
V H D L D e s i g n F l o w
L A B 1

Objective:
Familiarize yourself with the Design Analyzer and Behavioral Compilation. The design we’ll
work on is a FIR with 9 TAPs described in VHDL.
An FIR is simply a sliding dot product.

O(i) = K1*I(i-8) + K2*I(i-7) + K3*(i-6) + ... + K9*I(i)
 where O is the output vector, I is the input vector and Kx are the factors
 of the kernel (which are constants).
__

1. cd to your subdirectory day1.

2. Explore the VHDL code

3. To start the Design Analyzer, type: startsynopsys-3.4b

4. Analyze the design that we want to work on:

 File/Analyses...
 select the file fir.vhd and click OK (you can double-click on fir.vhd as a shortcut).

5. Go to Help/Commands...

Enter "elaborate" as Command Name then click Lookup Topic.
Which option specifies to include informations for the Behavioral Compiler?

Click Cancel to close the window.

6. We have to open a command window

because File/Elaborate... doesn’t include the option you just mentioned.
 Setup/Command Window

7. Now "elaborate" the design "fir" by entering:

 elaborate -s fir
(-s is a shorthand for the needed option)

The icons represents the designs. [Y=A+B] indicates that it is in an equation-based format and
the gate indicate that it is netlist-based.

8. Select ’fir’ by clicking on the icon over the name and go down in that design by clicking the

down arrow. (as a shortcut you can double-click on the icon). This is called the symbol view.

What are the inputs to the design?

LABS 1

What are the outputs?

Compare with the VHDL code

9. Now we will ask to estimate timings:

 bc_time_design

What is the minimum clock rate if we want to chain the mul and add in one cycle? (it is the
maximum delay to result_aut)

10. Select the input ’clk’ and go to Attributes/Clocks/Specify...

Set Period to 50, click Apply then Cancel.
You will see a little wave over the ’clk’ input to indicate that the input is driven by a clock. You
can double click on it to change the clock.

11. Verify that chaining is enabled:

 Setup/Variables...
Select the group "bc" and the variable "bc_enable_chaining" and make sure the value is "true".
Click Apply, then Cancel.

12. We can now save the timed design so that we can try different mappings without

recomputing timings:

 File/Save As...
 File Format: DB
 File Name: timed_fir.db
 Click OK.

13. Start the schedule process

(by default it optimizes for speed, with low effort). The "-io super" option specifies that we
want to keep IO order but not necessarily the time between IOs.
 schedule -io super

14. Ask to generate a report

(to know the different possible reports you can use Help/Commands...)
 report_schedule -summary

How many cycles does the ’main’ loop takes? __________________________
How many multipliers does the design takes?

LABS 2

How many adders does the design takes?

What is the total area?

15. Now we will try to reduce the cost of the design.

Reload the unscheduled design:
 File/Read... and double-click fir.db

16. To reduce the cost we can ask to schedule to minimize area instead of delay:

 schedule -io super -area

How many cycles does the ’main’ loop takes?

How many multipliers does the design takes?

How many adders does the design takes?

What is the total area?

You can see that it is much smaller, but chances are that this design is not the smallest.
You could have used the option "-effort high" to have better results but if you have an idea of
what you want, you can give constraints to achieve desired results. We can say that we want a
design that takes exactly 8 cycles and that we want the result to be written in the last cycle.
These constraints will guide the compiler more directly to the solution we want.

17. Reload the unscheduled design

18. Set constraints on the number of cycles:

 set_cycles 8 -from_begin fir_main/reset_loop/main -to_end fir_main/reset_loop/main
 set_cycles 1 -from fir_main/reset_loop/main/result_aut -to_end fir_main/reset_loop/main

19. Schedule the design:

 schedule -io super

How many multipliers does the design takes?
__

How many adders does the design takes?
__

20. Now if we’re satisfied with this design we can write out the RTL description of it.

 File/Save As...
LABS 3

 File Format: DB
 File Name: fir_schedule.db

21. Now we can compile the design to have it at gate level:

 Tools/Design Optimization

22. Look at some reports using Analysis/Report...

23. Now go to the Schematic View (with the gate button on the left icon bar, when you are in

Symbol View).

In this view you can ask to hilite the critical path with Analysis/Highlight/Critical Path.
You can zoom using right-click/Zoom and selecting a region.
LABS 4

 L a b 1 V H D L c o d e

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
package coeffs is
 type coef_arr is array (0 to 8) of signed(7 downto 0);
 constant coefs: coef_arr := coef_arr’(
 "00000001", "00001000", "00011100", "00111000", "01000110",
 "00111000", "00011100", "00001000", "00000001");
 end coeffs;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.coeffs.all;

entity fir is
 port (clk, reset: in std_logic;
 sample: in signed (7 downto 0);
 result: out signed (9 downto 0));
end fir;
LABS 5

architecture beh of fir is
begin
 fir_main: process
 type shift_arr is array (8 downto 0)
 of signed (7 downto 0);
 variable tmp: signed (7 downto 0);
 variable pro: signed (15 downto 0);
 variable acc: signed (17 downto 0);
 variable shift: shift_arr;
 begin
 reset_loop: loop
 for i in 0 to 7 loop -- zero out the shift register
 shift(i) := (others => ’0’);
 end loop;
 result <= (others => ’0’);
 wait until clk’event and clk = ’1’;
 if reset = ’1’ then exit reset_loop; end if;
 main: loop
 tmp := sample;
 pro := tmp * coefs(0);
 acc := conv_signed(pro, 18);
 for i in 7 downto 0 loop
 pro := shift(i) * coefs(i + 1);
 acc := acc + conv_signed(pro, 18);
 shift(i + 1) := shift(i);
 end loop;
 shift(0) := tmp;
 result <= acc(17 downto 8); -- synopsys line_label aut
 wait until clk’event and clk = ’1’;
 if reset = ’1’ then exit reset_loop; end if;
 end loop main;
 end loop reset_loop;
 end process;
end beh;
LABS 6

L A B 2

Objective:
In this lab we will use a different IO mode and we will map an array to a RAM.

