
Abstract

A method based on a modulo scheduling algorithm for
software pipelining has been recently proposed to optimize
clocked circuits. The resulting circuits are multi-phase
clocked circuits, where all clocks have the same period. To
preserve the functionality of the original circuit, registers
must be placed after minimizing the clock period. The
placement of these registers is derived from an arbitrary
schedule determined during a clock period minimization
step. A good schedule may allow to decrease the number of
registers and the number of phases needed in the final
circuit. Decreasing the number of registers contributes to
minimizing the area occupied by the circuit and reduces its
power consumption; while decreasing the number of phases
reduces the complexity of the clock generation and
distribution tasks. In this paper, we propose polynomial-
time-solvable methods to choose a good schedule once the
clock period is minimized. The methods have been tested on
a subset of the ISCAS89 benchmarks. Experimental results
show that the number of registers which must be inserted in
the final circuit, and the number of phases, have been
significantly decreased compared to the case where an
arbitrary schedule is chosen.

1. Introduction

The performance of clocked digital circuits can be
improved by minimizing their clock period. Retiming [7] is
a technique often used for that purpose. This technique
changes register placement in the circuit to minimize the
maximum combinational delay between any two
neighboring registers. Basic retiming supposes that the
circuit is clocked by a single-phase clock, which limits the
search space for effective timing solutions. Various
extensions to retiming have been proposed [6, 8]. In [8],
retiming with multi-phase clocks was proposed. With this
method, the phases are fixed before retiming, which can
give an optimal clock period if good phases are chosen.

Software pipelining has been proved to be a powerful
technique for increasing the instruction-level parallelism
for parallel processors. It has recently been used for
optimizing clocked circuits [1]. The resulting circuit is a
multi-phase clocked circuit, where all clocks have the same
period. That method may be described as follows. First, the
optimal clock period is determined, and a schedule of all the
functional elements of the circuit is computed. Second, in
order to preserve the behavior of the original circuit,
registers are placed independently of their initial placement.
The placement of registers is done using the fixed schedule.
Finally, once the registers are placed, the phases are
determined.

In the previous method, As Soon As Possible (ASAP) or
As Late As Possible (ALAP) schedule is used. Choosing a
good schedule may allow to decrease the number of
registers that must be placed in the final circuit, and its
number of phases. Decreasing the number of registers
contributes to minimizing the area occupied by the circuit
and reduces its power consumption; while decreasing the
number of phases reduces the complexity of the clock
generation task. In this paper, we propose polynomial-time-
solvable methods to determine schedules for reducing the
number of registers and the number of phases. The methods
have been tested on various benchmarks selected from the
ISCAS89 set. Experimental results show that the number of
registers that must be inserted in the final circuit, and the
required number of phases, can be substantially reduced
compared to the case where an ASAP or an ALAP schedule
is chosen.

The remainder of this paper is organized as follows. In
Section 2, we introduce the notations and definitions used
in this work. Section 3 briefly reviews the registers
placement step in the method based on software pipelining,
which was outlined above. Our methods to determine
schedules for reducing the number of registers and the
number of phases are presented in Sections 4 and 5. Section
6 presents experimental results. Conclusions are provided
in Section 7.

Reducing Register and Phase Requirements for Synchronous
Circuits Derived Using Software Pipelining Techniques

Noureddine Chabini1, El Mostapha Aboulhamid1, Yvon Savaria2

1: LASSO, DIRO, Université de Montréal C.P.6128, Suc. Centre ville, Montréal, Qc, Canada, H3C 3J7.
Email:{chabinin, aboulham}@iro.umontreal.ca

2: GRM, DGEGI, École Polytechnique de Montréal, C.P. 6079, Suc. Centre-ville, Montréal, Qc,
Canada, H3C 3A7. Email: savaria@vlsi.polymtl.ca

2. Preliminaries

2.1. The cyclic graph model

In order to minimize the clock period of a synchronous
sequential circuit, it is modeled (as in [1, 7]) as a directed
cyclic graph , whereV is the set of
functional elements in the circuit, andE is the set of edges
which represent interconnections between vertices. Each
vertexv in V has a non-negative integer propagation delay

. Each edge , fromu tov, in E is weighted with
a register count , representing the number of
registers on the wire betweenu andv.

