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Abstract Nevertheless, the problem of how to efficiently place registers in
the circuit is not addressed.

A method based on software pipelining has been recently N this paper, we focus on solving simultaneously (1) and (2)

proposed to optimize mono-phase clocked sequential circuits. Théhat are Qutllnedhabolve. Mhore p_relclseI);, we tackle the problem Off
resulting circuits are multi-phase clocked sequential circuits, determining schedules that yields the minimum number o
where all clocks have the same period. To preserve functionality off€gisters, where the thlmal regls_ter placement is done during the
the original circuit, registers must be placed according to a correct Schedule determination. To optimally solve that problem, we

schedule. This schedule also ensures the maximum throughput. [RTOVide @ mixed integer linear program (MILP), which we use to
tderlve a linear program (LP) that is polynomial-time solvable. To

that method, it is question of (1) how to determine a schedule tha . )
test the effectiveness of the approach, we experiment the MILP and

requires the minimum number of registers, and (2) how to place o
these registers optimally. In this paper, problems (1) and (2) are the LP on well known ben_chmarks, and we show the superiority of
that approach over the original method [2].

tackled simultaneously. More precisely, we deal with the problem f . g ) .
of determining schedules with the minimum register requirements, 1 Nis Paper is organized as follows. The next section gives some
where the optimal register placement is done during the schedulehotations and definitions used in this article. Section 3 briefly

determination. To optimally solve that problem, we provide a mixed €ViEWs the registers placement step in the method based on
integer linear program that we use to derive a linear program, software pipelining, which was outlined above. Also, it shows that

which is polynomial-time solvable. Experimental results confirm the algorlth_m use_d to place_ registers is greed_y. The_problem we
the effectiveness of the approach, and show that Significamtackle and its optimal solution are presented in Section 4, and a

reductions of the number of registers can be obtained. linear program for that problem is given in Section 5. Section 6
provides experimental results and Section 7 concludes the paper.

1. Introduction o
2. Preliminaries

Software pipelining is a powerful technique for increasing the .
instruction-level parallelism for parallel processors. This method 2-1.  The cyclic graph model
overlaps the execution of successive iterations. It has recently been
used to develop a method for optimizing mono-phase clocked In order to minimize the clock period of a synchronous
sequential circuits [2]. The resulting circuit is a multi-phase clocked sequential circuit, it is modeled (as in [2]) as a directed cyclic graph
circuit, where all clocks have the same period. That method may beG = (V. E, d w), whereV is the set of functional elements in the
described as follows. First, the optimal clock period is determined, Circuit, andE is the set of edges which represent interconnections
and a schedule of all the functional elements of the circuit is Petween vertices. Each vertexn V has a non-negative integer
computed. Second, in order to preserve the behavior of the originaPropagation delayl(v) N, which is assumed to be fixed. Each
circuit, registers are placed, independently of their initial edgee, , , fromutov, in E is weighted with a register count
placement, according to that schedule. Finally, once the registersW(§, ) O N, representing the number of registers on the wire
are placed, the phases are determined. betweeru andv.

With this method, it is question of (1) how to determine a Figure 1 presents an example of a circuit and its directed cyclic
schedule that produces the minimum number of required registersgraph model. In this figure, large rectangles represent functional
and (2) how to place the minimum number of registers even if thatelements, and small rectangles represent registers. Wires are
schedule is already determined. Solving (1) and (2) is of greatoriented to show the propagation direction of the signals. The
interest, since reducing the number of registers allows to reduce thgropagation delay of each functional element of this circuit is
number of control signals, the area of the circuit, and the powerspecified as a label on the left of each large rectangle. This example
consumption. _ o will be used through this paper, and will serve to illustrate the initial