The design is a simple wave generator which uses a wave table and linear
interpolation. We can change the wave and the playback frequency but not while
the wave is played.

__

1. cd to your subdirectory lab2.

2. Take a look at the file .synopsys_dc.setup that, this time, also specify which synthetic

libraries to use.

3. Also look at inter.vhd and notice that there are no clock specifications in the loops.

4. Edit the VHDL code to map the array to a RAM.

5. Start the Design Analyzer.

6. Analyze then elaborate the design ’inter’ (as in lab1).

7. Now specify a clock period of 30 ns (on pin ’clk’) and schedule the design like in lab1.

Are there any errors? ____

In the supersate_fixed IO mode, that we used in lab1, we must specify at least one clock cycle in
each loop. In the free_floating IO mode, the scheduler can place IO operations at any clock
cycle, so we don’t have to specify clock boundaries. The wait specified at the end of the
reset_loop is just so that Synopsys can infer a global synchronous reset.

8. Retry the scheduling with the free_floating IO mode.

 schedule -io free

How many cycles does the read loop takes? ____
How many cycles does the write loop takes? ____
What is the estimated area? ____
LABS 7

9. Look at the states for the read loop in the abstract FSM.

 report_schedule -abs

Which operations are in the:
first cycle of the loop? __
second cycle of the loop? __
third cycle of the loop? __

Is there any chained operations? ________

We can see that the RAM is fast; it is made of d flip/flop, so it’s also big. Synopsys doesn’t
recommend to use a DW03_ram with a size larger than 64 words.

10. Modify the VHDL source so that we can change the data in the RAM while the wave is

playing.

To do this you must have only one loop and move the read out of the case. You must have one
read and one write address; use the cmd that was used for read to change the write address.
(a solution is in the file solutions/inter_fd.vhd)

11. Schedule the design with the same parameters as the last one.

How many cycles does the loop takes? ____
What is the estimated area? ____

12. Look at the operation schedule report.

What do you think is limiting the speed of the loop? _____________

13. Now change the DW03_ram1 for a DW03_ram2 (which has dual port).

Does the loop takes less cycles? ____

In the next lab we will see how to do a faster design with pipelining.
LABS 8

V H D L c o d e l a b 2

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
library synopsys;
use synopsys.attributes.all;
library dware;
use dware.behavioral.all;

entity inter is
port(clk:in bit;

reset:in bit;
din:in unsigned (15 downto 0);
cmd:in integer range 0 to 3;
dout:out signed (15 downto 0));

end inter;

architecture beh of inter is
type ram_type is array (0 to 2**8-1) of signed (7 downto 0);

begin
inter_main: process

variable addr: unsigned (15 downto 0);
variable incr: unsigned (15 downto 0);
variable ss:ram_type; -- uncomment next 3 lines to map variable to ram
-- constant ss_ram : resource := 0;
-- attribute variables of ss_ram : constant is "ss";
-- attribute map_to_module of ss_ram : constant is "DW03_ram1_s_d";
-- Note: 1_s_d is sigle port synchronous d flip/flop

function interpolate(s1,s2: signed (7 downto 0); t: unsigned (7 downto 0))
 return signed is
begin

return conv_signed(s1 + t*(s2-s1),16);
end interpolate;

begin
reset_loop:loop

case cmd is
 when 0 =>
 read:loop
 dout <= interpolate(ss(conv_integer(addr(15 downto 8))),

ss(conv_integer(addr(15 downto 8))+1),
addr(7 downto 0));
LABS 9

 addr := addr + incr;
 end loop;
 when 1 =>
 write:loop
 ss(conv_integer(addr(15 downto 8))) := conv_signed(din(7 downto 0),8);
 addr(15 downto 8) := addr(15 downto 8)+1;
 end loop;
 when 2 =>
 addr := din;
 when 3 =>
 incr := din;
end case;
wait until clk’event and clk = ’1’;
if reset = ’1’ then exit reset_loop; end if;
end loop;

end process;
end beh;
LABS 10

L A B 3

Objective:
Experiment speed optimization techniques and in particular using pipelined loops.
The design is the same as lab2.

1. cd to your subdirectory lab3.

The file inter.vhd is like the one at the end of lab2.

2. Start the Design Analyzer.

3. Analyze and elaborate the design ’inter’.

4. Set the clock to 33 MHz (30 ns clock period).

We have seen in lab2 that the loop takes 4 cycles, now we will try to pipeline it to have better
performances.

5. Pipeline the design

The initialization interval must be at least 2 because a memory write takes 2 cycles of the same
resource.
We know that the latency must be at least 4 and it must be a multiple of the initialization interval
so we can try 4.

 pipeline_loop inter_main/the_loop -latency 4 -init 2

Try to schedule the design.

Why does it fails? ___

The compiler assumes that there are dependencies between read and writes in our loop because
it doesn’t know that the addresses are not the same.
We can specify that we want to ignore these possibly false dependencies.

