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Abstract Software pipelining has been proved to be a powerful
technique for increasing the instruction-level parallelism

A method based on a modulo scheduling algorithm forfor parallel processors. It has recently been used for
software pipelining has been recently proposed to optimizeoptimizing clocked circuits [1]. The resulting circuit is a
clocked circuits. The resumng circuits are mu|ti-phage multi-phase clocked circuit, where all clocks have the same
clocked circuits, where all clocks have the same period. Toperiod. That method may be described as follows. First, the
preserve the functionality of the original circuit, registers optimal clock period is determined, and a schedule of all the
must be placed after minimizing the clock period. The functional elements of the circuit is computed. Second, in
placement of these registers is derived from an arbitrary order to preserve the behavior of the original circuit,
schedule determined during a clock period minimization registers are placed independently of their initial placement.
step. A good schedule may allow to decrease the number dfhe placement of registers is done using the fixed schedule.
registers and the number of phases needed in the finaFinally, once the registers are placed, the phases are
circuit. Decreasing the number of registers contributes to determined.
minimizing the area occupied by the circuit and reduces its  In the previous method, As Soon As Possible (ASAP) or
power consumption; while decreasing the number of phase#\s Late As Possible (ALAP) schedule is used. Choosing a
reduces the complexity of the clock generation andgood schedule may allow to decrease the number of
distribution tasks. In this paper, we propose p0|yn0mia|- registers that must be placed in the final CirCUit, and its
time-solvable methods to choose a good schedule once th@umber of phases. Decreasing the number of registers
clock period is minimized. The methods have been tested ogontributes to minimizing the area occupied by the circuit
a subset of the ISCAS89 benchmarks. Experimental resultgnd reduces its power consumption; while decreasing the
show that the number of registers which must be inserted ifumber of phases reduces the complexity of the clock
the final circuit, and the number of phases, have beengeneration task. In this paper, we propose polynomial-time-
Significanﬂy decreased Compared to the case where arﬁO'Vable methods to determine schedules for reducing the

arbitrary schedule is chosen. number of registers and the number of phases. The methods
have been tested on various benchmarks selected from the
1. Introduction ISCASS89 set. Experimental results show that the number of

registers that must be inserted in the final circuit, and the
required number of phases, can be substantially reduced
compared to the case where an ASAP or an ALAP schedule
ds chosen.

The remainder of this paper is organized as follows. In
Section 2, we introduce the notations and definitions used
dn this work. Section 3 briefly reviews the registers
circuit is clocked by a single-phase clock, which limits the Placeément step in the method based on software pipelining,
search space for effective timing solutions. Various Which was outlined above. Our methods to determine
extensions to retiming have been proposed [6, 8]. In [8],schedules for reducing the number of registers and th_e
retiming with multi-phase clocks was proposed. With this NUmber of phases are presented in Sections 4 and 5. Section
method, the phases are fixed before retiming, which carf Presents experimental results. Conclusions are provided

give an optimal clock period if good phases are chosen. N Section 7.

The performance of clocked digital circuits can be
improved by minimizing their clock period. Retiming [7] is
a technique often used for that purpose. This techniqu
changes register placement in the circuit to minimize the
maximum combinational delay between any two
neighboring registers. Basic retiming supposes that th



2. Preliminaries time of then® iteration of operation. In multi-phase flip-
flop based circuits, the schedule time is the start time of the
2.1. The cyclic graph model operation. A scheduleis called periodic with perio8, if:
OnON, OvOV: s, 4(v) =s,(v) +P. (2)
In order to minimize the clock period of a synchronous A schedulesis calledk-periodic if there exist integerg
sequential circuit, it is modeled (as in [1, 7]) as a directed@ndk, and a positive rational numbersuch that:
cyclic graph G = (V,E d w , whereV is the set of Onzng, OvOV: sy, (V) = s5(v) +KLP. ()
functional elements in the circuit, afids the set of edges Both periodic andk-periodic schedules have the same
which represent interconnections between vertices. Eacfihroughput T = 1/P . Thek-periodic schedules have a
vertexv in VV has a non-negative integer propagation de|ayper|od of (kP) . When there is no resource constraint, a

d(v) ON. Each edge, , fromtov, in E is weighted with ~ Schedules is said to be valid if and only if the operations
a register count/v(euu')VD N , representing the number of terminate before their results are needed. In this case, we
, V. !