In [4], the autho_rs have provided two pc_nlynom_lal-tlme sglvable specification for the problem to optimize. The initial specification
methods to determine schedules for reducing register requirements,_ . | hronous circuit with a sinale-ohase clock. The
and the number of the required phases. Compared to the originalls_m_ general a syn(? L glep o
method [2], these methods proved very efficient in reducing the minimum clock period of the circuit in Figure 1 as specified is 7,

number of registers and the number of the required phases'Whichis equal ta(vs) +d(v,)
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Figure 1. Sample circuit and its directed cyclic graph model

2.2. Periodic schedules
We define a schedulg[1, 2] as a functionrs: NxV - Q
wheres,(v) =s(n V) denotes the schedule time ofrtRéteration
of operatiorv. In multi-phase flip-flop based circuits, the schedule
time is the start time of the operation. A schedigecalled periodic
with periodP, if: OnO N, OvO V: s, 4(v) =s,(v) +P. 1)
When there is no resource constraint, a schesliglsaid to be
valid if and only if the operations terminate before their results are

needed. In this case, we say that data dependencies are satisfied,

which is equivalent to the following mathematical inequality:
OnON, De, (OE: Sh+ w(e, )(v) 2s,(u)+d(u). (2
2.3. Maximum throughput of synchronous

sequential circuits

The throughput, T, of a synchronous sequential circuit is
bounded by the inverse of the lendth of the critical paths in the

circuit. Based on data dependencies constraints only, the maximun

throughput is [1]:
g N
0 d(Wm

T= Mi”cmc% Zj W(eu’V)Q/
e, voc OvOVande, ,Oc 3)

whereC is the set of directed cycles in the directed cyclic graph
modeling the circuit. Determining the maximum throughput is a
Minimal Cost-to-Time Ratio Cycle Problem [6, 10], which can be
solved in the general case ®(|V| OE Oog(|M 0Od,,,)) [10],
whered,,,, = Max,;(d(v)) . A possible method to solve this
problem is to iteratively apply Bellman-Ford’s algorithm [5] for
longest paths on the gra@) = (V, E, d, w,) derived frérby
letting:

wp(e, ) = d(u)-P (g, ), (4)

wheree, ,LJE andP = 1/T . A binary search may be used to
find the minimal value oP for which there is no positive cycle in
Gp [1]. Without loss of generality, we assume tRas greater than

2.4. Schedule for a given throughput
From equation (1) and inequality (2), we have that:
Ue, yOE, sp(v) —s(u) 2 d(u) —P On(s, ) - (5)

In the case of periodic schedules, determining a valid schedule
of all the instances of each verteixa V is equivalent to determining
sp(v) for eachv in V, which is also equivalent to determining
solutions to the system of inequalities described by (5). To solve
this system, the grapBp, previously described, may be used. To
find an ASAP schedule, Bellman-Ford'’s algorithm [5] for longest
paths, from a chosen vertexto the others, may be applied on the
graphGp. Finding an ALAP schedule may be done as follows. Step
1, a graplG’ has to be derived froGp by inverting the direction
of each edge i®p. Step 2, Bellman-Ford’s algorithm for longest
paths, from the vertex to the others, has to be applied on the graph
G’, where the weights of its edges are defined by equation (4).
Finally, step 3, the ALAP schedule is obtained by multiplying each
result in step 2 by -1. Relatively ¥ = v, the ASAP schedules of
verticesvy, Vy, V3, Vg, Vi, andvg of the circuit in Figure 1 are 0, -3,

3, -1, -4, and -3, respectively. Their ALAP schedules are 0, -3, 4,
-1, -4, and 1, respectively.

2.5. Schedule graph

As in [2], a periodic schedule, with peri&ylis expressed by a
schedule grapt, = (V, E d w, P) . Hel E andd have the
same definition given for the case of the graphpreviously
defined, andvg : E » Q is a weight function, which associates to
each edge, ,in E the time distance between the schedule times of
u andv. Mathematicallywg(e, ,) is defined as follows:

Oe, vOE, ws(euy W= Sw(e, V)(v) —5p(u) . (6)
Becausesis periodic with periodP, equation (6) may be written
as follows:Ue, O E, wg(e, ) = so(V) —sp(u) + P On(g, ) (7)

The graphGs is consistent if and only if for each edgg,, in
E, wy(ey ) =d(u). This is derived from equation (2). Figure 2
shows a consistent schedule graph, where edges are labeled with
values, for the circuit in Figure 1, using the ASAP schedule
determined in Section 2.4.