6. Now we ask to ignore precedencies on all memory operations:

 labels = find("-hier","cell","MEM*")
 ignore_memory_loop_precedences labels
 ignore_memory_precedences -from labels -to labels

7. Retry to schedule.
LABS 11

It still fails (but with much less information on why).

8. We can try with an initialization interval of 3 cycles:

 pipeline_loop inter_main/the_loop -latency 6 -init 3

9. Retry to schedule.

Now it works! And if you don’t ignore memory precedences it fails also with this initialization
interval.

To get the cycles down, because we always read consecutive locations, we could use interleaved
memory.

10. Modify the VHDL source to have two RAMs, one for even and one for odd addresses.

(a solution is in the file solutions/inter_fd2i.vhd)

11. We can schedule the design with an interval of 2 cycles at 40 MHz (25 ns clock period) with

a latency of 8 cycles.

What is the estimated area? ____
How does it compares to the area of the initial design (at start of lab2)? __________________
LABS 12

V H D L c o d e L A B 3

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
library synopsys;
use synopsys.attributes.all;
library dware;
use dware.behavioral.all;

entity inter is
port(clk:in bit;

reset:in bit;
din:in unsigned (15 downto 0);
cmd:in integer range 0 to 3;
dout:out signed (15 downto 0));

end inter;

architecture beh of inter is
type ram_type is array (0 to 2**8-1) of signed (7 downto 0);

begin
inter_main: process

variable raddr: unsigned (15 downto 0);
variable waddr: unsigned (7 downto 0);
variable incr: unsigned (15 downto 0);
variable ss:ram_type; -- next 3 lines map variable to ram
 constant ss_ram : resource := 0;
 attribute variables of ss_ram : constant is "ss";
 attribute map_to_module of ss_ram : constant is "DW03_ram2_s_d";
-- Note: 2_s_d is dual port synchronous d flip/flop

function interpolate(s1,s2: signed (7 downto 0); t: unsigned (7 downto 0))
 return signed is
begin

return conv_signed(s1 + t*(s2-s1),16);
end interpolate;

begin
the_loop:loop
dout <= interpolate(ss(conv_integer(raddr(15 downto 8))),

 ss(conv_integer(raddr(15 downto 8))+1),
 raddr(7 downto 0));

raddr := raddr + incr;

case cmd is
LABS 13

 when 0 =>
 waddr := din(15 downto 8);
 when 1 =>
 ss(conv_integer(waddr)) := conv_signed(din(7 downto 0),8);
 waddr := waddr+1;
 when 2 =>
 raddr := din;
 when 3 =>
 incr := din;
end case;
wait until clk’event and clk = ’1’;
if reset = ’1’ then exit the_loop; end if;
end loop;

end process;
end beh;
LABS 14

L A B 4

Objective:
Familiarize yourself with RTL compiling and optimization of hierarchical designs. Two
different modes for optimizing will be shown, one that optimizes each part localy (maintaining
hierarchy) and the other first collapses the hierarchy to do a more global optimization.
The design is a PCM coder and decoder that is similar to A-law. The encoder takes a 12 bit
signed PCM signal and output an 8 bit (1 for sign, 3 for exponent and 4 for mantissa). This is a
lossy coding: that is you can’t recover the exact original data from the code.

1. Look at the files coder.vhd, decoder.vhd and codec.vhd.

2. Complete the decoder where there are comments describing what to do.

3. Start the Design Analyzer.

4. First we analyze the designs:

 File/Analyze...

You can select multiple files by using the middle mouse button:
 left click: coder.vhd
 middle click: decoder.vhd
 middle click: codec.vhd
Then click OK

5. Now we can elaborate the top design:

 File/Elaborate...
 Click on library WORK
 Click on design CODEC(SCHEMATIC)
 OK

Instead or Analyze then Elaborate, we can use Read which does that
automatically.

You should see the icons for the three designs.

6. Select the CODEC and link the lower modules:

 Analysis/Link Design...
 OK

7. We will optimize and compile the CODEC for minimum area.
LABS 15

 Select the CODEC
 Attributes/Optimization Constraints/Design Constraints...
 Max Area: 0
 Apply
 Cancel
 Tools/Design Optimization...
 OK

8. Take a look at the Compile Log window. Which designs were optimized?

This is known as "hierarchical compile".
Look at the area for each trial. Has the compiler been able to optimize? _____

9. Ask for report on the area, timing and references.

 Analysis/Report...
 Area, Timing, References
 Apply
 Cancel

 Does the hierarchy still exist? ____
 Total area: ____ CODER area: ____ DECODER area: ____
 Time of critical path: ____

10. Go to the schematic view of the CODEC. (By using the down arow and the the gate button

on left icon bar)

11. You can click on a sub-design and go down into it, walk around the hierarchy.

12. From the schematic view of the CODEC, save the design.

13. Collapse one level of the hierarchy:

 Select the CODER and DECODER instances. (middle click to select more than one)
 Edit/Ungroup...
 Ungroup One Level
 OK

14. Now reoptimize the design.

 Total Area: ____ Critical Path: ____

 Compare the results with hierachical optimization.
LABS 16

Collapsing the hierarchy can lead to a better realization of the circuit because it doesn’t try only
to optimize each part individually without changing their comportment, it does optimization on
the whole circuit.
This can be very time consuming for large circuits and thus it should be used with care.

We have seen in this example that some times it doesn’t help to collapse. We will now try the
same thing on another design.

