
AN ALGORITHM FOR THE VERIFICATION OF TIMING DIAGRAMS
REALIZABILITY

Abdelhalim El-Aboudi, El-Mostapha Aboulhamid

Laboratoire LASSO, Département IRO,
Université de Montréal, Montréal (Qc), CANADA

Abstract
In this paper, we present a new method for verifying the
realizability of a timing diagram with linear timing con-
straints, thus ensuring that the implementation of the
underlying interface is feasible. The method is based on
the consistency of the timing constraints derived from the
timing diagram and accepts unknown occurrence times for
events produced by the environment.

Keywords
Timing diagrams, timing constraints, consistency, realiz-
ability.

1. Introduction

Many applications in microelectronic design systems
require the adequate elaboration of interfaces between
communicating parts especially in an environments of
hardware software codesign or distributed systems.
Among these applications, real time systems represent an
important case, since interfacing is subject to hard timing
constraints. I.e., Communicating protocols between
components are mainly characterized by temporal
constraints, and necessitate a proper timing within the
interface controllers. Generally, these protocols are
specified using timing diagrams (TDs), because they are
expressive, simple and familiar to the designers. The
problem to be resolved in this paper is the realizability of a
given timing diagram specification. Among the relevant
works which have considered TDs with quantitative timing
constraints, we can find important concepts and properties.
Such properties constitute the background for the temporal
analysis of underlying interfaces, such as the maximum
separation time for determining temporal distances
between events in the TD [3,4,5,6,9]. Consistency ensures
that the given system of constraints has at least one
solution [7]. Causality is defined in [1] as the existence of a
partition over events that verifies specific properties. Such
properties constitute sufficient conditions of realizability
defined in [10]. Satisfiability [7] as well as compatibility
[1] verify whether devices built according to their TD
specifications can correctly interact when connected
together. It should be noted that, unlike causality and
compatibility, neither consistency nor maximum

separation time computations take into account the nature
(input or output) of events involved in the interface.
Distinguishing between input and output events is a
relevant information for the verification and synthesis
tasks, since only output events can be controlled by the
designer. In this work we present a new method for
determining whether the interface specified by a TD is
realizable by establishing a necessary and sufficient
condition on the assumed behavior of the environment.
The paper is organized as follows: In Section 2, the
necessary background and useful terminology and
concepts are defined. In Section 3, the notion of
realizability of timing diagrams is defined. In Section 4,
our approach to realizability verification is explained. In
Section 5, experimental results are discussed and
conclusions are drawn.

2. Definitions

An interface can be defined by three components: a set of
resources called ports serving to exchange information
between the system and its environment, a set of rules
defining a protocol of communication, and a set of timing
relationships between events occurring on the ports. The
interface behavior can be specified using timing diagrams
(TDs). An event graph EG can be associated with each
TD: EG = (E,C) where each vertex in E represents an
event in TD, and each directed edge in C corresponds to a
timing constraint between a pair of events in TD. We
denote by C = { cij = (ei, ej, [l ij, uij]) ei, ej ∈ E} the set of

constraints, and by t(ei) the occurrence time of the event ei

such that for all cij ∈ C. For a

constraint cij = (ei, ej, [l ij, uij]), ei is called the parent of ej

and the source event of cij . If an event (node) has more

than one parent, then it is said to be a convergence event
(node). Constraints relating events are said to be linear if
each of them must be satisfied separately, i.e., for each ei

parent of ej we have:

or:

and

 .

l i j t ej() t ei()– uij≤ ≤

l i j t ej() t ei()– uij≤ ≤

maxei parents ej()∈ t ei() l i j+() t ej()≤

t ej() minei parents ej()∈ t ei() uij+()≤

I-314
0-7803-5474-5/99/$10.00(C)1999 IEEE

A direction is associated with each event: input or output.
Denote by I the set of all input events, and O the set of all
output events. We have E = I ∪ O and I ∩ O = ∅. A
timing constraint cij = (ei, ej, [l ij , uij]) is a commit

constraint if ej ∈ O, otherwise it is an assume constraint.