Figure 1 presents an example of a circuit and its directed
cyclic graph model. In this figure, large rectangles represent
functional elements, and small rectangles represent
registers. Wires are oriented to show the propagation
direction of the signals. The propagation delay of each
functional element of this circuit is specified as a label on
the left of each large rectangle. This example will be used
through this paper, and will serve as an example of initial
specification for the problem to optimize. The initial
specification is in general a synchronous circuit with a
single-phase clock period. The clock period of the circuit in
Figure 1 is 6, which is equal to .

2.2. Periodic andk-periodic schedules

We define a schedules [1, 5] as a function
, where denotes the schedule

time of thenth iteration of operationv. In multi-phase flip-
flop based circuits, the schedule time is the start time of the
operation. A schedules is called periodic with periodP, if:

. (1)
A schedules is calledk-periodic if there exist integersn0

andk, and a positive rational numberP such that:
. (2)

Both periodic andk-periodic schedules have the same
throughput . Thek-periodic schedules have a
period of . When there is no resource constraint, a
schedules is said to be valid if and only if the operations
terminate before their results are needed. In this case, we
say that data dependencies are satisfied, which is equivalent
to the following mathematical inequality:

. (3)

2.3. Maximum throughput of synchronous
sequential circuit

The throughput,T, of synchronous sequential circuit is
bounded by the inverse of the length,P, of the critical paths
in the circuit. Based on data dependencies constraints only,
the maximum throughput is [5]:

,
(4)

whereC is the set of directed cycles in the directed cyclic
graph modeling the circuit. Determining the maximum
throughput is a Minimal Cost-to-Time Ratio Cycle Problem
[3, 4], which can be solved in the general case in

 [4], where
. A possible method to solve this

problem is to iteratively apply Bellman-Ford’s algorithm
for longest paths on the graph derived
from G by letting:

, (5)
where and . A binary search may be used
to find the minimal value ofP for which there is no positive
cycle inGP [5].

For the example inFigure 1, we have thatP = 4. This
value corresponds to the cycle defined by verticesv1, v2,
andv4.

2.4. Schedule for a given throughput

From equation (1) and inequality (3), we have that:
. (6)

In the case of periodic schedules, determining a valid
schedule of all the instances of each vertexv in V is
equivalent to determining for eachv in V, which is
also equivalent to determining solutions to the system of
inequalities described by (6). To resolve this system, the
graphGP, previously described, may be used. To find an
ASAP schedule, Bellman-Ford’s algorithm for longest

G V E d w, , ,()=

d v() N∈ eu v,
w eu v,() N∈

d v4() d v1()+

Figure 1 : Sample circuit and its directed cyclic
graph model.

Circuit.

Directed Cyclic Graph.

1

2

4
0

1

12

2

3

5

1

1

1

1

1

1

 Functional
 Element#4

 Functional
 Element#5

 Functional
 Element#1

 Functional
 Element#2

 Functional
 Element#3

4 1

2

2
1

4 1

s : N V× Q→ sn v() s n v,()≡

n N∈∀ , v V∈∀ : sn 1+ v() sn v() P+=

n n0≥∀ , v V∈∀ : sn k+ v() sn v() k P⋅+=

T 1 P⁄=
k P⋅()