Figure 2. Schedule graph.

3. Register placement
In the method proposed in [2], which was outlined in Section 1,
a register placement step is needed in order to preserve the behavior

or equal to the execution delay of each computational element in theof the original circuit. The placement of registers is derived from a

circuit.
For the example in Figure 1, we have tRat 6. This value
corresponds to the cycle defined by verticgs/,, v,4, andvs.

schedule grapls,, by breaking every path B that is longer than
the optimal clock perio®. For paths having a length less thian
no register is required because operations chaining is assumed.



For the circuit in Figure 1, applying the algorithm in [2] for and the schedulg(u) for each computational elemant
register placement on the schedule gr&gfin Figure 2, starting The formulation in Figure 5 can be linearized as follows. Using
from vy, gives the placement of registers and their schedules asthe fact that x ] < x<[ x|+ 1 , and that no register is required if
depicted by Figure 3. The number of registers that are placed is &he length of a path is less than or eg@akquation (8) can be
and the number of phases is 4. replaced by:
Ue DE X j < (sp(f) = so(|)+PDN(e1 ) tm)/P<x i +1

Q Equatlons (9) and (10) together can be replaced by (14)
Oe, ,O0E, m = i)—s,(k)+P0Onmg .)+m)—-P :
Register| Schedule ki i 2 (Sp(i) = Sp(k) (&) +my) —P D¢ |15)
e e 257 3 After linearizing the formulation in Figure 5, we obt%un the

MILP to optimally solveProb as presented in Figure 6. In this
figure, equations (16) and (17) are equivalent to (14). (18) is
equivalent to (15). (19), (20) and (21) are equivalent to (12), (11)
and (13), respectivelyT he variables are not negative.

e m (55 i) »@

Figure 3. Register placement an their schedules.
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The algorithm for register placement in [2] is not exact. Indeed,

for Figure 3, R can be omitted. Figure 4. lllustration of the variables of the MILP.
4. Problem formulation and optimal solution

As mentioned in Section 1, two problems arise in the method Minimizeg Zj )MH
based on software pipelining proposed in [2]: the first one is how to e

determine a schedule that yields the minimum number of required| Subject to:

registers, and the second one is how to place the minimum numbe| (e, ; jOE % = [ (so(i) —sp(i) + PO g j) +m)/P | (8)
of required registers even if that schedule is already determined . . '

Our focus in this paper is to simultaneously solve these two Deiyj D E, Yij = (50(1)_50(')+P|3N(qyi)+mi)_PDXi,i ©)

problems. More precisely, the problemrgh) we tackle is to 0i OV, m; 2 (y, i)km:amn( ) (10)
determine a schedule with the minimum register requirements, . . .
where the register placement is done during the schedule |:lei,j OE, %(])_%(')Ed(')_PDN(qJ) (11)
determination. To optimally solv®rob, we provide a mixed OiOVv, m<P—d(i) (12)
integer linear program (MILP), and use it to derive a linear program O D E, X |s integer (13)
which is polynomial-time solvable.