registers on the wire betwearandv. say that data dependencies are satisfied, which is equivalent

Figure 1 presents an example of a circuit and its directed 0 the following mathematical inequality:
cyclic graph model. In this figure, large rectangles represent OnON, Oey yOE:Syp e, ) (V) Z8p(U) +d(u) . (3)
functional elements, and small rectangles represent )
registers. Wires are oriented to show the propagationZ-3. Maximum throughput of synchronous
direction of the signals. The propagation delay of eachSequential circuit
functional element of this circuit is specified as a label on
the left of each large rectangle. This example will be used The throughputT, of synchronous sequential circuit is
through this paper, and will serve as an example of initialbounded by the inverse of the leng®pf the critical paths
specification for the problem to optimize. The initial in the circuit. Based on data dependencies constraints only,
specification is in general a synchronous circuit with a the maximum throughput is [5]:
single-phase clock period. The clock period of the circuitin T = Min_ c% ED w(e, V)E{% > d(u)%,

e, voc

Figure 1 is 6, which is equal td(v,) + d(v;) OvOVande, ,Ue 4
whereC is the set of directed cycles in the directed cyclic
4 |Eunctiona®lHFunctional graph modeling the circuit. Determining the maximum
Element#4 IElement#b throughput is a Minimal Cost-to-Time Ratio Cycle Problem
£ ke , [3, 4], which can be solved in the general case in
O(IVI OE Oog(| M Ody ) [4], where
2 |Functiona dmax = Max,;y(d(v)). A possible method to solve this
Element#]L problem is to iteratively apply Bellman-Ford’s algorithm
for longest paths on the gra@, = (V. E, d w) derived
from G by letting:
Functionai“lI Functiong| Wp(e, ) = d(u)-POMg, ), (5)
o [Elementi#y g CIElement3 wheree, ,0E anc® = 1/T . Abinary search may be used
to find the minimal value d® for which there is no positive
Circuit. cycle inGp [5].

i ! For the example ifFigure 1, we have thaP = 4. This
value corresponds to the cycle defined by vertigess,,
andvy.

2
e - 2.4. Schedule for a given throughput
: 21 ! From equation (1) and inequality (3), we have that:
Directed Cyclic Graph. e, v E, Sy(v) —Sp(u) 2 d(u) — P Ca(e, ) - (6)
Figure 1 : Sample circuit and its directed cyclic In the case of periodic schedules, determining a valid
graph model. schedule of all the instances of each verein V is
equivalent to determining,(v) for eaehin V, which is
2.2. Periodic andk-periodic schedules also equivalent to determining solutions to the system of

inequalities described by (6). To resolve this system, the
We define a schedules [1, 5] as a function graphGp, previously described, may be used. To find an
s:NxV - Q, wheres(v)=s(n \) denotes the schedule ASAP schedule, Bellman-Ford's algorithm for longest



paths, from a chosen vertexto the others, may be applied
on the graptGp. Finding an ALAP schedule may be done
as follows. Step 1, a graj@i has to be derived fro@p by
inverting the direction of each edgeGp. Step 2, Bellman-
Ford’s algorithm for longest paths, from the vengio the
others, has to be applied on the gr&hwhere the weights

of its edges are defined by equation (5). Finally, step 3, the

ALAP schedule is obtained by multiplying each result in
step 2 by -1Table 1 gives the ASAP and ALAP schedules,
relatively tov, = v4, of vertices of the circuit iRigure 1.

Table 1: ASAP and ALAP schedules.
\ertices
Vl V2 V3 V4 V5
ASAP 0 -2 -4 -4 -4
ALCAP 0 -2 1 -4 -1

2.5. Schedule graph

As in [1], a periodic schedule, with peri& of vertices

of directed cyclic graph modeling a circuit is presented by a

schedule graple, = (V, E, d w,P) .Hek E andd have
the same definition given for the case of the gr&ph
previously defined, andv,: E -~ Q is a weight function,
which associates to each edgge, in E the time distance
between the schedule times wfandv. Mathematically,
wg(e, ) is defined as follows:

e, O E, wy(ey, ) = Sye, 5 (V) —Sp(U) - (7)

Becauses |s periodic with perlod3 equation (7) may be
written as follows:

Oe,, O E, wy(ey ) = So(V) —=So(u) +POn(g, ) - (8)

The graphGg is consistent if and only if for each edge
e, v In E, wy(e, ) 2d(u). This is derived from equation
(3). Figure 2 shows a consistent schedule graph, where
edges are labeled witky values, for the circuit iigure 1
using the ALAP schedule froffaeble 1.