n N∈∀ , eu v, E∈∀ : sn w eu v,()+ v() sn u() d u()+≥

T Minc C∈ w eu v,()
eu v, c∈
∑

 d u()
v V∈∀ andeu v, c∈

∑
 ⁄

 =

O V E V dmax⋅()log⋅ ⋅()
dmax Maxv V∈ d v()()=

GP V E d wP, , ,()=

wP eu v,() d u() P w eu v,()⋅–=
eu v, E∈ P 1 T⁄=

eu v, E∈∀ , s0 v() s0 u()– d u() P w eu v,()⋅–≥

s0 v()

paths, from a chosen vertexvx to the others, may be applied
on the graphGP. Finding an ALAP schedule may be done
as follows. Step 1, a graphG’ has to be derived fromGP by
inverting the direction of each edge inGP. Step 2, Bellman-
Ford’s algorithm for longest paths, from the vertexvx to the
others, has to be applied on the graphG’, where the weights
of its edges are defined by equation (5). Finally, step 3, the
ALAP schedule is obtained by multiplying each result in
step 2 by -1.Table 1 gives the ASAP and ALAP schedules,
relatively tovx = v1, of vertices of the circuit inFigure 1.

Table 1 : ASAP and ALAP schedules.

2.5. Schedule graph

As in [1], a periodic schedule, with periodP, of vertices
of directed cyclic graph modeling a circuit is presented by a
schedule graph . HereV, E andd have
the same definition given for the case of the graphG
previously defined, and is a weight function,
which associates to each edgeeu, v in E the time distance
between the schedule times ofu and v. Mathematically,

 is defined as follows:
. (7)

Becauses is periodic with periodP, equation (7) may be
written as follows:

. (8)
The graphGs is consistent if and only if for each edge

in E, . This is derived from equation
(3). Figure 2 shows a consistent schedule graph, where
edges are labeled withws values, for the circuit inFigure 1
using the ALAP schedule fromTable 1.

2.6. Incidence, unimodular and eulerian matrices

In this paper, the incidence matrix,M, of a directed
graph,G, is a matrix whose lines are indexed by the edges
of G while the columns are indexed by its vertices. The
entries ofM are defined as follows: is equal to 1 ifi is

the tail of the edgee, to -1 if i is the head ofe, and to 0
otherwise. For instance, the incidence matrix of the graph in
Figure 1 is:

.

A matrix M is totally unimodular if every one of its square
submatrices has a determinant equal to , 0 or 1 [9]. A
submatrix of a matrix is said to beEulerian [9, 10] if the
sum of the entries of its lines and the sum of the entries of
its columns are both even. This will be used to prove
Theorem 1 in Section 4.2.

3. Register placement

In the method proposed in [1], which was outlined in
Section 1, a register placement step is needed in order to
preserve the behavior of the original circuit. The placement
of registers is derived from a schedule graphGs, by
breaking every path inGs that is longer than the optimal
clock periodP. For paths having a length less thanP, no
register is required because operations chaining is assumed.

For the circuit inFigure 1, applying the algorithm in [1]
for register placement on the schedule graphGs in Figure 2,
starting fromv1, gives the placement of registers and their
schedules as it is summarized byTable 2. Using the results
of this table, we present the placement of registers in the
circuit as depicted byFigure 3. The number of registers that
are placed is 8 and the number of phases is 4.

Table 2 : Registers placement and their
schedules.

Vertices

v1 v2 v3 v4 v5

ASAP 0 -2 -4 -4 -4
ALAP 0 -2 1 -4 -1

Gs V E d ws P, , , ,()=

ws : E Q→

ws eu v,()
eu v, E∈∀ , ws eu v,() sw eu v,() v() s0 u()–=

eu v, E∈∀ , ws eu v,() s0 v() s0 u()–= P w eu v,()⋅+

eu v, ws eu v,() d u()≥

Figure 2 : Schedule graph.