We denote by A (respectively K) the set of assume
(commit) constraints over E, A∪ K = C. A commit
constraint is under the control of the designer, since it
concerns an output event to be produced by the system
under construction. An assume constraint is guaranteed by
the environment, and we cannot force any specific
separation time between events ei and ej. We denote by CS-

G, CS-A, and CS-K the system of equations generated by
all timing constraints in C, the assume constraints in A, and
the commit constraints in K, respectively.

2.1 Maximum Separation Time

A separation time is the difference between the occurrence
times of a pair of events: (sij = t(ej) - t(ei)). The computa-

tion of the maximum separation times between events in a
timing diagram does not take into account the nature of
events (input or output). Several algorithms have been
developed for computing the maximum separation. The
complexity of these algorithms depends on the type of the
timing constraints allowed[3][4][7][8][9].

2.2 Tightness of Event Graphs

A timing constraint cij = (ei, ej, [l ij, uij]) is said to be tight if

its bounds correspond exactly to the maximum separation
time computed on the whole event graph. i.e.
uij = sij andlij = -sji . An event graph is said to be tight if all

timing constraints are tight.

2.3 Consistency of Event Graphs

An event graph (E, C) is consistent if and only if the set of
n-tuples (t(e1), …, t(en)) satisfying CS-G is not empty[7].
Note that consistency ensures the existence of an
assignment of occurrence times to all events in the event
graph when their direction is not taken into account. This
however may not guarantee that a given specification is
implementable because the exact occurrence times of input
events may not be known.

3. Realizability of Event Graphs

Let EG = (E, C) be an event graph, E = I ∪ O, C = A ∪ K.
|I| = m . Let e = (e1, …, ek) be a tuple of events in E, and

denote by t(e) the vector of occurrence times
(t(e1), …, t(ek)). Let Os be a set of all output events which
constitute the source events of constraints in A,

Os = { ei ∈ O | cij ∈ A} , |Os| = q. For each constraint
cij ∈ A (respectively K), we write δij = t (ej) - t(ei) (respec-

tively γij = t(ej) - t(ei)). The interval [lij , uij] is denoted by

I ij, hence δij ∈ I ij for linear constraints. We denote by δ the
vector of δij corresponding to all cij in A.

Definition 1 A function f from (R+)n to R+ is a causal
function if and only if it is a constant function or for each

vector x = (x1, …, xn) ∈ (R+)n there exist a variable xi in x
such that f(x) ≥ xi.
Examples of causal functions are the min and max.

Definition 2 A function h from Os to R+ is causal if there

exists q causal functions fk from (R+)m to R+such that for

each event ok ∈ Os, (k = 1,…, q), we have h(ok) = fk(t(i))
where i = (i1, …, im) the vector of all inputs events in I.
The space of the occurrence times of the input events
which respect the assume constraints may depend on the
occurrence times chosen for the output events in Os. Hence

the possible values of δij depend on these choices. Given
that t(o) = h(o), where h(o) = (h(o1), …, h(oq)), we denote

by Sh the space of all possible values of the vector δ.

Sh = { δ ∈ Dδ for cij ∈ A | CS-A is consistent} where

Dδ = . Note that the system of equations CS_A

involves inevitably t(o1), …, t(oq) as parameters.

Definition 3 An event graph EG = (E, C) is said to be
realizable if and only if there exists a causal function h

from Os to R+ such that t(o) = h(o), o = (o1, …, oq) the
vector of events in Os with Sh ≠ ∅, and ∀ δ ∈ Sh, the sys-

tem (CS-K) is consistent.
more details relatively to the realizability characteristic can
be found in [10].

4. Realizability Verification Method

For timing diagrams with linear constraints, an event graph
EG = (E, C) can be represented by a classical directed
weighed graph called linear event graph LEG = (E, C’).
Such representation takes the advantage of using the

known algorithms. The relation .

can be split into two inequalities

and . The nodes of LEG correspond

to the events in E, and the edges correspond the two ine-
qualities as shown in Figure 1. It has been shown that the
maximum separation time can be computed by using the
shortest paths algorithm [2], and the event graph is consis-
tent if and only if it contains no negative cycles [7]

I i j
i j

∏

l i j t ej() t ei()– uij≤ ≤

t ej() t ei()– uij≤

t ei() t ej()– l– ij≤

I-315
0-7803-5474-5/99/$10.00(C)1999 IEEE

Because the occurrence times of input events are under the
control of the environment of the system, the consistency
property cannot be sufficient to guarantee that the system
is realizable. In the following, we suppose that the event
graph is consistent and all constraints are tight.

