
Abstract
Recently, we have presented two mathematical

formulations and procedures to solve them that apply to
the problem of determining schedules, to reduce register
and phase requirements for multi-phase synchronous
circuits derived using software pipelining techniques. In
this paper, we show how to transform these formulations
to minimum cost network flow problems, which can be
solved efficiently. We show that the resulting
formulations can be solved by algorithms of time
complexity O(n3log(n)) for a network of n nodes.
Although we have not used a specialized algorithm to
solve the new formulations, experimental results on a
subset of the ISCAS89 benchmarks show that these
formulations can be solved much faster than the original
formulations, where the same algorithm based on the
simplex method is used.

1 Introduction
In order to minimize the clock period of a

synchronous sequential circuit, this latter is modeled (as
in [2, 3, 6]) as a directed cyclic graph ,
whereV is the set of functional elements in the circuit,
andE is the set of edges that represent interconnections
between vertices. Each vertexv in V has a non-negative
integer propagation delay . Each edge ,
from u to v, in E is weighted with a register
count , representing the number of registers
on the wire betweenu andv.

Figure 1 presents an example of a circuit and its
directed cyclic graph model. In this figure, large
rectangles represent functional elements, and small
rectangles represent registers. Wires are oriented to show
the propagation direction of the signals. The propagation
delay of each functional element of this circuit is
specified as a label on the left of each large rectangle.

Software pipelining has been proved to be a
powerful technique for increasing the instruction-level
parallelism for parallel processors. It has recently been
used for optimizing clocked circuits [2, 3], where the
input circuit is a synchronous circuit with a single-phase
clock period, like the circuit in Figure 1, which has a
period of 6 = . The resulting circuit is a

G V E d w, , ,()=

d v() N∈ eu v,

w eu v,() N∈

d v4() d v1()+

multi-phase clocked circuit, where all clocks have the
same period. The method may be described as follows.
First, the optimal clock period,P, is determined, and a
schedule of all the functional elements of the circuit is
computed. Second, in order to preserve the behavior of
the original circuit, registers are placed independently of
their initial placement. The placement of registers is
done using the computed schedule. Finally, once the
registers are placed, the phases are determined. Only the
schedule time of the first instance of each functional
element has to be determined, since the schedule is
supposed to be periodic. This latter has been defined [2,
3, 5] as a periodic function of periodP,
where denotes the schedule time of thenth

iteration of operationv. In multi-phase flip-flop based
circuits, the schedule time is the start time of the
operation. To be a valid schedule, this latter must satisfy
the data dependency constraints, which can be expressed
mathematically as follows:

. (1)

For the method described above, more details as
well as an illustrative example can be found in [1, 2]. A
comparison of that method and some methods based on
retiming [6] is provided in [2].

In that method [2, 3], it was question of how to
determine a schedule that allows to reduce the number of
registers, and the number of clock phases in the final
design. Decreasing the number of registers contributes to
minimizing the area occupied by the circuit and reduces
its power consumption, while decreasing the number of
phases reduces the complexity of the clock generation
and distribution tasks.

To determine the required schedule, we have
recently proposed in [1] two mathematical formulations,
and presented procedures to solve them. In this paper, we
show how we can transform these formulations to a
formulation of the minimum cost network flow problem.
Since this problem can be solved efficiently, this implies
that our original formulations can also be solved
efficiently. We show that they can be solved by
algorithms of time complexityO(n3log(n)) for a circuit
of n computational elements, which is the time
complexity of the original method based on the software
pipelining technique presented in [2, 3]. Since the time
to market is a serious constraint during the design of
digital systems, designing algorithms with low time
complexity is very important. Although we have not

s : N V× Q→
sn v() s n v,()≡

n N∈∀ , eu v, E∈∀ : sn w eu v,()+ v() sn u() d u()+≥

Efficient Methods for Reducing Register and Phase Requirements for
Synchronous Circuits Derived Using Software Pipelining Techniques

Noureddine Chabini1, El Mostapha Aboulhamid1, and Yvon Savaria2

1: LASSO, DIRO, Université de Montréal, C.P. 6128, Centre
ville, Montréal, Qc, Canada, H3C 3J7. Email:{chabinin,
aboulham}@iro.umontreal.ca
2: GRM, DGEGI, École Polytechnique de Montréal, C.P.
6079, Succ. Centre-ville, Montréal, Qc, Canada, H3C 3A7.
Email: savaria@vlsi.polymtl.ca

used a specialized algorithm to solve the new
formulations, experimental results on a subset of the
ISCAS89 benchmarks show that these formulations can
be solved much faster than the original formulations,
where the same algorithm based on the simplex method
is used.