1

2

4
4

2

22

2

3

5

1

6

7

1

7

4 1

1

Me i,

Registers Registers Placement Schedule
R1 e1, 2 2
R2 e2, 3 1
R3 e2, 4 0
R4 e3, 2 2
R5 e4, 1 0
R6 e4, 5 3
R7 e5, 3 1
R8 e5, 4 0

M

1 1– 0 0 0

0 1 1– 0 0

0 1 0 1– 0

0 1– 1 0 0

1– 0 0 1 0

0 0 0 1 1–

0 0 1– 0 1

0 0 0 1– 1

=

1–

Figure 3 : Registers placement using ALAP.

1

2

4

2

2

3

5

1

4 1R6

R8

R2

R4

R7R3

R5

R1

4. Reducing register requirements

As explained in Section 3, the algorithm to place
registers breaks only paths that are longer than the optimal
clock periodP, because operations chaining is assumed.
Recall that this algorithm works on a schedule graph,Gs,
where its edges are weighted as defined by (8). By
examining equation (8), no register is required betweenu
andv if is less thanP. Hence, having as
small as possible for each edgeeu, v in Gs may allow to
decrease the number of registers that will be placed by this
algorithm. Having edges with this characteristic depends on
the schedule chosen to construct the graphGs. The problem
of reducing the number of registers thus transforms to
determining a schedule that allow to be as small as
possible for eacheu, v in G. To achieve that new goal, we
develop a mathematical formulation summarized inFigure
4.

Let us define:
, (9)

for each edgeeu, v. Minimizing over all edges tends
to minimize the number of edges where a register will be
necessary. The combination of (8) and (9) gives the
inequality (10) inFigure 4. In this figure, inequality (11)
represents the data dependency constraints that every valid
schedule must satisfy. In the mathematical formulation in
Figure 4, the variables are the schedule time of the first
instance of each vertexv in V (i.e.,) and the ,
which are defined for all verticesu andv such that the edge
eu, v is inE.

For the circuit inFigure 1, 0, -2, -4, -4, and -1 is a valid
schedule for the functional elements 1, 2, 3, 4 and 5,
respectively. This schedule is an optimal solution for the
formulation inFigure 4. Using this schedule, the optimized
circuit presented inFigure 5 has the same functionality as
the original one. But, only 7 registers and 3 phases are
needed instead of 8 registers and 4 phases that are required
for the circuit inFigure 3; recall that the circuit inFigure 3
is derived using an ALAP schedule. The schedule time of
registers 1, 2, 3, 4, 5, 6, and 7 in the circuit inFigure 5 is 0,
0, 2, 0, 3, 0, and 0, respectively. Registers 1 and 2 are in the
output of the same functional element and they have the
same schedule time. Hence, only one of them is needed. We
have the same thing for the case of registers 6 and 7. Hence,
only 5 registers are required in this circuit

To solve the formulation inFigure 4, we examine three
cases. Case 1: when there is no restriction on the type of
each variable in this formulation. Case 2: when the
variables have to be integers, andP is integer. Case 3: like
case 2 butP is rational. But before examining these cases,
let us first check if this formulation has a solution, and if it
is possible to prune the solution space.

.

Lemma 1 : Given that P is a feasible clock period, the
formulation inFigure 4 has always a solution.

Proof: an ASAP (or an ALAP) schedule satisfies (10)
and (11). Hence, this schedule is a solution to the
mathematical formulation inFigure 4. ❏
Lemma 2 : If P and d(v) are integers, then for each v in V,
ASAP(v) and ALAP(v) are integers.

Proof: The procedure to find the ASAP and ALAP
schedules for each vertexv in V is given in Section 2.4.
Also, we have seen that this can be done by applying the
Bellman-Ford’s algorithm for longest paths on the graphGP
or G’, where each is defined as in (5). BecauseP
and, for eachv in V, d(v) are integers, then is
integer. Hence, this algorithm produces integer values for
ASAP or ALAP schedule. ❏

The ASAP and ALAP schedules may be used to prune
the solution space of the mathematical formulation in
Figure 4. This can be done by letting:

 for eachv in V.
The following subsections examine how to solve the

mathematical formulation inFigure 4 for the three cases of
interest.