4.1 Extreme Configurations

Definition 4 : Consider an input event z and P(z) the set of
its parents. Suppose that P(z) is a singleton and let e1 be the
single parent of z and (e1 , z, [l1, u1]) the related timing

constraint. The time occurrence of z can be expressed as :
t(z) = t(e1) + δ1 with δ1 ∈ [l1, u1]. The time occurrence of
z is called extreme when it corresponds to one of the
bounds of the assume constraint, i.e., t(z) = t(e1) + l1 or t(z)

= t(e1) + u1. In the case that P(z) contains more than one

parent, the lower and the upper bound considered are
respectively:

,

.

In this case, the original constraints can be replaced by:
(e1 , z, [l1, l1]) (respectively (e1 , z, [u1, u1])) in case of P(z)

= {e1} and (ei , z, [li, ∞]) (respectively (ei , z, [-∞, ui])) for
each constraint relating ei to z in case of |P(z)| > 1.

In general case, t(z) depends on the values of δi, δi ∈ [l i,

ui] such that: t(e1) + δ1 = t(e2) + δ2=... = t(en) + δn. (1)
If P(z) is a singleton, P(z) = {e1}, then:

 t(z) = t(e1) + δ1 with δ1 ∈ [l1, u1]. (2)

Definition 5 : A configuration of an event graph is an
event graph where the weight of each edge k that corre-
sponds to an assume constraint is replaced by a constant
delay δk such that equations (1) and (2) are satisfied. A
configuration is said to be extreme when all the constant
delays coincide with the bounds of the corresponding
assume constraints.
Proposition 1: An event graph (E,C) is realizable if and
only if all configurations relative to input events are con-
sistent.
Outline of the Proof: Let take all configurations relative to
input events. using the Definition 5, this is equivalent to
the set Q = { δ ∈ Dδ for cij ∈ A | equations (1) and (2) are

satisfied}. This is equivalent to the set S = {δ ∈ Dδ for

Figure 1 Edges in LEG

uij

ei ej

-lij

[l ij ,uij]

ei ej
Equivalent

 LEG
Original

constraint

maxei parents z()∈ t ei() l i+()

minei parents z()∈ t ei() ui+()

cij ∈ A | CS-A is consistent} . All configurations are consis-
tent i.e., ∀ δ ∈ Q, CS_G is consistent. Which is the same
as the realizability definition.
Theorem: An event graph (E,C) is realizable if and only if
all extreme configurations relative to input events are con-
sistent.
Outline of the Proof: consider a realizable event graph
(E,C), then we have: ∃ h and {∀ δ ∈ Sh, CS-G is consis-

tent}. Where Sh = { δ ∈ Dδ | CS-A is consistent}.

Let Econfig be the set of vectors δ ∈ Dδ such that δi ∈ { li,
ui} and the equations (1) and (2) are satisfied.

We have Econfig ⊆ Sh ==> {∀ δ ∈ Econfig, CS-G is consis-

tent}. So all extreme configurations are consistent.
Suppose now that all extreme configurations are consis-
tent. We can prove, for EGs with linear constraints that all
other configurations are consistent.
For the example of Figure 2 there are four configurations
to verify: {(o3 , i2, [10, 10]), (o4, i3, [10, 10])};
{(o3 , i2, [10, 10]), (o4, i3, [30, 30])};

{(o3 , i2, [20, 20]), (o4, i3, [10, 10])}; and
{(o3 , i2, [20, 20]), (o4, i3, [30, 30])}. The second configu-

ration is illustrated in Figure 3. No negative cycles appear
in these configurations, so the event graph is realizable.

4.2 Algorithm

Algorithm for testing realizability of event graphs:

Step1: tighten the event graph
 /* warnings are generated on each eventual modification of
assume constraints*/
Step2: for each input event find the extreme values of corre-
sponding δij

Step3:
 repeat until all extreme configurations are examined or a
inconsistency is determined
 {take an extreme configuration relative to input events
 check consistency (no negative cycles)}
 if all extreme configurations are consistent
 then the event graph is realizable
 else it is not realizable
In the worst case, the given algorithm has the time com-

plexity of 2|I|.