Figure 2 : Schedule graph.

2.6. Incidence, unimodular and eulerian matrices

In this paper, the incidence matrik, of a directed

graph,G, is a matrix whose lines are indexed by the edges

of G while the columns are indexed by its vertices. The
entries ofM are defined as followsv, ; is equal to 1i$

the tail of the edge, to -1 ifi is the head o0&, and to O
otherwise. For instance, the |nC|dence matrix of the graph in
Figure 1 is:
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A matrix M is totally unimodularif every one of its square
submatrices has a determinant equatto , 0 or 1[9]. A
submatrix of a matrix is said to [k&lerian [9, 10] if the
sum of the entries of its lines and the sum of the entries of
its columns are both even. This will be used to prove
Theorem 1 in Section 4.2.

3. Register placement

In the method proposed in [1], which was outlined in
Section 1, a register placement step is needed in order to
preserve the behavior of the original circuit. The placement
of registers is derived from a schedule graph by
breaking every path i that is longer than the optimal
clock periodP. For paths having a length less tHanno
register is required because operations chaining is assumed.

For the circuit inFigure 1, applying the algorithm in [1]
for register placement on the schedule gi@ph Figure 2,
starting fromv,, gives the placement of registers and their
schedules as it is summarizedTable 2. Using the results
of this table, we present the placement of registers in the
circuit as depicted bligure 3. The number of registers that
are placed is 8 and the number of phases is 4.

Figure 3 : Registers placement using ALAP.
Table 2 : Registers placement and their

schedules.
Registers | Registers Placemént Schedule
R1 €, 2 2
Ry €, 3 1
R3 €, 4 0
Ry €3,2 2
Rs €1 0
Re e4Y 5 3
R7 &, 3 1
Rg 65,4 0




4. Reducing register requirements

) ) ) ) Formulation Fq:
As explained in Section 3, the algorithm to place Minimize 8
registers breaks only paths that are longer than the optima Subject to; Deuzvg g’
clock periodP, because operations chaining is assumed. De, ,OE, &, ,2So(V) —So(u) + P On(e, ) (10)
Recall that this algorithm works on a schedule gréhb, Oe. OE S;(\‘,')_SO(U) > d(u)—P DN(%’V) (11)
where its edges are weighted as defined by (8). By v i
examining equation (8), no register is required between Figure 4 : Scheduling for reducing register

andv if wy(e, ) is less tharP. Hence, havingv(e, ,) as requirements.
small as possible for each edgg , in Gg may allow to
decrease the number of registers that will be placed by thig
algorithm. Having edges with this characteristic depends on
the schedule chosen to construct the g@apfThe problem

of reducing the number of registers thus transforms to
determining a schedule that allow(e, ,)  to be as small as
possible for eack, ,in G. To achieve that new goal, we
develop a mathematical formulation summarize8igure

4.

Let us define:

€ v Ws(ey ) s 9) Figure 5 : Final circuit using Figure 4.

for each edge, . Minimizing %} ¢, , over all edges tends
to minimize the number of edges where a register will beLemma 1 : Given that P is a feasible clock period, the
necessary. The combination of (8) and (9) gives theformulation inFigure 4 has always a solution.
inequality (10) inFigure 4. In this figure, inequality (11) Proof: an ASAP (or an ALAP) schedule satisfies (10)
represents the data dependency constraints that every valignd (11). Hence, this schedule is a solution to the
schedule must satisfy. In the mathematical formulation in mathematical formulation iRigure 4. O
Figure 4, the variables are the schedule time of the firstLemma 2 : If P and d(v) are integers, then for each vin V,
instance of each vertexin V (i.e., sy(v) ) and thee, ,, , ASAP(v) and ALAP(v) are integers.
which are defined for all verticesandv such that the edge Proof: The procedure to find the ASAP and ALAP
€, visinE. schedules for each vertexin V is given in Section 2.4.