15. Modify the codec.vhd source so that it decodes then encode instead of the other way.

16. Redo the whole process with this new design.

Hierarchical compile area: ____
Collapsed compile area: ____
What happend? ___

The coding used is lossy, so when you encode and then decode you don’t have the same data in
input and output. The encode-decode could be optimized but it is hard to find how by checking
the circuits (the compiler can’t guess that the decoder is approximately the inverse of the coder).
On the other hand, if you decode then encode you’ll have the same encoded stream as the
original. When you collapse the hierarchy, the compiler can simplify the big function and find
that the outputs are the same as the inputs. That’s why there’s no more circuit, only a little
connection.
LABS 17

V H D L c o d e L A B 4

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity CODEC is
 port(DIN: in STD_LOGIC_VECTOR(11 downto 0);
 DOUT: out STD_LOGIC_VECTOR(11 downto 0));
end;

architecture SCHEMATIC of CODEC is
 signal CONNECT : STD_LOGIC_VECTOR(7 downto 0);

 component CODER
 port(DATA: in STD_LOGIC_VECTOR(11 downto 0);

 DOUT: out STD_LOGIC_VECTOR(7 downto 0));
 end component;

 component DECODER
 port(DATA: in STD_LOGIC_VECTOR(7 downto 0);

 DOUT: out STD_LOGIC_VECTOR(11 downto 0));
 end component;

begin
 CODE: CODER Port Map (DIN, CONNECT);
 DECODE: DECODER Port Map (CONNECT, DOUT);
end SCHEMATIC;

-- TEMP_DATA is the input data (if the sign is 1, TEMP_DATA is inverted)
--
-- TEMP_DATA = gives as DOUT:
-- 0000000wxyz s000wxyz
-- 0000001wxyz s001wxyz
-- 000001wxyza s010wxyz
-- 00001wxyzab s011wxyz
-- 0001wxyzabc s100wxyz
-- 001wxyzabcd s101wxyz
-- 01wxyzabcde s110wxyz
-- 1wxyzabcdef s111wxyz

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
LABS 18

entity CODER is
 port(DATA: in STD_LOGIC_VECTOR(11 downto 0);
 DOUT: out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture LOGIC of CODER is
begin
 process(DATA)
 variable TEMP_DATA : STD_LOGIC_VECTOR(10 downto 0);
 variable SIGN : STD_LOGIC;
 variable EXP : STD_LOGIC_VECTOR(2 downto 0);
 begin
 SIGN := DATA(11);
 if (SIGN = ’0’) then
 TEMP_DATA(10 downto 0) := DATA(10 downto 0);
 else
 TEMP_DATA(10 downto 0) := not DATA(10 downto 0);
 end if;

 EXP := "111";
 for I in 6 downto 0 loop
 if (TEMP_DATA(I+4) = ’1’) then-- check for the first 1
 EXP := CONV_STD_LOGIC_VECTOR(CONV_UNSIGNED(I,3),3);
 TEMP_DATA(3 downto 0) := SHR(TEMP_DATA, EXP)(3 downto 0);
 exit;
 end if;
 end loop;

 DOUT(7) <= SIGN;
 DOUT(6 downto 4) <= EXP;
 DOUT(3 downto 0) <= TEMP_DATA(3 downto 0);
 end process;

end LOGIC;
--
-- TEMP_DATA= for input DATA=
-- 0000000wxyz s111wxyz
-- 0000001wxyz s000wxyz
-- 000001wxyza s001wxyz
-- 00001wxyzab s010wxyz
-- 0001wxyzabc s011wxyz
-- 001wxyzabcd s100wxyz
-- 01wxyzabcde s101wxyz
-- 1wxyzabcdef s110wxyz
--
LABS 19

-- The result is inverted if the sign bit (s) is 1

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity DECODER is
 port(DATA: in STD_LOGIC_VECTOR(7 downto 0);
 DOUT: out STD_LOGIC_VECTOR(11 downto 0));
end;

architecture LOGIC of DECODER is
begin
 process(DATA)
 variable TEMP_DATA : STD_LOGIC_VECTOR(10 downto 0);
 variable SIGN : STD_LOGIC;
 variable EXP : STD_LOGIC_VECTOR(2 downto 0);
 begin
 SIGN := DATA(7);
 EXP := DATA(6 downto 4);
 TEMP_DATA(3 downto 0) := DATA(3 downto 0);

 -- Check the EXP
 -- if it is 111...
 -- if not, shift the data...

 -- If SIGN = 1 complement the data

 DOUT(11) <= SIGN;
 DOUT(10 downto 0) <= TEMP_DATA;
 end process;

end LOGIC;
LABS 20

L A B 5

Objective:
Experiment with finite state machines and different encoding styles.
The design is a finite state machine that controls the unlocking of a 3 button door lock system.
If you enter the correct code, an UNLOCK signal is sent.

1. First take a look at the lock.vhd file and complete it.

2. Start the Design Analyzer

3. Read in the design:

 File/Read...
 lock.vhd

4. Look at the log.

What is the width of the state register? ____

Before we can extract an FSM from the equation based representation of the VHDL code we
must replace the synthetic components with mapped netlists.

5. To do that, open a command window and ask to:

 replace_synthetic

6. Now we can extract the FSM:

 Select the LOCK design
 Tools/Finite State Machines...
 Extract FSM from Netlist/Define the Legal States
 OK
 Cancel

In a more complex design, which have a little more than the FSM (like latched output), we
should group the components of the FSM before the extraction.

