datagen.h /l datagen.cc

#include "systemc.h" #include "datagen.h"

SC_MODULE(data_gen) { void gen_data() {
sc_in_clk clk; if (reset == true) {

scC_inout<int> data;

sc_in<bool> reset;

void gen_data();

SC_CTOR(data_gen){
SC_CTHREAD(gen_data, clk.pos());
watching(reset.delayed() == true);

}

1
I7

2002 E.M. Aboulhamid

data = 0;

}

while (true) {
data = data + 1;
wait();
data = data + 2;
wait();
data = data + 4;
wait();

a—

38

19



Global Watching

e Watching expressions are tested at every active edge of the
execution of the process
b Signals tested at the wait() or wait_until() calls in the infinite loop
» Unexpected consequence of starting again the the process:
— All variables defined locally within the process lose their value.

b Variable value needed to be kept between invocations of the process,
declare it in the module, outside of the process

» Multiple watches can be added to a process
» The data type of the watched object must be of type bool

e This type of watching is called global watching and cannot be
disabled

« To watch different signals at different times, use local watching

2002 E.M. Aboulhamid 39

Local Watching

« Local watching allows you to specify exactly which section of the process is
watching which signals, and where the event handlers are located

¢ Functionality specified with 4 macros:
W_BEGIN
// put the watching declarations here
watching(...);
watching(...);
W_DO
/I This is where the process functionality goes

W_ESCAPE
/I This is where the handlers for the watched events go

it ()4

}
W_END

2002 E.M. Aboulhamid 40

20



About local watching

¢ All eventsin the declaration block have the same

priority

P If different priority needed then local watching blocks

need to be nested

» Worksin SC_CTHREAD processes

» Signalsin the watching expressions are sampled only
on the active edges of the process

» Globally watched events have higher priority than

locally watched events

2002 E.M. Aboulhamid 41

Interrupt Memory t

'0 Databus Transfer

/I watchbus.cc
#include "bus.h"

void bus::xfer() {

while (true) {
/l wait for a new address to appear
wait_until( newaddr.delayed() ==
true);
/I got a new address so process it
taddr = addr;
/I cannot accept new address now
datardy = false;
/I new addr for memory controller
start = true;
data8 = taddr.range(7,0); wait();
/I wait 1 clock between data transfers
start = false;

// wait for ready from memory
wait_until(ready.delayed() == true);
W_BEGIN
watching(reset.delayed());
/I reset will trigger watching
W_DO
/I the rest of this block is as before
/I transfer memory data to databus
tdata.range(7,0) = data8.read(); wait();
tdata.range(15,8) = data8.read(); wait();

tdata.range(23,16) = data8.read();wait();

tdata.range(31,24) = data8.read();
data = tdata;
/l data is ready, new addresses ok
datardy = true;
W_ESCAPE
if (reset) {
datardy = false;

data8 = taddr.range(15,8); wait(); }
data8 = taddr.range(23,16); wait(); W_END
data8 = taddrranae(31 24): wait(): }
A S A Sl AR v 1
2002 E.M. Aboulhamid 42

21



Ports and Signals

e Ports of a module

— External interface that pass information to and from a
module

— Trigger actions within the module

» Signals create connections between module ports
allowing modules to communicate

* A port can have three different modes of operation
— An input port transfers data into a module.
— An output port transfers data out from a module,

— An inout port transfers data both into and out of a
module depending on module operation

2002 E.M. Aboulhamid 43

Port binding

» A signal connects the port of one module to the port of another
* When a port is read the value of the signal connected to the port is
returned

* When a port is written the new value will be written to the signal
when the process performing the write operation has finished
execution, or has been suspended b

- all op?rations within the process will work with the same value of the
signa

— prevents some processes seeing the old value while other processes
see the new value during execution.