For the circuit irFigure 1, 0, -2, -4, -4, and -1 is a valid Also, we have seen that this can be done by applying the
schedule for the functional elements 1, 2, 3, 4 and 5,Bellman-Ford’s algorithm for longest paths on the giGph
respectively. This schedule is an optimal solution for theor G’, where eaclwy(e, ,) is defined as in (5). BecaRse
formulation inFigure 4. Using this schedule, the optimized and, for eactv in V, d(v) are integers, themy(e, ) is
circuit presented iffigure 5 has the same functionality as integer. Hence, this algorithm produces integer values for
the original one. But, only 7 registers and 3 phases aréASAP or ALAP schedule. a
needed instead of 8 registers and 4 phases that are required The ASAP and ALAP schedules may be used to prune
for the circuit inFigure 3; recall that the circuit iffigure 3 the solution space of the mathematical formulation in
is derived using an ALAP schedule. The schedule time ofFigure 4. This can be done by letting:
registers 1, 2, 3, 4, 5, 6, and 7 in the circuRigure 5 is 0, ASAR V < s5(v) < ALAP(V) for eachvinV.
0,2,0, 3,0, and 0, respectively. Registers 1 and 2 are in the The following subsections examine how to solve the
output of the same functional element and they have themathematical formulation iRigure 4 for the three cases of
same schedule time. Hence, only one of them is needed. Wiaterest.
have the same thing for the case of registers 6 and 7. Hence,
only 5 registers are required in this circuit 4.1. Case 1: No restriction on the type of variables

To solve the formulation ifigure 4, we examine three
cases. Case 1: when there is no restriction on the type of In this case, the mathematical formulatiorFigure 4 is
each variable in this formulation. Case 2: when thea linear program. Hence, it can be solved efficiently by
variables have to be integers, @ integer. Case 3: like using the simplex method [13] or by using one of the two
case 2 buP is rational. But before examining these cases, polynomial-time methods such that the ellipsoid method
let us first check if this formulation has a solution, and if it [14] or the interior point method [15]. In this paper, we have
is possible to prune the solution space. used the LP_Solve tool [11] (which is in the public domain)

to obtain the experimental results.



4.2. Case 2: All variables andP are integers hence, we have thatis totally unimodular. a
As a summary, we have proved that the constraint matrix
In this case, the mathematical formulatiorFigure 4 is of the mathematical formulation ifigure 4 is totally
an integer linear program which is NP-hard in the generalunimodular. The right hand sides of the inequalities in this
case. But, in this mathematical formulation, the right handformulation are integers. Consequently, solving the
sides of the inequalities are integers. From linearcorresponding linear program, obtained by ignoring the
programming theory [12], we know that if the constraint integerconstraint, gives the optimal solution of our integer
matrix of an integer linear program is totally unimodular, linear program; this solution is guaranteed to be integer
and if the right hand sides of the inequalities (a&dare 4) [12].
are integers, then the integer linear program and its
relaxation, obtained by ignoring the constraiméger have  4.3.  Case 3: Variables are integers, an@ is
the same optimal solution. The relaxed formulation is arational
linear program and hence it can be solved as it was
discussed in Section 4.1. Now, to solve our integer linear In this case, the mathematical formulatiorFigure 4 is
program as a linear program, we must prove that thean integer linear program. But, because the right hand side
constraint matrixA, of the formulation irFigure 4 is totally of the inequalities of this formulation are not integers, we
unimodular. cannot solve this formulation as it was done in Section 4.2.
Theorem 1 : The constraint matrix, A, of the formulation In [2, 5], a theorem says that given a valid periodic schedule
in Figure 4 is totally unimodular. s, the schedules* defined by s* (v) = |s,(v) | , where
To prove Theorem 1, let us first recall the following nON andvOV , is ak-periodic schedule with the same
theorem which is proved in [9]. throughput. Hence, to solve this formulation, we can ignore
Theorem 2: A matrix, X, is totally unimodular if and only  the constrainintegerand solve the resulting linear program
if for every (square) Eulerian submatrix, Y, of X, we have as it was done in Section 4.1. Then,kigeriodic schedule,
that the sum of the entries of X divides by 4. s* can be determined.
Proof of Theorem 1 Letm be the number of edges and
n be the number of vertices in the directed cyclic grébh, 5, Reducing the number of phases
modeling a circuit. The constraint matrid, of the
mathematical formulation iRigure 4 is: In the method based on software pipelining [1], outlined
A, A, in Section 1, once registers are placed and their schedule is
A= A A fixed, the phases are determined. If a regifeis placed
374 _ on edges, , then its schedule time is:
whereAq, Ay, A, andA, are matrices of sizexm mxn ’ s(R) = sp(v) modP, (12)
mx mandmx n , respectively. The matry is the identity  yherep is the optimal clock period. The number of phases
matrix. Az is the zero matrixA2 is the_incidence matrix of  is the number of the different,(R)  for all the required
G andA, = -Ay. Each line ofA; contains exactly an 1 and  regjsters. Let us now analyze how to determine a schedule