4.1. Case 1: No restriction on the type of variables

In this case, the mathematical formulation inFigure 4 is
a linear program. Hence, it can be solved efficiently by
using the simplex method [13] or by using one of the two
polynomial-time methods such that the ellipsoid method
[14] or the interior point method [15]. In this paper, we have
used the LP_Solve tool [11] (which is in the public domain)
to obtain the experimental results.

ws eu v,() ws eu v,()

ws eu v,()

εu v, ws eu v,()≥
εu v,∑

s0 v() εu v,

Figure 4 : Scheduling for reducing register
requirements.

Formulation F1:

Subject to:
(10)
(11)

Minimize εu v,
eu v, E∈∀
∑

eu v, E∈∀ , εu v, s0 v() s0 u()–≥ P w eu v,()⋅+
eu v, E∈∀ , s0 v() s0 u()– d u() P w eu v,()⋅–≥

Figure 5 : Final circuit using Figure 4.

1

2

4

2

2

3

5

1

4 1

R7

R1

R3

R6R2

R4

R5

wP eu v,()
wP eu v,()

ASAP v() s0 v() ALAP v()≤ ≤

4.2. Case 2: All variables andP are integers

In this case, the mathematical formulation inFigure 4 is
an integer linear program which is NP-hard in the general
case. But, in this mathematical formulation, the right hand
sides of the inequalities are integers. From linear
programming theory [12], we know that if the constraint
matrix of an integer linear program is totally unimodular,
and if the right hand sides of the inequalities (as inFigure 4)
are integers, then the integer linear program and its
relaxation, obtained by ignoring the constraintinteger, have
the same optimal solution. The relaxed formulation is a
linear program and hence it can be solved as it was
discussed in Section 4.1. Now, to solve our integer linear
program as a linear program, we must prove that the
constraint matrix,A, of the formulation inFigure 4 is totally
unimodular.
Theorem 1 : The constraint matrix, A, of the formulation
in Figure 4 is totally unimodular.

To prove Theorem 1, let us first recall the following
theorem which is proved in [9].
Theorem 2 : A matrix, X, is totally unimodular if and only
if for every (square) Eulerian submatrix, Y, of X, we have
that the sum of the entries of X divides by 4.

Proof of Theorem 1: Let m be the number of edges and
n be the number of vertices in the directed cyclic graph,G,
modeling a circuit. The constraint matrix,A, of the
mathematical formulation inFigure 4 is:

whereA1, A2, A3, andA4 are matrices of size , ,
 and , respectively. The matrixA1 is the identity

matrix. A3 is the zero matrix.A2 is the incidence matrix of
G andA4 = -A2. Each line ofA2 contains exactly an 1 and
an -1; the other entries of this line are equal to zero.

Let B be an arbitrary square eulerian submatrix ofA. The
sum of the entries of each line ofB is even; all columns of
B have this propriety too. Consequently,B andA1 do not
have any common element. Now, let us discuss the rest of
the cases. First, it is well known that every incidence matrix
is totally unimodular [10]. It is evident that the zero matrix
is totally unimodular too. Hence,A2, A3, andA4 are totally
unimodular. Now, ifB is a submatrix ofA2, or A3, or A4,
then it is totally unimodular; hence, Theorem 2 is satisfied
andA is totally unimodular. For the case whereB is formed
by elements inA2 and by elements inA4, or by elements in
A3 and by elements inA4, then by the eulerian condition,
each line ofB has exactly one entry equal to 1 and one entry
equal to (the other entries are equal to zero); the sum of
the entries of this line is equal to zero; consequently, the
sum of the all entries ofB is equal to zero and then it divides
by 4; in this case, the condition of Theorem 2 is satisfied;

hence, we have thatA is totally unimodular. ❏
As a summary, we have proved that the constraint matrix

of the mathematical formulation inFigure 4 is totally
unimodular. The right hand sides of the inequalities in this
formulation are integers. Consequently, solving the
corresponding linear program, obtained by ignoring the
integer constraint, gives the optimal solution of our integer
linear program; this solution is guaranteed to be integer
[12].