The rest of this paper is organized as follows.
Sections 2 and 3 present the transformation, to a
minimum cost network flow problem, of the two
mathematical formulations for determining schedules to
reduce register and phase requirements. Experimental
results are presented in Section 4. Section 5 concludes
the paper.

2 A Minimum Cost Network Flow
Formulation for the Problem of
Determining Schedules for Reducing
Register Requirements

As mentioned in Section 1, to determine schedules
for reducing register requirements for circuits derived
using software pipelining techniques, we have developed
in [1] the mathematical formulation presented in Figure
2. In this formulation, the variables are the ’s and the
schedule time of each computational elementk of
the circuit.P is the optimal clock period of the circuit.
The other parameters are as defined in Section 1.
Equation (2) is used to reduce the required number of
registers. Equation (3) is equivalent to equation (1). Due
to space limitation, the reader is referred to [1] for
details.

Let and be the set of successors and the
set of predecessors ofu, respectively. The mathematical
formulation of the dual of the formulation in Figure 2
can be written as presented in Figure 3.

From equation (4), we have that:

is a constant. Hence, this term can be removed from the
objective function. Consequently, we have that:

is equivalent to:

which is also equivalent to:

Let . By definition ofbu and by
equations (4) and (5), we have that:

Figure 1 : Sample circuit and its directed cyclic
graph model.

Circuit.

Directed Cyclic Graph.

1

2

4
0

1

12

2

3

5

1

1

1

1

1

1

 Functional
 Element#4

 Functional
 Element#5

 Functional
 Element#1

 Functional
 Element#2

 Functional
 Element#3

4 1

2

2
1

4 1

εu v,
s0 k()

Figure 2 : Scheduling for reducing register
requirements.

Subject to:

(2)

(3)

Minimize εu v,
eu v, E∈∀
∑

eu v, E∈∀ , εu v, s0 u() s0 v()–+ P w eu v,()⋅≥

eu v, E∈∀ , s0 v() s0 u()– d u() P w eu v,()⋅–≥

δ+
u() δ-

u()

Figure 3 : The dual formulation of the
formulation in Figure 2.

Subject to:

(4)

(5)

(6)

Maximize

P w eu v,() Ψu v,⋅ ⋅
eu v, E∈∀
∑ 

  +

d u() P w eu v,()⋅–() Φu v,⋅
eu v, E∈∀
∑ 

 
 
 
 
 
 
 

eu v, E∈∀ , Ψu v, 1=

u V∈∀ , Ψu v,
v δ+

u()∈
∑ Ψv u,

v δ-
u()∈

∑– –

Φu v,
v δ+

u()∈
∑ Φv u,

v δ-
u()∈

∑+ 0=

eu v, E∈∀ , Ψu v, 0≥ , Φu v, 0≥

P w eu v,() Ψu v,⋅ ⋅
eu v, E∈∀
∑

Maximize

P w eu v,() Ψu v,⋅ ⋅
eu v, E∈∀
∑ 

  +

d u() P w eu v,()⋅–() Φu v,⋅
eu v, E∈∀
∑ 

 
 
 
 
 
 
 

Maximize d u() P w eu v,()⋅–() Φu v,⋅
eu v, E∈∀
∑ 

 

Minimize P w eu v,()⋅ d u()–() Φu v,⋅
eu v, E∈∀
∑ 

 

bu δ+
u() δ-

u()–=
u V∈∀ ,

With the all previous modifications, the formulation
in Figure 3 can simplified to the formulation presented in
Figure 4, which is a formulation of the minimum cost
network flow problem [8].

Theorem 1: The formulation in Figure 2 can be solved
by algorithms of time complexity O(n3log(n)) for a
circuit of n computational elements.