an -1; the other entries of this line are equal to zero. that gives a small number of phases. By equation (12), we
Let B be an arbitrary square eulerian submatri&.cfhe have that:

sum of the entries of each lineBfis even; all columns of Tk, 0N :s,(R) = (V) =k, [P, (13)

B have this propriety too. Consequent/andA; do not and

have any common element. Now, let us discuss the rest of s,(R)<P. (14)

the cases. First, it is well known that every incidence matrix gy |etting,

is totally unimodular [10]. It is evident that the zero matrix 8, v2|S/(R) ~s4(R)| (15)

is totally unimodular too. Hencéy, Ag, andA4 are totally  for each two pair of different vertaxandv in V, and by

unimodular. Now, ifB is a submatrix oy, Or Ag, OrAs,  minimizing '3, ,, , then the number of the phases tends to

by elements ik and by elements iA,, or by elements in  jnequalities described by (6) must not be violated. Using
Az and by elements A, then by the eulerian condition, (13) and (15), we have that:

each line oB has exactly one entry equal to 1 and one entry By v [Sp(v) —Sp(u) + (k, —k,) P (16)

equal to-1 (the other entries are equal to zero); the sum opytting together the equalities and inequalities: (16), (14)



inequalities (17) and (18) are equivalent to (16); by
examining inequalities (17) and (18), we conclude that only
one of them is required. Inequality (19) is derived from (13)
and (14). Inequality (19) is not in the standard form of linear
programs, but ifP is integer, then it may be replaced by
so(v) —k, [P<P—-1. Inequality (20) is equivalent to (6). If

P is integer, then this formulation is a mixed integer linear
program. But, relaxing this formulation by ignoring the
term (x(k,—k,) CP) in (17) and (18) and restricting the
inequalities to the vertices having edges between them, an - - — -
by removing (19), we have the mathematical formulation in Figure 8 : Final circuit using Figure 7.
Figure 7. In this formulation, the variables are the schedule

time of the first instance of each vertein V (i.e., s,(v) ) 6. EXxperimental results

and theg, , , which are defined for all vertiaeandv such

that the édgeau‘ v IS in E. The resolution of the linear We have implemented the two methods presented in
program inFigure 7 may be done as we have done for the Sections 4 and 5 in a tool coded in C++, called
case of the formulation iRigure 4. CircuitOptimizer, which has the architecture described by

For the circuit inFigure 1, 0, -2, -2, -4, and -4 is a valid Figure 9. Recall that the first method determines schedules
schedule for the functional elements 1, 2, 3, 4 and 5,for reducing register requirements, while the second one
respectively. This schedule is an optimal solution for the gives schedules for reducing the number of required phases.
formulation inFigure 7. Using this schedule, the optimized Starting from a given directed cyclic graph specification of
circuit presented iffigure 8 has the same functionality as a synchronous sequential circuit, the tool determines the
the original one. It operates using 8 registers and 2 phasesptimal clock period and the ASAP and ALAP schedules,
instead of 8 registers and 4 phases that are needed for thvehich could be used by the other components of the tool.
circuit in Figure 3; note that the circuit irFigure 3 is Then, depending on the choice of the type of schedule
obtained using an ALAP schedule. The schedule time ofrequired, automatic generation of the constraints of the
registers 1, 2, 3, 4, 5, 6, 7 and 8 in the circuitigure 8 is mathematical formulation of this schedule is done. The
2,2,0,2,0,0, 2, and 0, respectively. In this circuit, registersLP_Solve tool [11] (in the public domain) is used to solve
5 and 6 are in the output of the same functional element, anthe generated mathematical formulation. Finally, the
they have the same schedule time; hence, only one of therschedule found by the LP_Solve is parsed and used to place
is needed; consequently, the circuit can operate with 7registers. The phases and their number are then determined.
registers instead of 8. To test the effectiveness of the methods that we have