Figure 2 Example1

o3

o4

o5

o2

[10,40]
i2

i3

[10,20]

[10,30]

o1

i1

[40,60]

[30,80]

[10,60]

[20,50]

[10,30][10,20]

I-316
0-7803-5474-5/99/$10.00(C)1999 IEEE

5. Conclusions and Experimental Results

The algorithm has been tested on realistic examples, such
as the read cycle TD of the processor MC68360 (Figure
4). The event graph contains 4 input events. And the
resulting extreme configurations are consistent. In sum-
mary, we have developed a verification method of the real-
izability properties of a timing diagram, this method is
based on the consistency of the timing diagram for each
configuration of occurrence times generated by the envi-
ronment. The method takes advantage of known tech-
niques developed for weighted graphs.

6. References
[1] E. Cerny, K. Khordoc, “Semantics and Verification of Action

Diagrams with Linear Timing Constraints”, Transactions on
Design Automation of Electronic Systems, Vol.3, No.1,
Jan.1998.

[2] G. Borriello, “A New Interface Specification Methodology
and its Application to Transducer Synthesis”, Ph.D. Thesis,
EECS, UC, Berkeley, 1988.

Figure 3 Example of configuration

o3

o4

o5

o2

40 i2

i3

10

30

o1

i1

30

20

60

-10
-10

-40

-30

80

-30

-10

-10

-10

60

50

-20

[3] K.McMillan, D.L.Dill, “ Algorithms for Interface Timing
Verification”, IEEE International Conference on Computer
Design, 1992, pp.48-51.

[4] T.-Y.Yen, A.Ishii, A.Casavant, W.Wolf, “Efficient Algo-
rithms for Interface Timing Verification”, the European
Design Automation Conference, 1994.

[5] H.Hulgaard, S.M.Burns, T.Amon, G.Borriello, “An Algo-
rithm for Exact Bounds on the Time Separation of Events in
Concurrent Systems”, IEEE Transactions on Computers.
Vol.44, No.11, Nov. 1995, pp.1306-1317.

[6] T.Amon, H.Hulgaard, G.Borriello, S.Burns, “Timing Analy-
sis of Concurrent Systems: An Algorithm for Determining
Time Separation of Events”, IEEE International Conference
on Computer Design, 1993.

[7] J.A.Brzozowski, T.Gahlinger, F.Mavaddat, “Consistency
and Satisfiability of Waveform Timing Specifications”, Net-
works, Vol.21, 1991, pp.91-107.

[8] P.Vanbekbergen, G.Goossens, H. De Man, “Specification
and Analysis of Timing Constraints in Signal Transition
Graphs”, the European Conference on Design Automation,
1992, pp.302-306.

[9] P. Girodias, E. Cerny and W.J. Older, “Solving Linear, Min
and Max Constraint Systems Using CLP based on Rela-
tional Interval Arithmetic”, Theoretical Computer Science,
CP’95, Special Issue, Volume 173, Feb. 1997.

[10] A.El-Aboudi, E-M.Aboulhamid, E.Cerny, “Synthesis of
Interface Controllers from Timing Diagram Specifications”,
Custom Integrated Circuits Conference, 1998, pp.89-92.

Acknowledgments: The work was partially supported by
an NSERC and Micronet Grant.

Figure 4 Event graph for MC68360 Read Cycle

CK+ CK- CK+ CK+ CK+CK- CK-

AS- AS+ ASnV

DS- DS+ DSnV

[20,20]

[3,20] [3,20] (0,40]

[70,∞) (0,∞)

(0,∞)

[-6,6]

[70,∞)

[3,20]
[3,20]

(0,40]

RW+ RWnV
[100,∞)

[0,20]

[0,20]

[10,∞)

RW-
(0,∞)

[0,40]

Ack- Ack+(0,∞)

ADV ADnV
(0,∞)

DV DnV
(0,∞)

[5,∞)

(0,50)
(0,50)

(0,∞)

(-∞,32]

(0,15]

[10,∞)

[10,∞)
(0,∞)

[10,∞)

[10,∞)

[1,∞) (0,40]

(0,∞)

[20,20] [20,20] [20,20] [20,20] [20,20]

I-317
0-7803-5474-5/99/$10.00(C)1999 IEEE