Proof: The formulation in Figure 4 is a transformed
dual of the formulation in Figure 2. Hence, solving one
of them provides the solution to the other. The former
formulation is a formulation of the minimum cost
network flow problem, which can be solved efficiently
by using one of the methods in [4]. An algorithm of time
complexity O(n3log(n)) for a network ofn nodes, to
solve that problem, can be found in [9]. ❏

3 A Minimum Cost Network Flow
Formulation for the Problem of
Determining Schedules for Reducing the
Number of Phases

To determine schedules for reducing the required
number of phases for circuits derived using software
pipelining techniques, we have developed in [1] the
mathematical formulation presented in Figure 5. In this
formulation, the variables are the ’s and the schedule
time of each computational elementk of the
circuit. P is the optimal clock period of the circuit. The
other parameters are as defined in Section 1. Equations
(9) and (10) are used to reduce the required number of
phases. Equation (11) is equivalent to equation (1). Due
to space limitation, the reader is referred to [1] for
details.

Figure 6 presents the mathematical formulation of
the dual of the problem in Figure 5, where and

 are as defined in Section 2. In this formulation,
since , then equation (14) can be
simplified to:

Since and do not appear in the objective
function, then equations (12) and (13) can be removed
from the formulation. Also, the maximization of the
objective function can be transformed to:

With the all above modifications, the final dual of
the formulation in Figure 5 is presented in Figure 7,
which is a formulation of the minimum cost network
flow problem.

Theorem 2: The formulation in Figure 5 can be solved
by algorithms of time complexity O(n3log(n)) for a
circuit of n computational elements.

Proof: The same as for Theorem 1. ❏

Φu v,
v δ+

u()∈
∑ Φv u,

v δ-
u()∈

∑– Ψu v,
v δ+

u()∈
∑ Ψv u,

v δ-
u()∈

∑–=

δ+
u() δ-

u()– bu==

Figure 4 : The simplified dual formulation of
the formulation in Figure 2.

Subject to:

(7)

(8)

Minimize P w eu v,()⋅ d u()–() Φu v,⋅
eu v, E∈∀
∑ 

 

u V∈∀ , Φu v,
v δ+

u()∈
∑ Φv u,

v δ-
u()∈

∑– bu=

eu v, E∈∀ , Φu v, 0≥

εu v,
s0 k()

δ+
u()

δ-
u()

eu v, E∈∀ , ϕu v, Ψu v,=

u V∈∀ , Φu v,
v δ+

u()∈
∑ Φv u,

v δ-
u()∈

∑– 0=

ϕu v, Ψu v,

Minimize P w eu v,()⋅ d u()–() Φu v,⋅
eu v, E∈∀
∑ 

 

Figure 5 : Scheduling for reducing the
required number of phases.

Subject to:

(9)

(10)

 (11)

Minimize εu v,
eu v, E∈∀
∑

eu v, E∈∀ , ε
u v, s0 u() s0 v()–+ 0≥

eu v, E∈∀ , ε
u v, s0 v() s0 u()–+ 0≥

eu v, E∈∀ , s0 v() s0 u()– d u() P w eu v,()⋅–≥

Figure 6 : The formulation dual of the
formulation in Figure 5.

Subject to:

(12)

(13)

 (14)

(15)

Maximize d u() P w eu v,()⋅–() Φu v,⋅
eu v, E∈∀
∑ 

 

eu v, E∈∀ , ϕu v, 1=

eu v, E∈∀ , Ψu v, 1=

u V∈∀ , ϕu v, Ψu v,–()
v δ+

u()∈
∑ ϕv u, Ψv u,–()

v δ-
u()∈

∑–
 
 
 

–

Φu v,
v δ+

u()∈
∑ Φv u,

v δ-
u()∈

∑+ 0=

eu v, E∈∀ , ϕu v, 0≥ , Ψu v, 0≥ , Φu v, 0≥

Figure 7 : The simplified dual formulation of the
formulation in Figure 5.

Subject to:

(16)

(17)

Minimize P w eu v,()⋅ d u()–() Φu v,⋅
eu v, E∈∀
∑ 

 

u V∈∀ , Φu v,
v δ+

u()∈
∑ Φv u,

v δ-
u()∈

∑– 0=

eu v, E∈∀ , Φu v, 0≥

4 Experimental Results
To test the effectiveness of our approach for

transforming the two mathematical formulations to a
formulation of the minimum cost network flow problem,
we have experimented these two formulations and the
new ones on a subset of the ISCAS89 benchmarks.
Results are reported in Tables 1 and 2. Columns of these
tables are as follows, the first column gives the name of
the circuit. The CPU times (in second), for solving the
primal and the simplified dual formulations, are given in
the second and the third columns, respectively. The
fourth column gives the speedup obtained, which is
defined as the CPU time for solving the primal divided
by the CPU time for solving the dual. The LP_Solve tool
[7] (in the public domain) is used to solve the
mathematical formulations, which are automatically
generated by a tool we have developed in [1].