The icon now says that the design is in state table format. In that format you can easily chage
the encoding style and ask to minimize the number of states.
Save the deign in the state table format as lock.st:
 File/Save As...
 File Format: State Table
LABS 21

 FIle Name: lock.st

7. You can look at the file to verify if it matches the described FSM.

Is it correct? ____

8. We will first compile the FSM using the default encoding generated by the analyzer:

 Tools/Finite State Machines...
 State Encodings
 OK
 Compile
 OK

9. Now look at some reports:

 Analysis/Report...
 FSM
 Area
 Timing
 Set Options...
 Path Delay Type: Maximum
 All Register Data Pins
 OK
 Apply

What is the encoding length? ____
What is the cell area? ____
How long is th critical path? ____

To specify a new encoding style we must return to the state table format. Reload the file you
just saved (with Read).

As a second encoding we’ll ask Synopsys to try to find by itself a good one.

10. We remove all predefined encodings and then recompile:

 Select the LOCK design
 Tools/Finite State Machines...
 State Encodings
 Clear All
 OK
 Compile
 OK

What is the encoding length? ____
What is the cell area? ____
How long is th critical path? ____
LABS 22

11. Reload the file to try a last encoding style.

We’ll now try one-hot:
 Tools/Finite State Machines...
 State Encodings...
 One Hot
 OK
 Compile
 OK

What is the encoding length? ____
What is the cell area? ____
How long is th critical path? ____

Which encoding style was the smallest? _______
Which encoding style was the fastest? _______

Now we will look a a bigger design. Look at the file proto.vhd, it is the description of a
communication protocol.

12. Read the design.

13. Replace the synthetic components with mapped netlists.

14. Now we must separate the FSM from the rest of the design.

For simple designs we can use the "group -fsm" command which will try to do it by itself. This
always find something that is an FSM but may have a lot of inputs.
In this design we will separate it by hand (which is not generally a good idea). The normal way
to have a well separated design is to write the VHDL code for each part and to use hierarchy.
So here is presented away to separate a design if we don’t have the high level description of it.

15. First we must find a cut that looks fine. For this design we have found a "good looking" cut.

Separate the design using the following commands:
 find cell {bound* cnt* m* n* r* *cell* lte* U108 U194 U195 U196 U197 U198 U199 U200
U216 U217 U218 U219 U235 U236 U240 U242 U243 U247 }
 group dc_shell_status -design_name ET_data_path -cell_name data_path -except {*cell*40/
U73/U1}
 group -design_name ET_fsm -cell_name fsm -except {Logic0 Logic1 data_path}
LABS 23

Go down in the design ET_fsm.

What are the inputs of the FSM?
__
What are the outputs in general? ___
Does it looks normal for a control FSM? ______

16. Now we can extract the FSM:

 Tools/Finite State Machines...
 Extract FSM from Netlist/Define the Legal States

17. Then we have to specify a valid state and ask to extract all the reachable states from this one.

 State: S0
 Encoding: 0000
 Edit/Add
 Also extract all reachable states
 OK
 Cancel

18. Then we can save it as a state table.

19. Look at the state table.

It is hard to recognize the protocol but in this format you can change the encoding and minimize
the number of states.
LABS 24

L A B 5 V H D L c o d e

Library IEEE;
use IEEE.std_logic_1164.all;

entity LOCK is
 port(X: in STD_LOGIC_VECTOR(2 downto 0);
 CLOCK, RESET: in STD_LOGIC;
 UNLOCK: out STD_LOGIC);
end;

architecture FSM of LOCK is
 type STATE_TYPE is (S0, S1, S2, GOOD, BAD);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

 attribute state_vector : STRING;
 attribute state_vector of FSM: architecture is "CURRENT_STATE";
begin
 process(CURRENT_STATE, X)
 begin
 NEXT_STATE <= BAD;
 UNLOCK <= ’0’;
 case CURRENT_STATE is
 -- Add the transitions here
 -- Make the lock to recognize the sequence 010, 001, 100
 when GOOD =>
 UNLOCK <= ’1’;

NEXT_STATE <= GOOD;
 when BAD =>

NEXT_STATE <= BAD;
 end case;
 end process;

 process(CLOCK, RESET)
 begin
 if RESET = ’0’ then
 CURRENT_STATE <= S0;
 else
 if CLOCK’event and CLOCK = ’1’ then

CURRENT_STATE <= NEXT_STATE;
 end if;
 end if;
 end process;
end FSM;
LABS 25

package proto is
type state is (idle, w_conn, connected, w_send, blocked,
sending,send2,send3, w_disc);
type message_in is (send_req,cc,data_req,token_g,resume,bloc,ackn,dis_req);
type message_out is (cr1,send_conf,dt,tok_rel, monit_cpl,dis_req,dis_ind);
end proto;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.proto.all;

entity ET is
 port (command: in message_in; clk: in bit; reset: in bit;
 m_out: out message_out ; n,b: in signed(7 downto 0); n_out: out
signed(7 downto 0));
end ET;
architecture Rec of ET is
 signal currentS, nextS: state;
 attribute state_vector: string;
 attribute state_vector of Rec: architecture is "currentS";
begin
 COMB: process(currentS, command)
 variable bound, nb_seg,nb,cnt: signed(7 downto 0);
 begin
 case currentS is
 when idle => if command = send_req then m_out <= cr1; nextS <=
w_conn;
 else nextS <= currentS; end if;

 when w_conn => if command = cc then m_out <= send_conf; nextS <=
connected;
 elsif (command = dis_req) then nextS <= idle;
m_out <=dis_ind;
 else nextS <= currentS; end if;