4.3. Case 3: Variables are integers, andP is
rational

In this case, the mathematical formulation inFigure 4 is
an integer linear program. But, because the right hand side
of the inequalities of this formulation are not integers, we
cannot solve this formulation as it was done in Section 4.2.
In [2, 5], a theorem says that given a valid periodic schedule
s, the schedules* defined by , where

 and , is ak-periodic schedule with the same
throughput. Hence, to solve this formulation, we can ignore
the constraintinteger and solve the resulting linear program
as it was done in Section 4.1. Then, thek-periodic schedule,
s*, can be determined.

5. Reducing the number of phases

In the method based on software pipelining [1], outlined
in Section 1, once registers are placed and their schedule is
fixed, the phases are determined. If a register,R, is placed
on edgeeu, v, then its schedule time is:

, (12)
whereP is the optimal clock period. The number of phases
is the number of the different for all the required
registers. Let us now analyze how to determine a schedule
that gives a small number of phases. By equation (12), we
have that:

, (13)
and

. (14)
By letting,

, (15)
for each two pair of different vertexu andv in V, and by
minimizing , then the number of the phases tends to
be reduced. Because the schedule we want to determine for
producing a small number of phases must be valid, the
inequalities described by (6) must not be violated. Using
(13) and (15), we have that:

. (16)
Putting together the equalities and inequalities: (16), (14)
and (6), we have the mathematical formulation, for
determining a valid schedule with a small number of
phases, which is presented inFigure 6. In this figure,

A
A1 A2

A3 A4

=

m m× m n×
m m× m n×

1–

s*n v() sn v()=
n N∈ v V∈

sv R() s0 v() mod P=

sv R()

kv N∈∃ : sv R() s0 v() kv P⋅–=

sv R() P<

δu v, sv R() su R()–≥

δu v,∑

δu v, s0 v() s0 u() ku kv–() P⋅+–≥

inequalities (17) and (18) are equivalent to (16); by
examining inequalities (17) and (18), we conclude that only
one of them is required. Inequality (19) is derived from (13)
and (14). Inequality (19) is not in the standard form of linear
programs, but ifP is integer, then it may be replaced by

. Inequality (20) is equivalent to (6). If
P is integer, then this formulation is a mixed integer linear
program. But, relaxing this formulation by ignoring the
term in (17) and (18) and restricting the
inequalities to the vertices having edges between them, and
by removing (19), we have the mathematical formulation in
Figure 7. In this formulation, the variables are the schedule
time of the first instance of each vertexv in V (i.e.,)
and the , which are defined for all verticesu andv such
that the edgeeu, v is in E. The resolution of the linear
program inFigure 7 may be done as we have done for the
case of the formulation inFigure 4.

For the circuit inFigure 1, 0, -2, -2, -4, and -4 is a valid
schedule for the functional elements 1, 2, 3, 4 and 5,
respectively. This schedule is an optimal solution for the
formulation inFigure 7. Using this schedule, the optimized
circuit presented inFigure 8 has the same functionality as
the original one. It operates using 8 registers and 2 phases
instead of 8 registers and 4 phases that are needed for the
circuit in Figure 3; note that the circuit inFigure 3 is
obtained using an ALAP schedule. The schedule time of
registers 1, 2, 3, 4, 5, 6, 7 and 8 in the circuit inFigure 8 is
2, 2, 0, 2, 0, 0, 2, and 0, respectively. In this circuit, registers
5 and 6 are in the output of the same functional element, and
they have the same schedule time; hence, only one of them
is needed; consequently, the circuit can operate with 7
registers instead of 8.