- All prcl)cesses executing during a time step will see the old value of the
signa

+ signal semantics same as VHDL signal operation and Verilog
deferred assignment behavior

2002 E.M. Aboulhamid 44

22



Scalar ports and signals

« C++ builtin types * SystemC types
— sc_int<n>
— long — sc_uint<n>
— int — sc_bigint<n>
_ char - sc_b?guint<n>
— sc_hit
— short — sc_logic
— float — sc_bv<n>
— double - sc_lvsn>
— sc_fixed
— sc_ufixed
— sc_fix
Ports described using the following syntax — sc_ufix
sc_in<porttype> // input port of type porttype — User defined structs
sc_out<porttype> // output port of type porttype

sc_inout<porttype> // inout port of type porttype

2002 E.M. Aboulhamid 45

R/W Ports and Signals

* For R/IW
— The read() and write() methods
— The assignment operator

» Using assignment operator: more concise and
more like HDL code

» Use the read() and write() methods explicitly
— To clarify the exact intent
— If an implicit type conversion needed

— The type that you are reading or writing is different
from the port type

2002 E.M. Aboulhamid 46

23



Array Ports and Signals

e Same syntax as C++
Il create ports a[0] to a[31] of type sc_logic
sc_in<sc_logic> a[32];
Il create signals i[0] to i[15] of type sc_logic
sc_signal<sc_logic> i[16];

2002 E.M. Aboulhamid 47

Resolved Logic Vectors

e Bus resolution becomes an issue when more
than one driver is driving a signal

}“’Il:ldl.'lk A [\iﬂdl'll‘-' A
X 1] L ‘}
PR Mlodule B
¥y=1 g=X
— =l H
—--I—--F - iy b
Mladnle
Modnle
5 i
—
2002 E.M. Aboulhamid 48

24



Port Binding

Ports are always bound to at most one signal
That signal may be a complex signal such as a structure
Signal binding occurs during module instantiation

When building a hierarchical design structure, modules are
instantiated within other modules to form the hierarchy of the design

» No signal needed when a top level module port is directly bound to a
lower level module port during instantiation

2002 E.M. Aboulhamid 49

Syntax

/linput resolved logic vector n bit wide
sc_in_rv<n> X;

/l output resolved logic vector n bit wide
sc_out_rv<n>y;

// inout resolved logic vector n bit wide
sc_inout_rv<n> z;

/Il resolved logic vector signal n bit wide
sc_signal_rv<n> sig3;

2002 E.M. Aboulhamid S0

25



/I statemach.h
#include "systemc.h"
SC_MODULE(state_machine) {
sc_in<sc_logic> clock;
sc_in<sc_logic> en;
sc_out<sc_logic> dir;
sc_out<sc_logic> status;
/I ... other module statements
il

Signal Binding

SC_CTOR(controller) {
/I .... other module statements
sl = new state_machine ("s1");
I/ special case port to port binding
s1->clock(clk);
// port en bound to signal Istat

/l controller.h

#include "statemach.h"

SC_MODULE(controller) {
sc_in<sc_logic> clk;
sc_out<sc_logic> count;
sc_in<sc_logic> status;
sc_out<sc_logic> load;
sc_out<sc_logic> clear
sc_signal<sc_logic> Istat;
sc_signal<sc_logic> down;
state_machine *s1;

s1l->en(Istat);

/I port dir bound to signal down
s1->dir(down);

Il special case port to port binding
s1->st(status);

}

2002

E.M. Aboulhamid 51

* Syntax

Clocks

Special objects in systemc.

sc_clock clock1("clockl1", 20, 0.5, 2, true);
— Create a clock object named clockl

— Period = 20 time units
— Duty cycle = 50%,

— First edge at 2 time units

— First value true.
e Default values

period = 1, the duty cycle =0.5, the first edge = 0, first value = true
» Typically created at the top level of the design in the testbench
» Passed down through the module hierarchy to the rest of the design
b areas of the design or the entire design to be synchronized by the

same clock

2002

E.M. Aboulhamid 52

26



Clock in the main

int sc_main(int argc, char*argv| ]) {

sc_signal<int> val,
sc_signal<sc_logic> load;
sc_signal<sc_logic> reset;
sc_signal<int> result;
sc_clock ck1("ck1", 20, 0.5, 0, true);
filter f1("filter");
f1.clk(ckl.signal());
fl.val(val);

fl.load(load);
fl.reset(reset);
fl.out(result);

/l rest of sc_main not shown

E.M. Aboulhamid

53

27