 when connected => if command = data_req then m_out <= send_conf;
 nb_seg := n; bound:= b; nb:=conv_signed(0,8);
cnt:=conv_signed(0,8);
 nextS <= w_send;
 else nextS <= currentS; end if;

 when w_send => if command = token_g then m_out <= dt; n_out <= nb;
 nb := nb+1; nextS <= sending;
 else nextS <=currentS;
LABS 26

 end if;
 when sending => if (command = ackn) and (nb <nb_seg) then

m_out<= dt; n_out <= nb;
 nb := nb+1; nextS <= sending;
 elsif(command = ackn) and (nb = nb_seg) then
 m_out <= monit_cpl; n_out <= cnt; nextS <= send2;
 elsif(command = bloc) then
 cnt:= cnt+1; nextS <= blocked;
 else nextS <= currentS; end if;

 when send2 => m_out <= tok_rel; nextS <= send3;
 when send3 => m_out <= dis_req; nextS <= w_disc;

 when blocked => if (command = resume) and (cnt <= bound) then nextS
<= sending;
 elsif cnt > bound then
 m_out <= monit_cpl; n_out <= cnt; nextS <= send2;

 else nextS <= w_send; end if;
 when w_disc => if (command = dis_req) then m_out <=dis_ind; nextS
<= idle;
 else nextS <= currentS; end if;
 when others => nextS <= idle;
 end case;
 end process; -- Outputs not registered

 SYNC: process(clk, reset)
 begin
 if reset = ’0’ then
 currentS <= idle; -- Async reset
 else
 if clk’event and clk = ’1’ then

currentS <= nextS;
 end if;
 end if;
 end process;
end Rec;
LABS 27

P r o t o c o l c a s e s t u d y

t1

t2

Wait

idle

Connected

WaitSending

Sending

Blocked

WaitDisconnected

t3

t4

t5

t6

t7

t9 t10

t11

t12

t16

t17

t13 t14

t15

?sendrequest
!cr

?cc

!send_confirm

?datarequest(sdu,n,b)
number:=0
counter:=0
no_of_segment:=n
blockbound:=b

?token_give
!dt(number)
number:=number+1

?resume

!token_release

t7:
?ack
number==no_of_segment
!monitor_complete
!token_release
!dis_request

t8

t8:
?ack
number<no_of_segment

!dt(number)

number:=number+1

t9:
?block

counter:=counter+1

t10:

counter<=blockbound

counter>blockbound
!token_release
!monitor_complete
!dis_request

counter<=blockbound
!token_release

?resume ?block

?ack

?dis_request
!dis_indication

?dis_request
!dis_indication

Connection
LABS 28

package types is
 type state is (idle, w_conn, connected, w_send, blocked, sending,send2,send3, w_disc);
 type message_in is (send_req,cc,data_req,token_g,resume,bloc,ackn,dis_req);
 type message_out is (no_cr1,send_conf,dt,tok_rel, monit_cpl,dis_req,dis_ind);
 type manip is (none, assign, inc_nb , inc_cnt);
 type return_value is (nothing, ret_cnt, ret_nb);
end types;

--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.types.all;

entity TOP is
 port (clk,rst: in bit; command: in message_in;
 n,b: in signed(7 downto 0);
 m_out: out message_out ; n_out: out signed(7 downto 0));
end TOP;
architecture schematic of TOP is
signal nb_eq_nb_seg,nb_less_nb_seg, cnt_le_bound: boolean;
signal order : manip;
signal ret_order: return_value;

component fsmct
 port (clk: in bit; command: in message_in;
 nb_eq_nb_seg, nb_less_nb_seg, cnt_le_bound: in boolean;
 order : out manip; ret_order: out return_value;
 m_out: out message_out);
end component;

component Data_path
 port (clk,rst: in bit; order: in manip; ret_order: in return_value;
 n,b: in signed(7 downto 0);
 nb_eq_nb_seg, nb_less_nb_seg, cnt_le_bound: out boolean;
 n_out: out signed(7 downto 0));
end component;

begin
 fsm_c:fsmct
 port map (clk, command,
 nb_eq_nb_seg, nb_less_nb_seg, cnt_le_bound,
LABS 29

 order, ret_order,
 m_out);
 data_c:Data_path
 port map (clk,rst, order, ret_order,
 n,b,
 nb_eq_nb_seg, nb_less_nb_seg, cnt_le_bound,
 n_out);
end schematic;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.types.all;

entity fsmct is
 port (clk: in bit; command: in message_in;
 nb_eq_nb_seg, nb_less_nb_seg, cnt_le_bound: in boolean;
 order : out manip; ret_order: out return_value;
 m_out: out message_out);
end fsmct;
architecture Rec of fsmct is
 signal currentS, nextS: state;
 attribute state_vector: string;
 attribute state_vector of Rec: architecture is "currentS";
begin
 COMB: process(currentS, command, nb_eq_nb_seg, nb_less_nb_seg, cnt_le_bound)
 variable bound, nb_seg,nb,cnt: signed(7 downto 0);
 begin
 -- preventing latches
 order <= none; ret_order <= nothing; m_out <= no_sign;

 case currentS is
 when idle =>
 if command = send_req then m_out <= cr1; nextS <= w_conn;
 else nextS <= currentS; end if;

 when w_conn =>
 if command = cc then m_out <= send_conf; nextS <= connected;
 elsif (command = dis_req) then nextS <= idle; m_out <=dis_ind;
 else nextS <= currentS; end if;

 when connected =>
 if command = data_req then m_out <= send_conf;
 order <= assign;
LABS 30

 nextS <= w_send;
 else nextS <= currentS; end if;