6. Experimental results

We have implemented the two methods presented in
Sections 4 and 5 in a tool coded in C++, called
CircuitOptimizer, which has the architecture described by
Figure 9. Recall that the first method determines schedules
for reducing register requirements, while the second one
gives schedules for reducing the number of required phases.
Starting from a given directed cyclic graph specification of
a synchronous sequential circuit, the tool determines the
optimal clock period and the ASAP and ALAP schedules,
which could be used by the other components of the tool.
Then, depending on the choice of the type of schedule
required, automatic generation of the constraints of the
mathematical formulation of this schedule is done. The
LP_Solve tool [11] (in the public domain) is used to solve
the generated mathematical formulation. Finally, the
schedule found by the LP_Solve is parsed and used to place
registers. The phases and their number are then determined.

To test the effectiveness of the methods that we have
developed to determine schedules for reducing register and
phase requirements, we have experimented the
CircuitOptimizer tool on benchmarks selected from the
ISCAS89 set.Table 3 reports results when the tool have
been used to place a small number of registers. The results
of the case when the target is to place registers for reducing
the number of required phases are presented inTable 4. To
determine the gain obtained by using our methods, we
compare the results of these methods with the results of the
original method [1] that uses ALAP. InTable 3, the number
of the registers is reduced by a factor ranging from 24% to
38%. Note that even though it was not the objective of the
method to reduce the number of phases, we nevertheless
obtained reductions ranging from 19% to 67%. InTable 4,
a substantial reduction of the number of phases has been
obtained; the gain factor is between 12% and 70%; the
number of registers is also reduced, except for the case of
the circuit S5378 where it has increased as a result of
reducing the number of phases. All the results inTables 3
and 4 have been obtained in less than 20 minutes on an
UltraSPARC-10 with 1GB RAM.

s0 v() kv P⋅– P 1–≤

ku kv–()± P⋅()

s0 v()
δu v,

Figure 6 : Scheduling for reducing the number of
phases.

Formulation F2:

Subject to:
:

(17)
:

(18)
: (19)

(20)

Minimize δu v,
u V∈∀ , v V∈∀ , u v≠

∑
u V∈∀ , v V∈∀ , ku N∈∀ , kv N∈∀ andu v≠

δu v, s0 v() s0 u() ku kv–() P⋅+–≥
u V∈∀ , v V∈∀ , ku N∈∀ , kv N∈∀ andu v≠

δu v, s0 u() s0 v() kv ku–() P⋅+–≥
v V∈∀ , kv N∈∀ s0 v() kv P⋅– P<

eu v, E∈∀ , s0 v() s0 u()– d u() P w eu v,()⋅–≥

Figure 7 : The relaxed formulation of Figure 6.

Formulation F3:

Subject to:
(21)
(22)
(23)

Minimize δu v,
eu v, E∈∀
∑

eu v, E∈∀ , δ
u v, s0 v() s0 u()–≥

eu v, E∈∀ , δ
u v, s0 u() s0 v()–≥

eu v, E∈∀ , s0 v() s0 u()– d u() P w eu v,()⋅–≥

Figure 8 : Final circuit using Figure 7.

1

2

4

2

3

5

4 1
R6

R8

R2

R4

R7R3

R5

R1

Table 3 : Reducing register requirements.

Table 4 : Reducing phase requirements.

7. Conclusion

 In this paper, we showed that choosing a good schedule
has an impact on the number of registers that must be placed
in the circuit derived using software pipelining techniques,
and on the required number of phases. Reducing the number
of registers contributes to the minimization of the area
occupied by the circuit and reduces its power consumption,

while reducing the number of phases reduces the
complexity of the clock generation and distribution tasks.

We have developed two polynomial-time-solvable
methods for determining schedules to reduce register and
phase requirements. As demonstrated by the experimental
results using a subset of the ISCAS89 benchmarks, the
methods have proved to be very efficient for reducing the
number of registers that must be inserted in the final circuit,
and its number of phases.