Before presenting that MILP, let us first give some Figure 5. A mathematical formulation to solveProb.
requirements. Figure 4 gives a portion of the cyclic graph modeling
the circuit, wherei andj are two computational elements; Minimize O 0
denotes the number of registers that must be placed on thetarc mimize 5 ZD Xi0
guarantee that the lengtfy, of every path that goesjtgiai, is less De,jUE
than or equal to the optimal clock peried;; will be defined in the Subject to:

following. Note that as in [2], operation chaining is assumed, and Oe; ]. OE,-Px ]. —sp(i) +55(j) +my=—P Ow(g ].) (16)
hence no register is requiredf, <P . Suppose that paths that gg Oe, ’j OE, PDx | . So(i) —Sp(j) —m; = P O(§ ;) _p (17)

to j via i are already examlned in order to determine if some | -, " 'HE p Crs (k) —s.(i)+m —m. =P e ) (18
registers must be placed on them or notnh.éte a no-negative real Bi B, PO+ So(k) ~5o(0) + my —my = (81) (18)

greater than or equal to each rest obtained by dividing the length o o D,V’ m ,S P- (_j(') (19)
each one of those paths ByThe lengtH; ; of every path that goes De, j DE, so()) —$p(i) 2d(i) —P Dn(g ) (20)
to viai is the sum ofy andwy(s,;), wherewg(s,;) is defined by Ue j UE, x j is integer (21)
equation (7)yI is the rest of the division d>f by P. We require
thatm, < (P - d( i)) , which guarantee that |f a regisieis on the Figure 6. A MILP to optimally solve Prob.
output of computational elementthen its schedule will be after
finishes its execution. 5. Alinear program for solving prob
Figure 5 presents a mathematical formulationPtob. The Linear programs are polynomial-time solvable [7, 8]. A linear

objective function expresses the number of registers to be placed irprogram for solving’rob can be obtained by deleting the constraint
the circuit. Equations (8), (9), and (10) are equivalent to the thatx; ; is integerin Figure 6. In this case, once the linear program
definition of X, v Vi and m;, respectively. Inequality (11) is is solved the number of registers to be placed on the pis
equivalent to (5) (13) is required, since the number of registers [ x; ] Due the space limitation, details on why it is possible to
must be an integer. In this formulation, the variablesigres; ;, m place(xI i | registers on the agg can be found in [3].



6. Experimental results 7. Conclusions

To test the effectiveness of our approach, the MILP in Figure 6 A method based on software pipelining has recently been
and the corresponding linear program (LP), obtained by ignoring proposed to optimize mono-phase clocked sequential circuit. The
the constraininteger in (21), are experimented on well known resulting circuit is a multi-phase clocked circuit, where all clocks
benchmarks. Circuits from the ISCAS89 benchmark suite are usechave the same period. To preserve the behavior of the original
to test the efficiency of the LP in terms of the run-time and of the circuit, registers are placed according to a schedule, which has the
reduction of the number of registers inserted in the circuit. The maximum throughput.
mathematical formulations for each circuit are automatically In that method, two problems arise: how to determine schedules
generated by a module we coded in C++ and integrated in a tool wehat lead to a minimal register requirements, and how to place the
developed in [4]. We did not implement the cited polynomial-time minimum number of required registers even if these schedules are
algorithms for linear programs, but the Lp_Solve tool [11] (in the already determined.
public domain) is used to solve the generated mathematical In this paper, we have simultaneously tackled these two
formulations. Obtained results are given in Tables 1 and 2, whereproblems. We have provided a mixed integer linear program and
the first column gives the name of the circuit and the second columnused it to derive a linear program, which is polynomial-time
presents the numbe¥,, of registers placed using the algorithm in  solvable. Experimental results on well known benchmarks
[2] that uses ALAP as a schedule. The numbgyr,of registers confirmed the effectiveness of the approach we propose. Indeed,
placed by MILP or by LP are presented in the third column. The significant reductions of the number of required registers have been
fourth  column gives the relative gain defined as obtained in very short run-time.
((N;=N,)/N;) x 100%. For Table 2, the fifth column gives the
run-time in seconds on an UltraSparc 10 with 1GB RAM. As Table References
1 reports, significant reductions of the number of required registers

are obtained. Substantial reductions are also obtained using the LA}l |.-E. Bennour,Estimation de la performance et méthodes
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