 when w_send => if command = token_g then m_out <= dt; ret_order <= ret_nb;
 order <= inc_nb; nextS <= sending;
 else nextS <=currentS;
 end if;
 when sending => if (command = ackn) and nb_less_nb_seg then
 m_out <= dt; ret_order <= ret_nb;
 order <= inc_nb; nextS <= sending;
 elsif(command = ackn) and nb_eq_nb_seg then
 m_out <= monit_cpl; ret_order <= ret_cnt; nextS <= send2;
 elsif(command = bloc) then
 order <= inc_cnt; nextS <= blocked;
 else nextS <= currentS; end if;

 when send2 => m_out <= tok_rel; nextS <= send3;
 when send3 => m_out <= dis_req; nextS <= w_disc;

 when blocked => if (command = resume) and cnt_le_bound then nextS <= sending;
 elsif (not cnt_le_bound) then
 m_out <= monit_cpl; ret_order <= ret_cnt; nextS <= send2;
 else nextS <= w_send; end if;
 when w_disc => if (command = dis_req) then m_out <=dis_ind; nextS <= idle;
 else nextS <= currentS; end if;
 when others => nextS <= idle;
 end case;
 end process;

 SYNC: process
 begin
 wait until clk’event and clk = ’1’;
 currentS <= nextS;
 end process;
end Rec;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use work.types.all;

entity Data_path is
 port (clk,rst: in bit; order: in manip; ret_order: in return_value;
 n,b: in signed(7 downto 0);
LABS 31

 nb_eq_nb_seg, nb_less_nb_seg, cnt_le_bound: out boolean;
 n_out: out signed(7 downto 0));
end Data_path;

architecture high of Data_path is
 signal bound, nb_seg,nb,cnt: signed(7 downto 0);

begin

 nb_eq_nb_seg <= nb = nb_seg;
 nb_less_nb_seg <= nb < nb_seg;
 cnt_le_bound <= (cnt <= bound);

 process(ret_order,cnt,nb)
 begin
 if ret_order = ret_cnt then n_out <= cnt;
 elsif ret_order = ret_nb then n_out <= nb;
 else n_out <= (others => ’0’);
 end if;
 end process;

 process

 begin
 wait until clk’event and clk = ’1’;
 if rst =’1’ then
 bound<=(others=>’0’);
 nb_seg<=(others=>’0’);
 nb<= (others=>’0’);
 cnt <= (others=>’0’);
 end if;
 if order = assign then
 nb_seg <= n; bound<= b; nb<=conv_signed(0,8);
 cnt<=conv_signed(0,8);
 elsif order = inc_nb then nb <= nb+1;
 elsif order = inc_cnt then cnt<= cnt+1;
 end if;
 end process;
end high;
LABS 32

L A B 6

Objective:
In this lab we will see how to compile a technology file to do gate level simulation with that
technology.
The design used is the coder/decoder of lab4.

1. Take a look at the file test.vhd, it describes the simulation.

It feeds the input of a coder with values from the file dec.tv, the output of the coder is sent to a
decoder.

We will start with a simple simulation of the source VHDL files.

2. In your shell window analyze the vhdl files:

 vhdlan coder.vhd
 vhdlan decoder.vhd
 vhdlan test.vhd

3. You can then start the simulation in text mode:

 vhdlsim CFG_TB

4. Then you just have to type "run" to start executing the test.vhd file.

The format used by test.vhd for the output is: Input => Coded => Decoded

Does the circuit do what was specified? ____
(Look at the description of the coding and decoding at the top of the .vhd files)

Type "quit" to return to the shell.

Now we are going to simulate it at gate level with the class technology.

5. First we can extract simulation components from the synthesis library:

 liban -arch FTGS $SYNOPSYS/libraries/syn/class.db

This generates two files: class_components.vhd and class_FTGS.vhd.E (encrypted vhdl).
Analyze these two files with vhdlan (the FTGS file will take time to analyze and generates about
6MB of data).

6. Now compile the coder.vhd and decoder.vhd unsing Design Analyzer and save the result in
LABS 33

VHDL format in the files coder_gl.vhd and decoder_gl.vhd.

7. Edit the files to give different names to the entities (CODER_S and DECODER_S).

8. Analyze these two files

9. Modify the test.vhd file to have the two circuits run in parallel (before and after synthesis)

and compare the results.

(a solution is in solutions/test2.vhd)
Analyze the file and start the simulator.
Use "run > mesg" to start the simulation.

Do the two circuits give the same results? ____

10. Look at the file mesg that contains all the warnings that occured in the simulation.

As you can see there are glitches but the output realy is correct after 20 ns.
LABS 34

L A B 6 V H D L C O D E

-- VHDL Test Bench

use STD.textio.all;
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_textio.all;

entity TB is
end TB;

Architecture TESTBENCH of TB is
 signal CIN : STD_LOGIC_VECTOR(11 downto 0);
 signal DIN : STD_LOGIC_VECTOR(7 downto 0);
 signal DOUT : STD_LOGIC_VECTOR(11 downto 0);

 component DECODER
 port(DATA: in STD_LOGIC_VECTOR(7 downto 0);
 DOUT: out STD_LOGIC_VECTOR(11 downto 0));
 end component;
 component CODER
 port(DATA: in STD_LOGIC_VECTOR(11 downto 0);
 DOUT: out STD_LOGIC_VECTOR(7 downto 0));
 end component;

begin
 DEC : DECODER
 Port Map (DIN, DOUT);