Although we have not used specialized algorithms
to solve the two dual formulations, experimental results
show that these formulations can be solved much faster
than the original formulations, where the same algorithm
based on the simplex method is used. Indeed, for the case
of determining schedules for reducing register
requirements, a speedup ranging from 8 to 10.63 has
been obtained as reported in Table 1. A significant
acceleration has been obtained in the case of determining
schedules for decreasing the required number of phases.
As Table 2 reports, this acceleration ranges from 19.88
to 135.21.

5 Conclusions
Recently, we have proposed two mathematical

formulations for the problem of determining schedules
for reducing register and phase requirements for circuits
derived using software pipelining techniques. In this
paper, we have shown that these formulations can be
transformed to a formulation of the minimum cost
network flow problem. Since this problem can be solved
efficiently, this implies that the two formulation can also
be solved efficiently. We have proved that they can be
solved with time complexityO(n3log(n)), which is the
time complexity of the original method that optimizes
circuits using software pipelining techniques.
Experimental results have shown that the new
formulations can be solved much faster than the original
ones, although we have not used specialized algorithms
for the minimum cost network flow problem.

References
[1] N. Chabini, E.-M. Aboulhamid and Y. Savaria,

“Reducing Register and Phase Requirements for
Synchronous Circuits Derived Using Software
Pipelining Techniques,”Proceedings of the IEEE
Computer Society Annual Workshop on VLSI, Orlando,
Florida, April 19-20, 2001.

[2] F.-R. Boyer, E.-M. Aboulhamid, Y. Savaria and M.
Boyer, “Optimal Design of Synchronous Circuits Using

Software Pipelining Techniques,”ACM Transactions
on Design Automation of Electronic Systems, Vo. 7,
Num. 2, 2002.

[3] F.-R. Boyer, E.-M. Aboulhamid, Y. Savaria, and I. E.
Bennour, “Optimal Design of Synchronous Circuits
Using Software Pipelining Techniques,”International
Conf. on Computer Design, Austin, Texas, October 5-7,
1998.

[4] R.-K. Ahuja, T.-L. Magnanti, and J.-B. Orlin.,Network
Flows: Theory, Algorithms, and Applications, Prentice
Hall, Englewood Cliffs, NJ, 1993.

[5] I.-E. Bennour, and E.-M. Aboulhamid, “Les problèmes
d'ordonnancement cycliques dans la synthèse de
systèmes numeriques,”Technical Report 996 (Oct.
1995), DIRO, Université de Montréal. http://
www.iro.umontreal.ca/~aboulham/
pipeline.pdf/

[6] C.-E. Leiserson, and J.-B. Saxe, “Retiming
synchronous circuitry,”Algorithmica 6, 1, 1991.

[7] The LP_Solve Tool: ftp://
ftp.ics.ele.tue.nl/pub/lp_solve/

[8] Laurence A. Wolsey,Integer Programming, John Wiley
& Sons, Inc., 1998.

[9] A.-V. Goldberg and R.-E. Tarjan, “Solving Minimum-
Cost Flow Problems by Successive Approximation,”
Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, New York City, May 25-27,
1987.

CPU time for
solving the

primal (sec.)

CPU time for
solving the
dual (sec.)

Speedup

S344 0.93 0.1 9.3

S641 1.28 0.16 8

S1423 12.14 1.39 8.73

S5378 102.5 9.64 10.63

S9234 54.95 5.49 10.00

S13207 319.35 30.41 10.50

Table 1: Comparison of the time to solve the
primal and the dual problems of determining
schedules for reducing register requirements.

CPU time for
solving the

primal (sec.)

CPU time for
solving the
dual (sec.)

Speedup

S344 1.32 0.06 22

S641 1.79 0.09 19.88

S1423 21.38 0.72 29.69

S5378 176.13 3.59 49.06

S9234 313.7 2.32 135.21

S13207 1031.16 12.02 85.78

Table 2: Comparison of the time to solve the
primal and the dual problems of determining
schedules for reducing the required number of
phases.