Formulation F: developed to _determine schedules for reducipg register and
Minimize 5 phase requirements, we have experimented the
Subject to: DuDv,gDv,u,tv oy CircuitOptimizer tool on benchmarks selected from the
OuOV, OvOV, Ok.ON, Ok, 0N andu# v: ISCAS89 setTable 3 reports results Wheq the tool have
3, .2 5,(V) _go(u) . (kv—k ) P (17) been used to place a small _number of regllsters. The resglts
0uD V,U'va OV, Ok ON, Dku 0 l{’l andu v of the case when th.e target is to place reglster§ for reducing
5, 2 5,(U) _ZO(V) . (kv—k )P (18) the number of rqulred phases are presentédhle 4.To
DVU,DVV’ O so(v)ik ED<P (19) determine the gain obtained by using our methods, we
Oe. OE So(V;_So(U) > d(u)ZP (e, ) (20) compare the results of these methods with the results of the
Ly v original method [1] that uses ALAP. Trable 3, the number
Figure 6 : Scheduling for reducing the number of of the registers is reduced by a factor ranging from 24% to
phases. 38%. Note that even though it was not the objective of the

method to reduce the number of phases, we nevertheless
obtained reductions ranging from 19% to 67%Tdble 4,

Formulation F3: a substantial reduction of the number of phases has been
_ Minimize ZD By, v obtained; the gain factor is between 12% and 70%; the
Subject to: Heu HE number of registers is also reduced, except for the case of
ey, vOE, 9, 2 Sp(V) —Sp(u) (21) the circuit S5378 where it has increased as a result of

ey, vOE, 9, 2 Sp(u) =Sp(V) (22) reducing the number of phases. All the resultSables 3
Oey, v O E, sp(v) —sp(u) 2 d(u) -P Om(e, ) (23) and 4 have been obtained in less than 20 minutes on an

Figure 7 : The relaxed formulation of Figure 6. UltraSPARC-10 with 1GB RAM.
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while reducing the number of phases reduces the
complexity of the clock generation and distribution tasks.
We have developed two polynomial-time-solvable
methods for determining schedules to reduce register and
phase requirements. As demonstrated by the experimental

Figure 9 : The architecture of the CircuitOptimizer

Tool.
Table 3 : Reducing register requirements. [4]
Arbitrary rocijccr:seddgleour Gain
schedule: ALAP|P y
method (5]
# # # # # #
registery phasegregisterg phasegregisters phases|
S344 131 15 96 7 27% 53%
S641 142 16 90 13 37% 19%
S14231 422 65 320 47 24% 28%
S5378 [ 1033 53 692 27 33% 49% [6]
592341 1042 48 643 16 38% 67%
Table 4 : Reducing phase requirements. 7]
. Schedule
Arbitrary roduced by our Gain
schedule: ALAR P y [8]
method
# # # # # #
registers|phasesregisters| phasegregisterq phases
S344 131 15 79 6 40% 60%) [9]
S641 142 16 90 14 37% 12%
S1423 | 422 65 366 31 13% 52% [10]
Sh378 1 1033 53 1168 16 -13% 709
S9234 [ 1042 48 849 16 18% 679 [11]
7. Conclusion [12]

In this paper, we showed that choosing a good schedulél3]
has an impact on the number of registers that must be placed
in the circuit derived using software pipelining techniques, [14]
and on the required number of phases. Reducing the number
of registers contributes to the minimization of the area
occupied by the circuit and reduces its power consumption,

Optimal Clock Period and ASAP&ALAP results using a subset of the ISCAS89 benchmarks, the
Schedules Determination methods have proved to be very efficient for reducing the
- number of registers that must be inserted in the final circuit,
Scheduling for Scheduling for and its number of phases.
Reducing Register Reducing the Number
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