 COD : CODER
 Port Map (CIN, DIN);
 process

 file TV : TEXT is in "dec.tv";
 variable L : LINE;
 variable ARR : STRING (1 to 4) := " => ";
 variable C_IN : STD_LOGIC_VECTOR (11 downto 0);

 begin

 --Get a vector
 readline (TV,L);
 read (L,C_IN);
LABS 35

 --Assign input values
 CIN <= C_IN;

 --Wait
 wait for 20 ns;

 --Check output values
 write(L,CIN);
 write(L,ARR);
 write(L,DIN);
 write(L,ARR);
 write(L,DOUT);
 writeline(OUTPUT,L);

 if endfile(TV) then wait; end if;
 end process;

end TESTBENCH;

configuration CFG_TB of TB is
 for TESTBENCH
 for DEC: DECODER

use entity work.DECODER(LOGIC);
 end for;
 for COD: CODER

use entity work.CODER(LOGIC);
 end for;
 end for;
end CFG_TB;
LABS 36

	VHDL Design Flow LAB 1
	Objective:
	1. cd to your subdirectory day1.
	2. Explore the VHDL code
	3. To start the Design Analyzer, type: startsynops...
	4. Analyze the design that we want to work on:
	5. Go to Help/Commands...
	6. We have to open a command window
	7. Now "elaborate" the design "fir" by entering:
	8. Select 'fir' by clicking on the icon over the n...
	9. Now we will ask to estimate timings:
	10. Select the input 'clk' and go to Attributes/Cl...
	11. Verify that chaining is enabled:
	12. We can now save the timed design so that we ca...
	13. Start the schedule process
	14. Ask to generate a report
	15. Now we will try to reduce the cost of the desi...
	16. To reduce the cost we can ask to schedule to m...
	17. Reload the unscheduled design
	18. Set constraints on the number of cycles:
	19. Schedule the design:
	20. Now if we're satisfied with this design we can...
	21. Now we can compile the design to have it at ga...
	22. Look at some reports using Analysis/Report...
	23. Now go to the Schematic View (with the gate bu...

	Lab1 VHDL code
	LAB 2
	Objective:
	1. cd to your subdirectory lab2.
	2. Take a look at the file .synopsys_dc.setup that...
	3. Also look at inter.vhd and notice that there ar...
	4. Edit the VHDL code to map the array to a RAM.
	5. Start the Design Analyzer.
	6. Analyze then elaborate the design 'inter' (as i...
	7. Now specify a clock period of 30 ns (on pin 'cl...
	8. Retry the scheduling with the free_floating IO ...
	9. Look at the states for the read loop in the abs...
	10. Modify the VHDL source so that we can change t...
	11. Schedule the design with the same parameters a...
	12. Look at the operation schedule report.
	13. Now change the DW03_ram1 for a DW03_ram2 (whic...

	VHDL code lab 2
	LAB 3
	Objective:
	1. cd to your subdirectory lab3.
	2. Start the Design Analyzer.
	3. Analyze and elaborate the design 'inter'.
	4. Set the clock to 33 MHz (30 ns clock period).
	5. Pipeline the design
	6. Now we ask to ignore precedencies on all memory...
	7. Retry to schedule.
	8. We can try with an initialization interval of 3...
	9. Retry to schedule.
	10. Modify the VHDL source to have two RAMs, one f...
	11. We can schedule the design with an interval of...

	VHDL code LAB 3
	LAB 4
	Objective:
	1. Look at the files coder.vhd, decoder.vhd and co...
	2. Complete the decoder where there are comments d...
	3. Start the Design Analyzer.
	4. First we analyze the designs:
	5. Now we can elaborate the top design:
	6. Select the CODEC and link the lower modules:
	7. We will optimize and compile the CODEC for mini...
	8. Take a look at the Compile Log window. Which de...
	9. Ask for report on the area, timing and referenc...
	10. Go to the schematic view of the CODEC. (By usi...
	11. You can click on a sub-design and go down into...
	12. From the schematic view of the CODEC, save the...
	13. Collapse one level of the hierarchy:
	14. Now reoptimize the design.
	15. Modify the codec.vhd source so that it decodes...
	16. Redo the whole process with this new design.

	VHDL code LAB 4
	LAB 5
	Objective:
	1. First take a look at the lock.vhd file and comp...
	2. Start the Design Analyzer
	3. Read in the design:
	4. Look at the log.
	5. To do that, open a command window and ask to:
	6. Now we can extract the FSM:
	7. You can look at the file to verify if it matche...
	8. We will first compile the FSM using the default...
	9. Now look at some reports:
	10. We remove all predefined encodings and then re...
	11. Reload the file to try a last encoding style.
	12. Read the design.
	13. Replace the synthetic components with mapped n...
	14. Now we must separate the FSM from the rest of ...
	15. First we must find a cut that looks fine. For ...
	16. Now we can extract the FSM:
	17. Then we have to specify a valid state and ask ...
	18. Then we can save it as a state table.
	19. Look at the state table.

	LAB 5 VHDL code
	Protocol case study
	LAB 6
	Objective:
	1. Take a look at the file test.vhd, it describes ...
	2. In your shell window analyze the vhdl files:
	3. You can then start the simulation in text mode:...
	4. Then you just have to type "run" to start execu...
	5. First we can extract simulation components from...
	6. Now compile the coder.vhd and decoder.vhd unsin...
	7. Edit the files to give different names to the e...
	8. Analyze these two files
	9. Modify the test.vhd file to have the two circui...
	10. Look at the file mesg that contains all the wa...

	LAB 6 VHDL CODE