References

[1] F.-R. Boyer, E.-M. Aboulhamid, Y. Savaria and M. Boyer,
“Optimal Design of Synchronous Circuits Using Software
Pipelining Techniques”,ACM Transactions on Design
Automation of Electronic Systems, Vo. 7, Num. 2, 2002.

[2] C. Hanen, “Study of NP-hard Cyclic Scheduling Problem:
the Recurrent Job-Shop”,European Journal of Operation
Research, Vo. 72, 1994.

[3] S.-H. Gerez, S.-M.-H. de Groot, and O.-E. Herrmann, “A
Polynomial-Time Algorithm for the Computation of the
Iteration-Period Bound in Recursive Data- Flow Graphs”,
IEEE Trans. on Circuits and Syst., No. 1, Vo. 39, 1 (Jan.
1992).

[4] E.-L. Lawler, Combinatorial Optimization: Networks and
Matroids, Holt, Reinhart, and Winston, New York, NY,
USA, 1976.

[5] I.-E. Bennour, and E-M. Aboulhamid, “Les problèmes
d'ordonnancement cycliques dans la synthèse de systèmes
numeriques”,Technical Report 996 (Oct. 1995), DIRO,
Université de Montréal. http://
www.iro.umontreal.ca/~aboulham/
pipeline.pdf .

[6] A.-T. Ishii, C.-E. Leiserson, and M. C. Papaefthymiou,
“Optimizing two-phase, level-clocked circuitry”,Journal
of the ACM 44, 1 (Jan. 1997).

[7] C.-E. Leiserson, and J.-B. Saxe, “Retiming synchronous
circuitry”, Algorithmica 6, 1, 1991.

[8] B. Lockyear, C. and Ebeling, “Optimal retiming of level-
clocked circuits using symmetric clock schedules”,IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems13, 9 (Sept. 1994).

[9] P. Camion, “Characterisation of totally unimodular
matrices”,Proc. of the Amer. Math. Soc., Vo. 16, 1965.

[10] C. Berge,théorie des graphes et ses applications, Dunod,
Paris, 1958.

[11] The LP_Solve Tool:ftp://ftp.ics.ele.tue.nl/
pub/lp_solve/

[12] A. Schrijver, theory of linear and integer programming,
John Wiley and Sons, 1986.

[13] V. Chvatal, Linear programming, W. H. Freeman and
Company, 1983.

[14] L.-G. Khachian, “A Polynomial algorithm in linear
programming”,Soviet Math. Doklady, Vo. 20, 1979.

[15] N. Karmakar, “A New polynomial-time algorithm for linear
programming”,Combinatorica, Vo. 4, 1984.

Arbitrary
schedule: ALAP

Schedule
produced by our

method
Gain

#
registers

#
phases

#
registers

#
phases

#
registers

#
phases

S344 131 15 96 7 27% 53%
S641 142 16 90 13 37% 19%
S1423 422 65 320 47 24% 28%
S5378 1033 53 692 27 33% 49%
S9234 1042 48 643 16 38% 67%

Arbitrary
schedule: ALAP

Schedule
produced by our

method
Gain

#
registers

#
phases

#
registers

#
phases

#
registers

#
phases

S344 131 15 79 6 40% 60%
S641 142 16 90 14 37% 12%
S1423 422 65 366 31 13% 52%
S5378 1033 53 1168 16 -13% 70%
S9234 1042 48 849 16 18% 67%

Figure 9 : The architecture of the CircuitOptimizer
Tool.

Directed Cyclic Graph Model of a
Synchronous Sequential Circuit

Optimal Clock Period and ASAP&ALAP
Schedules Determination

Scheduling for
Reducing Register

Requirements

Scheduling for
Reducing the Number

of Phases

Automatic Generation of the Constraints of
the Mathematical Formulations

Schedules Determination
Using the LP_Solve Tool

Schedules Parsing and Registers Placement

